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Open Cell Foams

Interesting topology

Very important material in practice, not well understood
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Grain Growth

Show movie

Steady state for which scale-free properties have
converged? Dependence on initial conditions?

Need metric - a nice one is given by considering the local
topology.
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Notes on Topology

These systems have interesting topology, but they have
not yet been studied using topological methods.*

Crystallography doesn’t apply to disordered materials.

Plan: First, I will introduce a new, general method to
quantify the topology of cell complexes.

Then I will talk about a case study, and discuss
computational results - strong evidence of existence of a
steady state.

If I have time, I will briefly describe two other topological
methods.
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Idea of Swatches

Key Idea

Quantify the local topology of cell complexes by using
probability distributions of local configurations.

Used to define a distance on cell complexes. The distance
can be used to, e.g., quantify the variability of cell
complexes generated in a particular way, compare two cell
complexes (i.e. experimental results with simulations), or
test convergence to a steady state

Applicable to many different physical systems, computable.

Joint work with Jeremy Mason (Boğaziçi University) and
Bob MacPherson (Institute for Advanced Study)

Paper on the arxiv: Topological Similarity of Random Cell
Complexes, and Applications to Dislocation Networks.
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Regular Cell Complexes

Definition

A Regular Cell Complex is a space built inductively by
attaching cells in each dimension (points, line segments, disks,
etc). Each cell is glued on by homeomorphisms from their
boundaries into the existing structure.
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Graph Representation

Represent a regular cell complex by the adjacency graph of
the cells, labeled by dimension.

Captures all topological properties.
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Swatches

Definition

The swatch at vertex v of radius r is the neighborhood of v of
radius r in the graph distance (every edge has length one).
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Swatch Types

Two swatches have the same swatch type if they represent
the same topological configuration.

Sub-swatch of a swatch: swatch of smaller radius at the
same root (central vertex).
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Cloth

For each r , consider the probability distribution of swatch
types of radius r at the vertices of a cell complex.

This family of probability distributions is called the cloth
of the cell complex.

Captures all local topological properties of the cell
complex.
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Tree of Swatches

Connect swatch type of radius r with all subswatch types
of radius r − 1.

The cloth is a weighting on this tree, subject to
consistency conditions.
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Distance on Swatches

Distance between two swatches = one over order (# cells)
of largest common subswatch, or 0 if they are equal.

d(S1,S2) = 1
13
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Distance on Cell Complexes

Definition

If C1 and C2 are cell complexes, dr (C1,C2) is the Earth
Mover’s Distance between the probability distributions at
radius r induced by distance on swatches.

Earth Mover’s Distance = the infimum of the costs of
transformations between the two probability distributions
on swatch types of radius r .

Cost = amount of probability mass moved between swatch
types, weighted by swatch distance.

Distance can be used to compare different structures, test
convergence to steady state, iteratively modify structures
to reach a desired state
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Convergence of Cell Complexes

Limit distance= d(C1,C2) = limr→∞ dr (C1,C2).

A sequence {Ci} of cell complexes converges if it is a
Cauchy sequence in d .

Equivalent to all swatch frequencies converging.
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The Limit

Theorem

(Benjamini-Schramm Graph Limit) A convergent sequence of
cell complexes gives rise to a limit distribution on the space of
countable, connected cell complexes a root specified. The
distance can be extended to the space of these distributions.

Also implies convergence of all local topological properties:
those that can be defined in terms of maps from a fixed
labeled graph H into the diagram of Ci .

Reference: Large Networks and Graph Limits
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Idea of Computation

Simulate curvature-driven evolution of dimension one
network in 3-space.

Represent network as one-dimensional cell complex.

Compute cloth (swatch distributions) for radius r < 10

Track distance dr to candidate steady state

Discuss other applications of topology to the case study.
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The Model

Curvature-driven evolution of polygonal curves in T3.

The polygonal curves meet each other at vertices of
degree three.

The curves are composed of line segments meeting at
nodes.

Evolves by energy minimization, assuming constant energy
γ per unit length.

This can be viewed as a very simple model of a dislocation
network in the process of recovery.
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Topological Moves

Edge Flip

Digon Deletion

Edge Intersection
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Initial Conditions

Voronoi Graph: modified 1-skeleton of Voronoi tesselation
for random points in the three-torus.

Random Graph: Place random points on the three-torus.
Randomly create edges between pairs that are close
enough.

Both evolve to “steady state”.
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Idea of Computation

Simulate curvature-driven evolution of dimension one
network in 3-space.

Represent network as one-dimensional cell complex.

Compute cloth (swatch distributions) for radius r < 10

Find candidate steady state for which many scale-free
properties appear to have converged.

Track distance dr to candidate steady state
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Convergence Results, I
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Track distance to large, steady state test case as system
evolves.

Change coordinates to aid comparison of systems.
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Convergence Results, II
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First Case: Random Graph Initial Conditions
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Convergence Results, II
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Second Case: Large Voronoi
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Convergence Results, II
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Third Case: Small Voronoi
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Convergence Results, II
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Fourth Case: Random Graph with Intersections Disabled
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On Intersections
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Plot preponderance of different topological changes as
simulation proceeds.
Intersections computationally expensive; can disregard for
better steady state statistics.
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Error Estimation
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Hard to estimate statistical error for cloth: complicated
interdependencies of swatch frequencies
Idea: compare simulation to representative subsamples of
test case
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Error Estimation, II
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System has converged to state represented by test case if
it is statistically indistinguishable from a subsample of it.
Within one standard deviation of subsamples: good
evidence of convergence.
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2D Persistent Homology of Objects in 3-space

Consider ε-neighborhoods of X ⊂ R3, Xε.

As ε increases, holes form and disappear.

Persistent Homology tracks these holes as ε increases.

Look at figures in Mathematica
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Persistent Homology, ct’d

Philosophy: use persistent homology to study geometry of
fixed object.

Paper - “Measuring Shape with Topology” (Journal of
Mathematical Physics, joint with R. MacPherson)

Holes in Xε correspond to voids in X

Find voids in materials
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Persistent Homology, Continued

Plot time when hole appears vs time when it disappears

Points on x=y line are noise
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1-skeleton of Voronoi Decomposition

Persistent Homology recovers the cells.
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Steady State of CDE Simulation

More surprising voids!
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Minimal Cycles
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Persistence Tree

Usual interpretation of Persistent Homology represents
this as two points for two voids

Correct structure: Persistence Tree

Adjacency of minimal cycles?
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Unknotted Networks

Many embedded graphs from physical systems appear to
be unknotted.

How to measure this?
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Minimal Cycles
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Look at shortest cycle containing each edge. Is it knotted?

Start with knotted network, track # of knotted minimal
cycles as system evolves.

Curvature-driven evolution appears to unknot networks.
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Look at shortest cycle containing each edge. Is it knotted?

Start with knotted network, track # of knotted minimal
cycles as system evolves.

Curvature-driven evolution appears to unknot networks.

Network unknots even faster if intersections turned off.
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Unknottedness

Unknotted networks can contain knots.
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Defining Unknottedness

Definition

An embedded graph is unknotted if its complement has the
homotopy type of a graph.

Physical interpretation: equivalent to existence of dual
network (important for, i.e., open cell foams).

I’m working on several theoretical questions surrounding
this definition.

Is it equivalent to π1 of the complement being free?
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Knotted Materials

Knotted materials may have interesting, useful properties.

Metal-organic frameworks: new, exotic, sometimes knotted
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Conclusion

Interesting topology abounds in materials science and
physics.

Topology could be useful for understanding structures that
are currently not well-understood using any methods.

Many applications to work on, many new methods to be
developed.

Perhaps the study of these applications will also provide
new ideas for topology.
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