Golden Gates in $PU_n(\mathbb{R})$ and the Density Hypothesis

Shai Evra joint work with Ori Parzanchevski and Amitay Kamber

Institute for Advanced Study

24.9.19

/□ ▶ < 글 ▶ < 글

Shai Evra joint work with Ori Parzanchevski and Amitay Kamber Golden Gates in $PU_n(\mathbb{R})$ and the Density Hypothesis

A finite subset S of a compact Lie group L, is called golden gate if:

Optimal (Topological) Generators

Almost any $y \in L$ is contained in $B_V(x)$, the ball of volume V centred at $x \in S^{(\ell)}$ - the set of words of S of length ℓ , where

$$V = |S^{(\ell)}|^{-1} \cdot \text{poly} \log |S^{(\ell)}|.$$

and

Approximation (Heuristic) Algorithm

There is a polynomial algorithm, such that given $y \in L$ and V > 0, it outputs a word $x \in S^{(\ell)} \bigcap B_V(y)$, where

$$V = |S^{(\ell)}|^{-\dim(L)}.$$

In the 80's LPS proved the following results:

Optimal Generators

Explicit constructions of optimal generators of $L = PU_2(\mathbb{R})$. (\Longrightarrow an optimal covering of the 2-dimensional sphere).

and

Ramanujan Graphs

Explicit constructions of Ramanujan regular graphs. (Ramanujan = spectrally optimal graphs).

In recent years the notions appearing in the works of LPS have seen the following generalizations for higher dimensions:

Golden Gates

Instead of optimal generators for $L = PU_2(\mathbb{R})$, Golden gates for general compact Lie groups L.

and

Ramanujan Complexes

Instead of Ramanujan regular graphs, Ramanujan irregular graphs and simplicial complexes.

The proof of LPS relies on the following two results:

Ramanujan Conjecture

The Ramanujan conjecture for PGU_2/\mathbb{Q} , which follows from Deligne's Theorem and Jacquet-Langlands correspondence.

and

Class Number One

A *p*-arithmetic group that acts simply transitive on the Bruhat-Tits tree, which follows from Jacobi four squares Theorem.

There are two main obstacles in extending the method of proof of LPS to higher dimensions:

Naive Ramanujan Conjecture

The naive Ramanujan conjecture for higher rank groups is false.

and

Class Number One

There are only finitely many p-arithmetic groups that acts simply transitive on the Bruhat-Tits buildings.

Solutions

To overcome the failure of the NRC, we follow Sarnak's strategy from the 90's, of proving and using a density hypothesis:

Density Hypothesis - Definition

Let \mathcal{F} be a collection of automorphic representations. Let $\mathcal{F}(T)$ the finite subset of \mathcal{F} of analytic conductor $\leq T$. Let $\mathcal{F}(T, \sigma)$ the subset of $\mathcal{F}(T)$ of decay of matrix coefficient $\geq \sigma$. Then the density hypothesis is the claim that for any $\epsilon > 0$,

 $|\mathcal{F}(T,\sigma)| \ll_{\epsilon} |\mathcal{F}(T)|^{2/\sigma+\epsilon}.$

Density Hypothesis - Theorem

Let G/\mathbb{Q} be a classical group such that $G(\mathbb{R})$ is compact. Let $\mathcal{F} = L^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))^K$, for a compact adelic subgroup K. Then \mathcal{F} satisfy the density hypothesis.

< ロ > < 同 > < 三 > < 三

Using the Density hypothesis we can prove the following results:

Golden Gates

Explicit constructions of golden gates for $PU_n(\mathbb{R})$, for any $n \leq 8$.

and

Optimal Covering of Hecke Points

Let G/\mathbb{Q} be a classical group such that $G(\mathbb{R})$ is compact. Let X be a homogeneous space of the Lie group $L = G(\mathbb{R})$. Then the p^{ℓ} -Hecke points covers X almost optimally.

THANK YOU FOR LISTENING

Shai Evra joint work with Ori Parzanchevski and Amitay Kamber Golden Gates in $PU_n(\mathbb{R})$ and the Density Hypothesis

日とくほとくほど

3