Small gaps between primes

James Maynard

CRM, Université de Montréal

Princeton/IAS Number Theory Seminar
March 2014

Introduction

Question

What is $\lim \inf _{n}\left(p_{n+1}-p_{n}\right)$? In particular, is it finite?

Introduction

Question

What is $\lim _{\inf }^{n}\left(p_{n+1}-p_{n}\right)$? In particular, is it finite? What is $\lim \inf _{n}\left(p_{n+m}-p_{n}\right)$? In particular, is it finite?

Introduction

Question

What is $\lim _{\inf }^{n}\left(p_{n+1}-p_{n}\right)$? In particular, is it finite?
What is $\lim \inf _{n}\left(p_{n+m}-p_{n}\right)$? In particular, is it finite?
We say a set \mathcal{H} is admissible if for every prime p there is an integer n_{p} such that $n_{p} \equiv h(\bmod p)$ for all $h \in \mathcal{H}$.

Conjecture (Prime k-tuples conjecture)

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Then there are infinitely many integers n, such that all of $n+h_{1}, \ldots, n+h_{k}$ are primes.

Introduction

Question

What is $\lim _{\inf }^{n}\left(p_{n+1}-p_{n}\right)$? In particular, is it finite?
What is $\lim \inf _{n}\left(p_{n+m}-p_{n}\right)$? In particular, is it finite?
We say a set \mathcal{H} is admissible if for every prime p there is an integer n_{p} such that $n_{p} \equiv h(\bmod p)$ for all $h \in \mathcal{H}$.

Conjecture (Prime k-tuples conjecture)

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Then there are infinitely many integers n, such that all of $n+h_{1}, \ldots, n+h_{k}$ are primes.

Corollary

Assume the prime k-tuples conjecture. Then

$$
\begin{aligned}
\liminf _{n}\left(p_{n+1}-p_{n}\right) & =2 \\
\lim \inf _{n}\left(p_{n+m}-p_{n}\right) & \leq(1+o(1)) m \log m
\end{aligned}
$$

Introduction II

Unfortunately, proving any case of the prime k-tuples conjecture seems well beyond the current technology.

Introduction II

Unfortunately, proving any case of the prime k-tuples conjecture seems well beyond the current technology.

Goldston, Pintz and Yıldırım introduced a method for studying small gaps between primes by using approximations to the prime k-tuples conjecture. This is now known as the 'GPY method'.

Introduction II

Unfortunately, proving any case of the prime k-tuples conjecture seems well beyond the current technology.

Goldston, Pintz and Yıldırım introduced a method for studying small gaps between primes by using approximations to the prime k-tuples conjecture. This is now known as the 'GPY method'.

Theorem (Goldston, Pintz, Yıldırım, 2005)

$$
\liminf _{n} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0
$$

This has recently been spectacularly extended by Zhang.

Theorem (Zhang, 2013)

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 70000000
$$

Small gaps between primes

Theorem (M. 2013)

The prime k-tuples conjecture holds for a positive proportion of admissible sets \mathcal{H} of size k.

In particular:
(1) $\liminf \operatorname{in}_{n}\left(p_{n+m}-p_{n}\right) \leq m^{3} e^{4 m+5}$ for all $m \in \mathbb{N}$.
(2) $\liminf \operatorname{in}_{n}\left(p_{n+1}-p_{n}\right) \leq 600$.

Part (1) has also been independently proven by Terence Tao. Our proof is independent of the methods of Zhang.

Overview

Figure : Outline of steps to prove small gaps between primes

Primes in arithmetic progressions

We use equidistribution results for primes in arithmetic progressions.

Heuristic

We believe that if $(a, q)=1$ then

$$
\pi(x ; q, a)=\#\{p \leq x: p \equiv a \quad(\bmod q)\} \approx \frac{\pi(x)}{\phi(q)}
$$

Let

$$
E_{q}:=\sup _{(a, q)=1}\left|\pi(x ; q, a)-\frac{\pi(x)}{\phi(q)}\right|
$$

Primes in arithmetic progressions II

Definition
We say the primes have 'level of distribution θ ' if, for any $A>0$,

$$
\sum_{q<x^{\theta}} E_{q} \ll A \frac{x}{(\log x)^{A}}
$$

Primes in arithmetic progressions II

Definition

We say the primes have 'level of distribution θ ' if, for any $A>0$,

$$
\sum_{q<x^{\theta}} E_{q} \ll A \frac{x}{(\log x)^{A}}
$$

Theorem (Bombieri-Vinogradov, 1965)

The primes have level of distribution θ for all $\theta<1 / 2$.
Conjecture (Elliott-Halberstam, 1968)
The primes have level of distribution θ for all $\theta<1$.

Given an admissible set $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$, we estimate

$$
S=\frac{\sum_{N \leq n<2 N} \#\left\{1 \leq i \leq k: n+h_{i} \text { prime }\right\} w_{n}}{\sum_{N \leq n<2 N} w_{n}}
$$

where w_{n} are non-negative weights (which we can choose freely).

Given an admissible set $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$, we estimate

$$
S=\frac{\sum_{N \leq n<2 N} \#\left\{1 \leq i \leq k: n+h_{i} \text { prime }\right\} w_{n}}{\sum_{N \leq n<2 N} w_{n}}
$$

where w_{n} are non-negative weights (which we can choose freely). Then
(1) If $S>m$, then at least one n makes a contribution $>m$.
(2) Since $w_{n} \geq 0$, at least $m+1$ of the $n+h_{i}$ are prime.
(3) If $S>m$ for all large N, then $\liminf \left(p_{n+m}-p_{n}\right)<\infty$.

We need $S>1$ for bounded gaps.

The GPY sieve II

Question

How do we choose w_{n} ?
We choose w_{n} to mimic 'Selberg sieve' weights.

$$
w_{n}=\left(\sum_{d \mid \Pi(n), d<R} \lambda_{d}\right)^{2} .
$$

These depend on small divisors of $\Pi(n)=\prod_{i=1}^{k}\left(n+h_{i}\right)$.

Question

How do we choose w_{n} ?
We choose w_{n} to mimic 'Selberg sieve' weights.

$$
w_{n}=\left(\sum_{d \mid \Pi(n), d<R} \lambda_{d}\right)^{2} .
$$

These depend on small divisors of $\Pi(n)=\prod_{i=1}^{k}\left(n+h_{i}\right)$.
(1) Standard choice: $\lambda_{d}=\mu(d)(\log R / d)^{k}$.

We find $S \approx \theta$ if k large enough. Just fails to prove bounded gaps with $\theta=1-\epsilon$.

The GPY sieve II

Question

How do we choose w_{n} ?
We choose w_{n} to mimic 'Selberg sieve' weights.

$$
w_{n}=\left(\sum_{d \mid \Pi(n), d<R} \lambda_{d}\right)^{2} .
$$

These depend on small divisors of $\Pi(n)=\prod_{i=1}^{k}\left(n+h_{i}\right)$.
(1) Standard choice: $\lambda_{d}=\mu(d)(\log R / d)^{k}$.

We find $S \approx \theta$ if k large enough. Just fails to prove bounded gaps with $\theta=1-\epsilon$.
(2) GPY choice: $\lambda_{d}=\mu(d) f(d)$ for smooth f. We find $S \approx 2 \theta$ if k is large enough. Just fails to prove bounded gaps with $\theta=1 / 2-\epsilon$.

Sieve weights

Question

Is this choice of λ_{d} optimal? Why does this choice do better?

Sieve weights

Question

Is this choice of λ_{d} optimal? Why does this choice do better?

- This is a discrete optimization problem - hard.
- Can test for optimality using Lagrangian multipliers.
- GPY choice not optimal - λ_{d} should be 'more arithmetic'.
- Arithmetic modifications of λ_{d} can do slightly better numerically, but difficult to analyze for general k.
- Although some heuristics behind GPY weights, the restrictions required by current methods are 'not natural'.

Key variation

New choice:

$$
w_{n}=\left(\sum_{\substack{d_{1}, \ldots, d_{k} \\ d_{i} \mid n+h_{i} \\ \prod_{i=1}^{k} d_{i}<R}} \lambda_{d_{1}, \ldots, d_{k}}\right)^{2}, \quad \lambda_{d_{1}, \ldots, d_{k}} \approx \mu\left(\prod_{i=1}^{k} d_{i}\right) f\left(d_{1}, \ldots, d_{k}\right) .
$$

We get extra flexibility in allowing our weights to depend on the divisors of each of the $n+h_{i}$ separately.

The $\lambda_{d_{1}, \ldots, d_{k}}$ will be chosen in terms of a smooth function F, which we later optimize over.

For suitable F, can heuristically justify that these weights should be essentially optimal.

The sieve

We want to calculate sums

$$
S_{1}=\sum_{N<n \leq 2 N} w_{n}, \quad S_{2, m}=\sum_{N<n \leq 2 N} \mathbf{1}_{n+h_{m} \text { prime }} w_{n} .
$$

where w_{n} is defined in terms of a smooth function F.

The sieve

We want to calculate sums

$$
S_{1}=\sum_{N<n \leq 2 N} w_{n}, \quad S_{2, m}=\sum_{N<n \leq 2 N} \mathbf{1}_{n+h_{m} p r i m e} w_{n} .
$$

where w_{n} is defined in terms of a smooth function F.

Lemma

Let the primes have level of distribution $\theta>0$. For suitable F

$$
\begin{aligned}
S_{1} & \sim c_{\mathcal{H}} N(\log N)^{k} I_{k}(F), \\
S_{2, m} & \sim c_{\mathcal{H}} N(\log N)^{k} \frac{\theta}{2} J_{k, m}(F) .
\end{aligned}
$$

Technical simplification: restrict to $n \equiv v_{p}(\bmod p)$ for small primes. This means none of $n+h_{i}$ have small prime factors.

Selberg sieve calculations

Let's look at $S_{2, m}$.

Selberg sieve calculations

Let's look at $S_{2, m}$.
(1) Open square and swap order of summation

$$
S_{2, m}=\sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k}}} \lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}} \sum_{\substack{N<n \leq 2 N \\ d_{i}, e_{i} \mid n+h_{i}}} \mathbf{1}_{n+h_{m} p r i m e} .
$$

Selberg sieve calculations

Let's look at $S_{2, m}$.
(1) Open square and swap order of summation

$$
S_{2, m}=\sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k}}} \lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}} \sum_{\substack{N<n \leq 2 N \\ d_{i}, e_{i} \mid n+h_{i}}} \mathbf{1}_{n+h_{m} p r i m e} .
$$

(2) The inner sum is a sum of primes in arithmetic progressions

$$
\text { Inner sum }=\frac{\pi(2 N)-\pi(N)}{\phi(q)}+O\left(E_{q}\right), \quad q=\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]
$$

If $d_{m}=e_{m}=1$ (and $\left(d_{i}, e_{j}\right)=1$, also coprime to small primes)

Selberg sieve calculations

Let's look at $S_{2, m}$.
(1) Open square and swap order of summation

$$
S_{2, m}=\sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k}}} \lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}} \sum_{\substack{N<n \leq 2 N \\ d_{i}<e_{i} \mid n+h_{i}}} \mathbf{1}_{n+h_{m} p r i m e} .
$$

(2) The inner sum is a sum of primes in arithmetic progressions

$$
\text { Inner sum }=\frac{\pi(2 N)-\pi(N)}{\phi(q)}+O\left(E_{q}\right), \quad q=\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]
$$

If $d_{m}=e_{m}=1$ (and $\left(d_{i}, e_{j}\right)=1$, also coprime to small primes)
(3) Error terms are small using level-of-distribution results. $\lambda_{d_{1}, \ldots, d_{k}}$ supported on $\prod_{i=1}^{k} d_{i}<N^{\theta / 2}$ means $q<N^{\theta}$.

Selberg sieve calculations II

$$
S_{2, m} \approx \frac{N}{\log N} \sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k} \\ d_{m}=e_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}
$$

Selberg sieve calculations II

$$
S_{2, m} \approx \frac{N}{\log N} \sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k} \\ d_{m}=e_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}
$$

(4) Make a linear change of variables to diagonalize sum.

$$
y_{r_{1}, \ldots, r_{k}}^{(m)} \approx r_{1} \ldots r_{k} \sum_{r_{i} \mid d_{i}, d_{m}=1} \frac{\lambda_{d_{1}, \ldots, d_{k}}}{d_{1} \ldots d_{k}} .
$$

Selberg sieve calculations II

$$
S_{2, m} \approx \frac{N}{\log N} \sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k} \\ d_{m}=e_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}
$$

(4) Make a linear change of variables to diagonalize sum.

$$
\begin{aligned}
y_{r_{1}, \ldots, r_{k}}^{(m)} & \approx r_{1} \ldots r_{k} \sum_{\substack{r_{i} d_{i}, d_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}}}{d_{1} \ldots d_{k}} . \\
S_{2, m} & \approx \frac{N}{\log N} \sum_{\substack{r_{1}, \ldots, r_{k} \\
r_{m}=1}} \frac{\left(y_{r_{1}, \ldots, r_{k}}^{(m)}\right)^{2}}{r_{1} \ldots r_{k}} .
\end{aligned}
$$

Selberg sieve calculations II

$$
S_{2, m} \approx \frac{N}{\log N} \sum_{\substack{d_{1}, \ldots, d_{k} \\ e_{1}, \ldots, e_{k} \\ d_{m}=e_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}} \lambda_{e_{1}, \ldots, e_{k}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}
$$

(4) Make a linear change of variables to diagonalize sum.

$$
\begin{aligned}
y_{r_{1}, \ldots, r_{k}}^{(m)} & \approx r_{1} \ldots r_{k} \sum_{\substack{r_{i} d_{i}, d_{m}=1}} \frac{\lambda_{d_{1}, \ldots, d_{k}}}{d_{1} \ldots d_{k}} . \\
S_{2, m} & \approx \frac{N}{\log N} \sum_{\substack{r_{1}, \ldots, r_{k} \\
r_{m}=1}} \frac{\left(y_{r_{1}, \ldots, r_{k}}^{(m)}\right)^{2}}{r_{1} \ldots r_{k}} .
\end{aligned}
$$

(5) Similarly

$$
S_{1} \approx N \sum_{r_{1}, \ldots, r_{k}} \frac{\left(y_{r_{1}, \ldots, r_{k}}\right)^{2}}{r_{1} \ldots r_{k}}
$$

Selberg sieve calculations III

(6) Relate $y^{(m)}$ variables to y variables

$$
y_{r_{1}, \ldots, r_{k}}^{(m)} \approx \sum_{a_{m}} \frac{y_{r_{1}, \ldots, r_{m-1}, a_{m}, r_{m+1}, \ldots, r_{k}}}{a_{m}}
$$

Selberg sieve calculations III

(6) Relate $y^{(m)}$ variables to y variables

$$
y_{r_{1}, \ldots, r_{k}}^{(m)} \approx \sum_{a_{m}} \frac{y_{r_{1}, \ldots, r_{m-1}, a_{m}, r_{m+1}, \ldots, r_{k}}}{a_{m}}
$$

(7) Choose y variables to be a smooth function of r_{1}, \ldots, r_{k} and use partial summation.

$$
\begin{gathered}
y^{(m)} \approx \log R \int F\left(t_{1}, \ldots, t_{k}\right) d t_{m} . \\
S_{1} \approx N(\log R)^{k} I_{k}(F)=N(\log R)^{k} \int \ldots \int F^{2} . \\
S_{2, m} \approx \frac{N(\log R)^{k+1}}{\log N} J_{k, m}(F)=\frac{N(\log R)^{k+1}}{\log N} \int \ldots \int\left(\int F d t_{m}\right)^{2} .
\end{gathered}
$$

Support conditions for λ met if $F\left(t_{1}, \ldots, t_{k}\right)=0$ when $\sum_{i} t_{i}>1$.

Reduce to smooth optimization

Choosing w_{n} in terms of a suitable function $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ gives

$$
S=\frac{\theta J_{k}(F)}{2 I_{k}(F)}+o(1)
$$

Proposition

Let the primes have level of distribution θ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Let

$$
M_{k}=\sup _{F} \frac{J_{k}(F)}{I_{k}(F)}=\frac{k \int \cdots \int\left(\int F\left(t_{1}, \ldots, t_{k}\right) d t_{1}\right)^{2} d t_{2} \ldots d t_{k}}{\int \cdots \int F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k}}
$$

If $M_{k}>2 m / \theta$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Reduce to smooth optimization

Choosing w_{n} in terms of a suitable function $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ gives

$$
S=\frac{\theta J_{k}(F)}{2 I_{k}(F)}+o(1) .
$$

Proposition

Let the primes have level of distribution θ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Let

$$
M_{k}=\sup _{F} \frac{J_{k}(F)}{I_{k}(F)}=\frac{k \int \cdots \int\left(\int F\left(t_{1}, \ldots, t_{k}\right) d t_{1}\right)^{2} d t_{2} \ldots d t_{k}}{\int \cdots \int F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k}} .
$$

If $M_{k}>2 m / \theta$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

This has reduced our arithmetic problem (difficult) to a smooth optimization (easier).

Lower bounds for M_{k}

We want lower bounds for M_{k}.
(1) To simplify, we let

$$
F\left(t_{1}, \ldots, t_{k}\right)= \begin{cases}\prod_{i=1}^{k} g\left(k t_{i}\right), & \text { if } \sum_{i=1}^{k} t_{i}<1 \\ 0, & \text { otherwise }\end{cases}
$$

for some function g.

Lower bounds for M_{k}

We want lower bounds for M_{k}.
© To simplify, we let

$$
F\left(t_{1}, \ldots, t_{k}\right)= \begin{cases}\prod_{i=1}^{k} g\left(k t_{i}\right), & \text { if } \sum_{i=1}^{k} t_{i}<1, \\ 0, & \text { otherwise }\end{cases}
$$

for some function g.
(2) If the center of mass of g^{2} satisfies

$$
\mu=\frac{\int_{0}^{\infty} \operatorname{tg}(t)^{2} d t}{\int_{0}^{\infty} g(t)^{2} d t}<1
$$

then by concentration of measure we expect the restriction on support of F to be negligible.

Lower bounds for M_{k} II

(3) If g is supported on $[0, T]$ we find that

$$
M_{k} \geq \frac{\left(\int_{0}^{T} g(t) d t\right)^{2}}{\int_{0}^{T} g(t)^{2} d t}\left(1-\frac{T}{k(1-T / k-\mu)^{2}}\right)
$$

Lower bounds for M_{k} II

(3) If g is supported on $[0, T]$ we find that

$$
M_{k} \geq \frac{\left(\int_{0}^{T} g(t) d t\right)^{2}}{\int_{0}^{T} g(t)^{2} d t}\left(1-\frac{T}{k(1-T / k-\mu)^{2}}\right)
$$

(4) For fixed μ and T, we can optimize over all such g by calculus of variations. We find the optimal g is given by

$$
g(t)=\frac{1}{1+A t}, \quad \text { if } t \in[0, T] .
$$

Lower bounds for M_{k} II

(3) If g is supported on $[0, T]$ we find that

$$
M_{k} \geq \frac{\left(\int_{0}^{T} g(t) d t\right)^{2}}{\int_{0}^{T} g(t)^{2} d t}\left(1-\frac{T}{k(1-T / k-\mu)^{2}}\right)
$$

(4) For fixed μ and T, we can optimize over all such g by calculus of variations. We find the optimal g is given by

$$
g(t)=\frac{1}{1+A t}, \quad \text { if } t \in[0, T] .
$$

(5) With this choice of g, we find that a suitable choice of A, T gives

$$
M_{k}>\log k-2 \log \log k-2
$$

if k is large enough.

Putting it all together

Proposition
(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>2 m / \theta$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Putting it all together

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>2 m / \theta$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Finally

Lemma

(1) There is an admissible set of size k contained in $[0, H]$ with $H \approx k \log k$.
(2) We can take any $\theta<1 / 2$ (Bombieri-Vinogradov).

Putting it all together

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>2 m / \theta$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Finally

Lemma

(1) There is an admissible set of size k contained in $[0, H]$ with $H \approx k \log k$.
(2) We can take any $\theta<1 / 2$ (Bombieri-Vinogradov).

These give

Theorem

$\liminf f_{n}\left(p_{n+m}-p_{n}\right) \leq C m^{3} e^{4 m}$.

Hardy-Littlewood Conjecture

A simple counting argument shows a positive proportion of admissible sets satisfy the prime k-tuples conjecture for each k.

Hardy-Littlewood Conjecture

A simple counting argument shows a positive proportion of admissible sets satisfy the prime k-tuples conjecture for each k.
(1) If $k>_{m} 1$, then any admissible set \mathcal{H} of size k contains a subset $\mathcal{H}^{\prime} \subset \mathcal{H}$ of size m which satisfies prime m-tuples conjecture.
(2) There are $>_{k} x^{k}$ admissible sets \mathcal{H} of size k in $[0, x]^{k}$ (if $x \gg_{k} 1$).
(3) Each set \mathcal{H}^{\prime} of size m is contained in at most $O\left(x^{k-m}\right)$ such sets \mathcal{H}.

Hardy-Littlewood Conjecture

A simple counting argument shows a positive proportion of admissible sets satisfy the prime k-tuples conjecture for each k.
(1) If $k>_{m} 1$, then any admissible set \mathcal{H} of size k contains a subset $\mathcal{H}^{\prime} \subset \mathcal{H}$ of size m which satisfies prime m-tuples conjecture.
(2) There are $>_{k} x^{k}$ admissible sets \mathcal{H} of size k in $[0, x]^{k}$ (if $x \gg_{k} 1$).
(3) Each set \mathcal{H}^{\prime} of size m is contained in at most $O\left(x^{k-m}\right)$ such sets \mathcal{H}.

Hence

Theorem

There are $>_{m} x^{m}$ sets $\mathcal{H}^{\prime} \subseteq[0, x]^{m}$ of size m satisfying the prime m-tuples conjecture if $x \gg_{m} 1$.

Other applications

Observation

Since $M_{k} \rightarrow \infty$, we get bounded gaps for any $\theta>0$.
The method also works for any set of linear functions $a_{i} n+b_{i}$ instead of just shifts $n+h_{i}$. This makes the method very flexible.

Other applications

Observation

Since $M_{k} \rightarrow \infty$, we get bounded gaps for any $\theta>0$.
The method also works for any set of linear functions $a_{i} n+b_{i}$ instead of just shifts $n+h_{i}$. This makes the method very flexible.

Strategy for proving close primes in subsets:

- Obtain an asymptotic in small residue classes (of Siegel-Walfisz type)
- Use a large sieve argument to show well distributed in residue classes $<x^{\theta}$.
- Use modified GPY sieve to show that there are primes close together.

How far can this go?

Polymath 8 b is exploring how far these methods can go.

Improving primes in A.P.s

If we have better results about primes in arithmetic progressions, then we get stronger results.

Theorem (M. 2013)

Assume the primes have level of distribution θ for any $\theta<1$. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 12
$$

Improving primes in A.P.s

If we have better results about primes in arithmetic progressions, then we get stronger results.

Theorem (M. 2013)

Assume the primes have level of distribution θ for any $\theta<1$. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 12
$$

Theorem (Polymath 8b, 2014, provisional)

Assume the numbers with r prime factors have level of distribution θ for any $\theta<1$ and any $r \in \mathbb{Z}$. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 6
$$

Improving primes in A.P.s

If we have better results about primes in arithmetic progressions, then we get stronger results.

Theorem (M. 2013)

Assume the primes have level of distribution θ for any $\theta<1$. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 12
$$

Theorem (Polymath 8b, 2014, provisional)

Assume the numbers with r prime factors have level of distribution θ for any $\theta<1$ and any $r \in \mathbb{Z}$. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 6
$$

Know barriers preventing this getting the twin prime conjecture. These weights 'fail by ϵ ' analogously to Bombieri's sieve. Gaps of size 6 are the limit.

Modifications of the sieve

First result uses same idea as before, numerical calculation shows that $M_{5}>2$, and this gives gaps of size 12.

Modifications of the sieve

First result uses same idea as before, numerical calculation shows that $M_{5}>2$, and this gives gaps of size 12.

Second result uses more modifications to the sieve to translate information more efficiently. This allows us to relax the restriction on the support of F.

Modifications of the sieve

First result uses same idea as before, numerical calculation shows that $M_{5}>2$, and this gives gaps of size 12 .

Second result uses more modifications to the sieve to translate information more efficiently. This allows us to relax the restriction on the support of F.

- To estimate the terms weighted by $1_{n+h_{m p r i m e}}$, we only required that $q=\prod_{i \neq m}\left[d_{i}, e_{i}\right]<N^{1-\epsilon}$.
- Under GEH, we can estimate S_{1} using the above idea if $q=\prod_{i \neq m}\left[d_{i}, e_{i}\right]<N^{1-\epsilon}$ for some m.
- Even if we can't get an asymptotic for terms weighted by $1_{n+h_{m} \text { prime }}$, we can get a lower bound since

$$
\left(\sum_{\text {small }} \lambda+\sum_{\text {big }} \lambda\right)^{2} \geq\left(\sum_{\text {small }} \lambda\right)\left(\sum_{\text {small }} \lambda+2 \sum_{\text {big }} \lambda\right) .
$$

Improving primes in A.P.s II

Zhang/Polymath 8a have proven results about primes in APs which goes beyond $\theta=1 / 2$.

- For large m, this gives an easy improvement

$$
\liminf _{n}\left(p_{n+m}-p_{n}\right) \ll \exp ((3.83) m)
$$

- For small m, in principle this should give a numerical improvement, but this has not yet been incorporated into the current method in a strong enough form.

Sub-problems

Optimization problem:

- By pushing the small k computations further, we can show $\lim \inf _{n}\left(p_{n+1}-p_{n}\right)<252$.
- Methods essentially optimal for large $k . M_{k}=\log k+O(1)$.

Sub-problems

Optimization problem:

- By pushing the small k computations further, we can show $\lim \inf _{n}\left(p_{n+1}-p_{n}\right)<252$.
- Methods essentially optimal for large $k . M_{k}=\log k+O(1)$.

Combinatorial problem:

- Known optimal values for small k.
- Solution believed to be essentially optimal for large k.
..Or improve the sieve?

Questions

Thank you for listening.

