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Princeton/IAS Number Theory Seminar
March 2014

James Maynard Small gaps between primes



Introduction

Question

What is lim infn(pn+1 − pn)? In particular, is it finite?

What is lim infn(pn+m − pn)? In particular, is it finite?

We say a set H is admissible if for every prime p there is an
integer np such that np . h (mod p) for all h ∈ H .

Conjecture (Prime k -tuples conjecture)

Let H = {h1, . . . , hk } be admissible. Then there are infinitely many
integers n, such that all of n + h1, . . . , n + hk are primes.

Corollary

Assume the prime k-tuples conjecture. Then

lim infn(pn+1 − pn) = 2,

lim infn(pn+m − pn) ≤ (1 + o(1))m log m.
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Introduction II

Unfortunately, proving any case of the prime k -tuples conjecture
seems well beyond the current technology.

Goldston, Pintz and Yıldırım introduced a method for studying
small gaps between primes by using approximations to the prime
k -tuples conjecture. This is now known as the ‘GPY method’.

Theorem (Goldston, Pintz, Yıldırım, 2005)

lim inf
n

pn+1 − pn

log pn
= 0.

This has recently been spectacularly extended by Zhang.

Theorem (Zhang, 2013)

lim inf
n

(pn+1 − pn) ≤ 70 000 000.

James Maynard Small gaps between primes



Introduction II

Unfortunately, proving any case of the prime k -tuples conjecture
seems well beyond the current technology.

Goldston, Pintz and Yıldırım introduced a method for studying
small gaps between primes by using approximations to the prime
k -tuples conjecture. This is now known as the ‘GPY method’.

Theorem (Goldston, Pintz, Yıldırım, 2005)

lim inf
n

pn+1 − pn

log pn
= 0.

This has recently been spectacularly extended by Zhang.

Theorem (Zhang, 2013)

lim inf
n

(pn+1 − pn) ≤ 70 000 000.

James Maynard Small gaps between primes



Introduction II

Unfortunately, proving any case of the prime k -tuples conjecture
seems well beyond the current technology.

Goldston, Pintz and Yıldırım introduced a method for studying
small gaps between primes by using approximations to the prime
k -tuples conjecture. This is now known as the ‘GPY method’.

Theorem (Goldston, Pintz, Yıldırım, 2005)

lim inf
n

pn+1 − pn

log pn
= 0.

This has recently been spectacularly extended by Zhang.

Theorem (Zhang, 2013)

lim inf
n

(pn+1 − pn) ≤ 70 000 000.

James Maynard Small gaps between primes



Small gaps between primes

Theorem (M. 2013)

The prime k-tuples conjecture holds for a positive proportion of
admissible sets H of size k .

In particular:
1 lim infn(pn+m − pn) ≤ m3e4m+5 for all m ∈ N.
2 lim infn(pn+1 − pn) ≤ 600.

Part (1) has also been independently proven by Terence Tao.
Our proof is independent of the methods of Zhang.
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Overview

Sieve Method
Modified GPY sieve

Primes in A.P.s
Bombieri-

Vinogradov theorem

Optimization problem

Choice of

smooth weight

Combinatorial
problem

Dense admissible sets

Small gaps
between primes

Figure : Outline of steps to prove small gaps between primes
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Primes in arithmetic progressions

We use equidistribution results for primes in arithmetic
progressions.

Heuristic

We believe that if (a, q) = 1 then

π(x; q, a) = #{p ≤ x : p ≡ a (mod q)} ≈
π(x)

φ(q)
.

Let

Eq := sup
(a,q)=1

∣∣∣∣π(x; q, a) −
π(x)

φ(q)

∣∣∣∣.
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Primes in arithmetic progressions II

Definition
We say the primes have ‘level of distribution θ’ if, for any A > 0,∑

q<xθ
Eq �A

x
(log x)A

.

Theorem (Bombieri-Vinogradov, 1965)

The primes have level of distribution θ for all θ < 1/2.

Conjecture (Elliott-Halberstam, 1968)

The primes have level of distribution θ for all θ < 1.
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The GPY sieve

Given an admissible set H = {h1, . . . , hk }, we estimate

S =

∑
N≤n<2N #{1 ≤ i ≤ k : n + hi prime}wn∑

N≤n<2N wn
,

where wn are non-negative weights (which we can choose freely).

Then
1 If S > m, then at least one n makes a contribution > m.
2 Since wn ≥ 0, at least m + 1 of the n + hi are prime.
3 If S > m for all large N, then lim inf(pn+m − pn) < ∞.

We need S > 1 for bounded gaps.
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The GPY sieve II

Question
How do we choose wn?

We choose wn to mimic ‘Selberg sieve’ weights.

wn = (
∑

d|Π(n),d<R

λd)2.

These depend on small divisors of Π(n) =
∏k

i=1(n + hi).

1 Standard choice: λd = µ(d)(log R/d)k .
We find S ≈ θ if k large enough. Just fails to prove bounded
gaps with θ = 1 − ε.

2 GPY choice: λd = µ(d)f(d) for smooth f .
We find S ≈ 2θ if k is large enough. Just fails to prove
bounded gaps with θ = 1/2 − ε.
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Sieve weights

Question
Is this choice of λd optimal? Why does this choice do better?

This is a discrete optimization problem - hard.

Can test for optimality using Lagrangian multipliers.

GPY choice not optimal - λd should be ’more arithmetic’.

Arithmetic modifications of λd can do slightly better
numerically, but difficult to analyze for general k .

Although some heuristics behind GPY weights, the
restrictions required by current methods are ‘not natural’.
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Key variation

New choice:

wn =
( ∑

d1,...,dk
di |n+hi∏k
i=1 di<R

λd1,...,dk

)2
, λd1,...,dk ≈ µ(

k∏
i=1

di)f(d1, . . . , dk ).

We get extra flexibility in allowing our weights to depend on the
divisors of each of the n + hi separately.

The λd1,...,dk will be chosen in terms of a smooth function F , which
we later optimize over.

For suitable F , can heuristically justify that these weights should be
essentially optimal.
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The sieve

We want to calculate sums

S1 =
∑

N<n≤2N

wn, S2,m =
∑

N<n≤2N

1n+hmprimewn.

where wn is defined in terms of a smooth function F .

Lemma
Let the primes have level of distribution θ > 0. For suitable F

S1 ∼ cHN(log N)k Ik (F),

S2,m ∼ cHN(log N)k θ

2
Jk ,m(F).

Technical simplification: restrict to n ≡ vp (mod p) for small
primes. This means none of n + hi have small prime factors.

James Maynard Small gaps between primes



The sieve

We want to calculate sums

S1 =
∑

N<n≤2N

wn, S2,m =
∑

N<n≤2N

1n+hmprimewn.

where wn is defined in terms of a smooth function F .

Lemma
Let the primes have level of distribution θ > 0. For suitable F

S1 ∼ cHN(log N)k Ik (F),

S2,m ∼ cHN(log N)k θ

2
Jk ,m(F).

Technical simplification: restrict to n ≡ vp (mod p) for small
primes. This means none of n + hi have small prime factors.

James Maynard Small gaps between primes



Selberg sieve calculations

Let’s look at S2,m.

1 Open square and swap order of summation

S2,m =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek

∑
N<n≤2N
di ,ei |n+hi

1n+hmprime .

2 The inner sum is a sum of primes in arithmetic progressions

Inner sum =
π(2N) − π(N)

φ(q)
+ O(Eq), q =

k∏
i=1

[di , ei].

If dm = em = 1 (and (di , ej) = 1, also coprime to small
primes)

3 Error terms are small using level-of-distribution results.
λd1,...,dk supported on

∏k
i=1 di < Nθ/2 means q < Nθ.
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Selberg sieve calculations II

S2,m ≈
N

log N

∑
d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1[di , ei]

4 Make a linear change of variables to diagonalize sum.

y(m)
r1,...,rk

≈ r1 . . . rk

∑
ri |di ,dm=1

λd1,...,dk

d1 . . . dk
.

S2,m ≈
N

log N

∑
r1,...,rk
rm=1

(y(m)
r1,...,rk

)2

r1 . . . rk
.

5 Similarly

S1 ≈ N
∑

r1,...,rk

(yr1,...,rk )2

r1 . . . rk
.
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Selberg sieve calculations III

6 Relate y(m) variables to y variables

y(m)
r1,...,rk

≈
∑
am

yr1,...,rm−1,am ,rm+1,...,rk

am
.

7 Choose y variables to be a smooth function of r1, . . . , rk and
use partial summation.

y(m) ≈ log R
∫

F(t1, . . . , tk )dtm.

S1 ≈ N(log R)k Ik (F) = N(log R)k
∫

. . .

∫
F2.

S2,m ≈
N(log R)k+1

log N
Jk ,m(F) =

N(log R)k+1

log N

∫
. . .

∫ (∫
Fdtm

)2
.

Support conditions for λ met if F(t1, . . . , tk ) = 0 when
∑

i ti > 1.
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Reduce to smooth optimization

Choosing wn in terms of a suitable function F : Rk → R gives

S =
θJk (F)

2Ik (F)
+ o(1).

Proposition

Let the primes have level of distribution θ and H = {h1, . . . , hk } be
admissible. Let

Mk = sup
F

Jk (F)

Ik (F)
=

k
'

(
∫

F(t1, . . . , tk )dt1)2dt2 . . . dtk'
F(t1, . . . , tk )2dt1 . . . dtk

.

If Mk > 2m/θ then there are infinitely many integers n such that at
least m + 1 of the n + hi are primes.

This has reduced our arithmetic problem (difficult) to a
smooth optimization (easier).
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Lower bounds for Mk

We want lower bounds for Mk .
1 To simplify, we let

F(t1, . . . , tk ) =


∏k

i=1 g(kti), if
∑k

i=1 ti < 1,

0, otherwise,

for some function g.

2 If the center of mass of g2 satisfies

µ =

∫ ∞
0 tg(t)2dt∫ ∞
0 g(t)2dt

< 1

then by concentration of measure we expect the restriction on
support of F to be negligible.
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Lower bounds for Mk II

3 If g is supported on [0,T ] we find that

Mk ≥
(
∫ T

0 g(t)dt)2∫ T
0 g(t)2dt

(
1 −

T
k(1 − T/k − µ)2

)
.

4 For fixed µ and T , we can optimize over all such g by calculus
of variations. We find the optimal g is given by

g(t) =
1

1 + At
, if t ∈ [0,T ].

5 With this choice of g, we find that a suitable choice of A ,T
gives

Mk > log k − 2 log log k − 2

if k is large enough.
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Putting it all together

Proposition
1 Mk > log k − 2 log log k − 2 if k is large enough.
2 If Mk > 2m/θ then there are infinitely many integers n such

that at least m + 1 of the n + hi are primes.

Finally

Lemma
1 There is an admissible set of size k contained in [0,H] with

H ≈ k log k .
2 We can take any θ < 1/2 (Bombieri-Vinogradov).

These give

Theorem

lim infn(pn+m − pn) ≤ Cm3e4m.
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Hardy-Littlewood Conjecture

A simple counting argument shows a positive proportion of
admissible sets satisfy the prime k -tuples conjecture for each k .

1 If k �m 1, then any admissible set H of size k contains a
subset H ′ ⊂ H of size m which satisfies prime m-tuples
conjecture.

2 There are�k xk admissible sets H of size k in [0, x]k (if
x �k 1).

3 Each set H ′ of size m is contained in at most O(xk−m) such
sets H .

Hence

Theorem

There are�m xm sets H ′ ⊆ [0, x]m of size m satisfying the prime
m-tuples conjecture if x �m 1.
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Other applications

Observation
Since Mk → ∞, we get bounded gaps for any θ > 0.

The method also works for any set of linear functions ain + bi

instead of just shifts n + hi . This makes the method very flexible.

Strategy for proving close primes in subsets:

Obtain an asymptotic in small residue classes (of
Siegel-Walfisz type)

Use a large sieve argument to show well distributed in residue
classes < xθ.

Use modified GPY sieve to show that there are primes close
together.
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How far can this go?

Polymath 8b is exploring how far these methods can go.

Sieve Method
Modified GPY sieve

Primes in A.P.s
Bombieri-

Vinogradov theorem

Optimization problem

Choice of

smooth weight

Combinatorial
problem

Dense admissible sets

Small gaps
between primes
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Improving primes in A.P.s

If we have better results about primes in arithmetic progressions,
then we get stronger results.

Theorem (M. 2013)

Assume the primes have level of distribution θ for any θ < 1. Then

lim inf
n

(pn+1 − pn) ≤ 12.

Theorem (Polymath 8b, 2014, provisional)

Assume the numbers with r prime factors have level of distribution
θ for any θ < 1 and any r ∈ Z. Then

lim inf
n

(pn+1 − pn) ≤ 6.

Know barriers preventing this getting the twin prime conjecture.
These weights ‘fail by ε’ analogously to Bombieri’s sieve. Gaps of
size 6 are the limit.
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Modifications of the sieve

First result uses same idea as before, numerical calculation shows
that M5 > 2, and this gives gaps of size 12.

Second result uses more modifications to the sieve to translate
information more efficiently. This allows us to relax the restriction
on the support of F .

To estimate the terms weighted by 1n+hmprime , we only
required that q =

∏
i,m[di , ei] < N1−ε .

Under GEH, we can estimate S1 using the above idea if
q =

∏
i,m[di , ei] < N1−ε for some m.

Even if we can’t get an asymptotic for terms weighted by
1n+hmprime , we can get a lower bound since

(
∑
small

λ +
∑
big

λ)2 ≥

(∑
small

λ
)(∑

small

λ + 2
∑
big

λ
)
.
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Improving primes in A.P.s II

Zhang/Polymath 8a have proven results about primes in APs which
goes beyond θ = 1/2.

For large m, this gives an easy improvement

lim inf
n

(pn+m − pn) � exp((3.83)m).

For small m, in principle this should give a numerical
improvement, but this has not yet been incorporated into the
current method in a strong enough form.
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Sub-problems

Optimization problem:

By pushing the small k computations further, we can show
lim infn(pn+1 − pn) < 252.

Methods essentially optimal for large k . Mk = log k + O(1).

Combinatorial problem:

Known optimal values for small k .

Solution believed to be essentially optimal for large k .

..Or improve the sieve?
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Questions

Thank you for listening.
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