Random constraint satisfaction problems: a point of view from physics

Guilhem Semerjian

LPT-ENS
29.01.2014 / IAS

Outline

(1) Constraint satisfaction problems
(2) Random ensembles of CSP
(3) Statistical physics approach and results

Constraint satisfaction problems : definitions

n variables $\quad \underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n} \quad$ discrete alphabet \mathcal{X}
m constraints $\quad \psi_{a}\left(\left\{x_{i}\right\}_{i \in \partial a}\right)= \begin{cases}1 & \text { satisfied } \\ 0 & \text { unsatisfied }\end{cases}$
solutions $\mathcal{S}=\left\{\underline{x}: \psi_{a}\left(\underline{x}_{\partial a}\right)=1 \forall a\right\}$

Constraint satisfaction problems : examples

- $\mathcal{X}=\{1, \ldots, q\}, \quad \psi_{a}\left(x_{i}, x_{j}\right)=\mathbb{1}\left(x_{i} \neq x_{j}\right)$
on the edges $a=\langle i, j\rangle$ of a graph
q-coloring problem
- $\mathcal{X}=\{$ True, False $\}, \quad \psi_{a}$ depends on k variables $x_{i \frac{1}{a}}, \ldots, x_{i_{a}^{k}}$
- $\psi_{a}=\mathbb{1}\left(z_{i a}{ }^{1} \vee \cdots \vee z_{i a}=\right.$ True $), \quad$ with $z_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$
k-satisfiability problem
- $\psi_{a}=\mathbb{1}\left(x_{i^{\prime}} \oplus \cdots \oplus x_{i_{a}^{k}}=y_{a}\right), \quad$ with $y_{a} \in\{$ True, False $\}$
k-xor-satisfiability problem

Constraint satisfaction problems

For a given instance (formula/graph), several questions :

- decision problem, is $|\mathcal{S}|>0$? (said satisfiable if yes)
- counting problem, what is $|\mathcal{S}|$?
- optimization problem, what is $\max _{\underline{x}}\left[\sum_{a} \psi_{a}(\underline{x})\right]$?

Worst-case complexity of the decision problem:

- k-xor-satisfiability easy (P) for all k
- k-satisfiability, q-coloring difficult (NP-complete) for $k, q \geq 3$

Random constraint satisfaction problems

What about their "typical case" complexities ?
"typical"= with high probability in some random ensemble of instances
Examples:

- coloring Erdös-Rényi random graphs $G(n, m)$ choose m edges uniformly at random in the $\binom{n}{2}$ possible ones
- random (xor)satisfiability ensembles choose m hyperedges (k-uplets of variables), among $\binom{n}{k}$

Most interesting regime : $n, m \rightarrow \infty$ with $\alpha=m / n$ fixed

Random constraint satisfaction problems

$P_{n, \alpha}=\mathbb{P}$ [random problem with n variables and

$$
m=\alpha n \text { constraints is satisfiable] }
$$

Obvious observations :

- $P_{n, \alpha}$ decreases with α
- $\lim _{n \rightarrow \infty} P_{n, \alpha}=0$ for α large enough

First moment proof (for k-sat) :

$$
\begin{aligned}
P_{n, \alpha}=\mathbb{P}[|\mathcal{S}| \geq 1] \leq \mathbb{E}[|\mathcal{S}|] & =\sum_{\underline{x}} \mathbb{E}\left[\prod_{a=1}^{m} \psi_{a}(\underline{x})\right] \\
& =2^{n}\left(1-\frac{1}{2^{k}}\right)^{\alpha n} \rightarrow 0
\end{aligned}
$$

for $\alpha>\alpha_{\mathrm{ub}}(k)=2^{k} \ln 2$

Random constraint satisfaction problems

"Experimental" observation : phase transition for $1-P_{n, \alpha}$

associated to a peak in the hardness of solving

Random constraint satisfaction problems

Phase transition conjecture : $\exists \alpha_{\mathrm{s}}(k)$ such that

$$
\lim _{n \rightarrow \infty} P_{n, \alpha}= \begin{cases}1 & \text { if } \alpha<\alpha_{\mathrm{s}}(k) \\ 0 & \text { if } \alpha>\alpha_{\mathrm{s}}(k)\end{cases}
$$

Weaker version proven : $\exists \alpha_{\mathrm{s}}(k, n)$ such that
[Friedgut]

$$
\lim _{n \rightarrow \infty} P_{n,(1-\epsilon) \alpha_{s}(k, n)}=1, \quad \lim _{n \rightarrow \infty} P_{n,(1+\epsilon) \alpha_{s}(k, n)}=0
$$

Early rigorous results for random k-satisfiability and q-coloring :

- upper and lower bounds on $\alpha_{\mathrm{s}}(k)$
[Chao-Franco, Frieze-Suen, Achlioptas, Dubois, Boufkhad...]
- asymptotics of $\alpha_{\mathrm{s}}(k)$ at large k [Achlioptas, Moore, Naor, Peres]

$$
\alpha_{s}(k) \geq 2^{k} \ln 2-k \frac{\ln 2}{2}+O(1) \quad[\text { Achlioptas, Peres (04)] }
$$

Random constraint satisfaction problems

But :

- no precise value of $\alpha_{\mathrm{s}}(k)$ for small k
- unsatisfactory understanding of algorithmic difficulty at $\alpha<\alpha_{\mathrm{s}}(k)$

Why physics?

Statistical mechanics :

- configuration space $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$
- energy function $E(\underline{x})$
- temperature T
- Gibbs-Boltzmann distribution $\mu(\underline{x})=\exp [-E(\underline{x}) / T] / Z$

Low-temperature statistical physics \approx combinatorial optimization
randomness in the distribution of instances \approx disordered systems
(spin glasses)
random graphs \rightarrow mean-field diluted spin glasses
graph coloring corresponds to antiferromagnetic Potts model

Outcomes of the physics approach

- quantitative estimation of $\alpha_{\mathrm{s}}(k)$
- refined picture of the satisfiable phase
- analysis of known algorithms
- suggestion of new ones

Refined picture of the satisfiable phase

Exponential number of solutions for $\alpha<\alpha_{\mathrm{s}}, \quad \sim \exp [n s(\alpha)]$
Clustering transition at another threshold $\alpha_{\mathrm{d}}<\alpha_{\mathrm{s}}$:
apparition of an exponential number of clusters ($\sim \exp [n \Sigma(\alpha)]$), each containing an exponential number of solutions $\left(\sim \exp \left[n s_{\text {int }}(\alpha)\right]\right)$

at α_{s} cancellation of $\Sigma(\alpha)$, not of $\boldsymbol{s}(\alpha)$

Refined picture of the satisfiable phase

Can be proven rigorously for random xorsat
[Creignou, Daudé]
[Cocco, Dubois, Mandler, Monasson]
[Mézard, Ricci-Tersenghi, Zecchina]
At α_{d}, apparition of a 2-core in the hypergraph

$$
\begin{aligned}
& s(\alpha)=\Sigma(\alpha)+s_{\mathrm{int}}(\alpha) \\
& \Sigma\left(\alpha_{\mathrm{s}}\right)=0
\end{aligned}
$$

[more complicated picture for sat and col]

Methods

If the formula F has solutions,

$$
\text { define } \mu(\underline{x})=\frac{1}{Z} \prod \psi_{a}\left(\underline{x}_{\partial a}\right) \text { uniform measure on } \mathcal{S}
$$

Factor graph representation of a formula :

Crucial property : in the $n, m \rightarrow \infty$ limit with $\alpha=m / n$ fixed local convergence of the factor graph to a random Galton-Watson tree

Methods

For a tree factor graph $\mu(\underline{x})$ is a rather simple object
(Belief Propagation is exact)

All marginal probabilities can be easily computed recursively :

Sparse random graphs converge locally to trees
Is it enough for their $\mu(\underline{x})$ to converge locally to the measure on the associated tree ?

It depends... (on the correlations decay)

Methods

- Yes in "replica symmetric" cases
- Ferromagnetic Ising models
- Matchings
[Dembo, Montanari]
- Random CSP for $\alpha<\alpha_{\mathrm{d}}$

Removing a finite subtree, the variables at the boundary are asymptotically independent

Allows to compute in particular $\lim \frac{1}{n} \log Z \quad$ entropy of solutions

Methods

- No in presence of "replica symmetry breaking" $\quad\left(\alpha_{\mathrm{d}}<\alpha<\alpha_{\mathrm{s}}\right)$

Configuration space partitioned in clusters \Rightarrow long-range correlations

Removing a finite subtree, the variables at the boundary remains correlated, self-consistent ansatz on these boundary conditions

With $\mu(\underline{x})=\sum_{c} w_{c} \mu_{c}(\underline{x})$, each μ_{c} has short-range correlations, can be treated as above

Properties of w_{c} encode the value of $\Sigma(\alpha)$, hence allows the computation of $\alpha_{\text {s }}$

Clustering for k-sat and q-col

Further "condensation" transition :
exponential number of clusters only for $\alpha \in\left[\alpha_{\mathrm{d}}, \alpha_{\mathrm{c}}\right]$
In general $\alpha_{\mathrm{c}}<\alpha_{\mathrm{s}}$, for XORSAT they coincide

Recent rigorous results

Physical intuition and heuristic results turned into rigorous proofs

- Existence of clusters and frozen variables
[Achlioptas, Molloy]
- Improved bounds on $\alpha_{\mathrm{s}}(k)$ at large k

$$
\begin{array}{ll}
\alpha_{\mathrm{s}}(k) \geq 2^{k} \ln 2-\frac{3 \ln 2}{2}+o(1) & \text { [Coja-Oghlan, Panagiotou (12)] } \\
\alpha_{\mathrm{s}}(k)=2^{k} \ln 2-\frac{1+\ln 2}{2}+o(1) \quad[\text { Coja-Oghlan (14)] }
\end{array}
$$

- independence number of d-regular graphs for large (but finite) d
[Ding, Sly, Sun (13)]

Perspectives

Schemes of rigorous proofs:

- Large k, q results, of combinatorics nature
[Achlioptas, Coja-Oghlan]
- Interpolation method, originally devised for the Sherrington-Kirkpatrick model
[Guerra, Toninelli, Aizenman, Talagrand, Panchenko]
- Local convergence approach
[Aldous]
- done for sparse random graphs in the "replica symmetric" regime
- open problem in the "replica symmetry breaking" regime

Short bibliography

- M. Mézard, G. Parisi and R. Zecchina, Science 297, 812 (2002)
- S. Mertens, M. Mézard and R. Zecchina, Random Struct. Alg. 28, 340 (2006)
- F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian and L. Zdeborova, PNAS 104, 10318 (2007)
- F. Altarelli, R. Monasson, G. Semerjian and F. Zamponi, in Handbook of Satisfiability, IOS press (2009), arxiv:0802.1829
- M. Mézard and A. Montanari, Information, Physics, and Computation, OUP (2009)

