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Golden Gates

A finite subset S of a compact Lie group L, is called golden gate if:

Optimal (Topological) Generators

Almost any y ∈ L is contained in BV (x), the ball of volume V
centred at x ∈ S(`)- the set of words of S of length `, where

V = |S(`)|−1 · poly log |S(`)|.

and

Approximation (Heuristic) Algorithm

There is a polynomial algorithm, such that given y ∈ L and V > 0,
it outputs a word x ∈ S(`)

⋂
BV (y), where

V = |S(`)|− dim(L).
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Lubotzky, Phillips and Sarnak

In the 80’s LPS proved the following results:

Optimal Generators

Explicit constructions of optimal generators of L = PU2(R).
(=⇒ an optimal covering of the 2-dimensional sphere).

and

Ramanujan Graphs

Explicit constructions of Ramanujan regular graphs.
(Ramanujan = spectrally optimal graphs).
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Generalizations

In recent years the notions appearing in the works of LPS have
seen the following generalizations for higher dimensions:

Golden Gates

Instead of optimal generators for L = PU2(R),
Golden gates for general compact Lie groups L.

and

Ramanujan Complexes

Instead of Ramanujan regular graphs,
Ramanujan irregular graphs and simplicial complexes.
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Number Theory

The proof of LPS relies on the following two results:

Ramanujan Conjecture

The Ramanujan conjecture for PGU2/Q, which follows from
Deligne’s Theorem and Jacquet-Langlands correspondence.

and

Class Number One

A p-arithmetic group that acts simply transitive on the Bruhat-Tits
tree, which follows from Jacobi four squares Theorem.
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Problems

There are two main obstacles in extending the method of proof of
LPS to higher dimensions:

Naive Ramanujan Conjecture

The naive Ramanujan conjecture for higher rank groups is false.

and

Class Number One

There are only finitely many p-arithmetic groups that acts simply
transitive on the Bruhat-Tits buildings.
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Solutions

To overcome the failure of the NRC, we follow Sarnak’s strategy
from the 90’s, of proving and using a density hypothesis:

Density Hypothesis - Definition

Let F be a collection of automorphic representations.
Let F(T ) the finite subset of F of analytic conductor ≤ T .
Let F(T, σ) the subset of F(T ) of decay of matrix coefficient ≥ σ.
Then the density hypothesis is the claim that for any ε > 0,

|F(T, σ)| �ε |F(T )|2/σ+ε.

Density Hypothesis - Theorem

Let G/Q be a classical group such that G(R) is compact.
Let F = L2(G(Q)\G(A))K , for a compact adelic subgroup K.
Then F satisfy the density hypothesis.
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Results

Using the Density hypothesis we can prove the following results:

Golden Gates

Explicit constructions of golden gates for PUn(R), for any n ≤ 8.

and

Optimal Covering of Hecke Points

Let G/Q be a classical group such that G(R) is compact.
Let X be a homogeneous space of the Lie group L = G(R).
Then the p`-Hecke points covers X almost optimally.
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