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The problems

1. E(1, a)
s
↪→ Z4(A)

2. E(1, a)
s
↪→ C4(A)

3. E(1, a)
s
↪→ P(A, bA), b ∈ N

4. E(1, a)
s
↪→ T4(A)

where:

E(a, b) =

{
(z1, z2) ∈ C2

∣∣ π|z1|2
a

+
π|z2|2

b
< 1

}
can assume: b = 1, a > 1
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and :

Z4(A) = D(A)×C

C4(A) = P(A,A)

P(A, bA) = D(A)× D(bA)

T4(A) = T2(A)× T2(A)

moment map images (under (z1, z2) 7→ (π|z1|2, π|z2|2)) :



The answers

1. Gromov 1985: E(1, a)
s
↪→ Z4(A) iff A > 1

Hence
cEZ(a) := inf

{
A | E(1, a)

s
↪→ Z4(A)

}
≡ 1

TOTAL symplectic rigidity, NO structure
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To get “some structure”, truncate!

First: Truncate all down to C4(A):

c1(a) := inf
{
A | E(1, a)

s
↪→ C4(A)

}
>

√
a

2
(Volume constraint)
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2. Frenkel–Müller 2014, based on McDuff–S 2012:

c1(a) starts with the Pell stairs :

Pell numbers: P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2

HC Pell numbers: H0 = 1, H1 = 1, Hn = 2Hn−1 + Hn−2

Form the sequence

(γ1, γ2, γ3, . . . ) :=

(
P1

H0
,

H2

2P1
,
P3

H2
,

H4

2P3
, . . .

)

=

(
1,

3

2
,

5

3
,

17

10
, . . .

)
→ σ√

2
where σ =

√
2 + 1 the silver ratio
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An application:

Biran 1996:

k 1 2 3 4 5 6 7 > 8

pk
1
2 1 2

3
8
9

9
10

48
49

224
225 1

where pk = percentage of volume of [0, 1]4 ⊂ R4 that can be
symplectically filled by k disjoint equal balls

What are these numbers?



The function c1 explains Biran’s list:

dk := inf

{
A

∣∣∣∣ ∐
k

B4(1)
s
↪→ C4(A)

}

Since pk =
k · 12
d2
k

, his list becomes

k 1 2 3 4 5 6 7 > 8

dk 1 1 3
2

3
2

5
3

7
4

15
8

√
k
2

and (McDuff 2009): dk = c1(k), ie∐
k

B4(1)
s
↪→ C4(A) ⇐⇒ E(1, k)

s
↪→ C4(A)



Hence: It was worthwhile to elongate the domain:

B4(1) E(1, a)

Now: Also elongate the target:

C4(A) = P(A,A) P(A, bA), b > 1

For a, b > 1

cb(a) = inf
{
A | E(1, a)

s
↪→ P(A, bA)

}
1-parametric family of problems

Volume constraint: cb(a) >

√
a

2b
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3. Cristofaro–Gardiner, Frenkel, S 2016 cb(a) is given by ...

So: fine structure of symplectic rigidity in c1
first disappears (as b → 2), then reappears (as b →∞)

Remarks

1. “The same” holds true for b ∈ R>2 (no proof)

2. The first two linear steps, and the affine step of the Pell stairs
are stable, the other steps disappear

Open problem: How does the Pell stairs disappear?

Understand c1+ε
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4. E(1, a)
s
↪→ T4(A) :

Note: C4(A) compactifies to both S2(A)× S2(A) and T4(A)

Fact: c1(a) = inf
{
A | E(1, a)

s
↪→ C4(A)

}
= inf

{
A | E(1, a)

s
↪→ S2(A)× S2(A)

}

On the other hand (Latschev–McDuff–S, Entov–Verbitsky 2014):

E(1, a)
s
↪→ T4(A) whenever Vol E(1, a)<Vol T4(A)

(“Total flexibility”)
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But:

• It is unkown wether Emb(E(1, a),T4(A)) is connected
(hence <)

• Hidden rigidity (Biran): Assume that

ϕ : B4(a)
s
↪→ T4(1), Vol B4(a) = 3

4 ,

ψ :
∐

2 B4(b)
s
↪→ T4(A), Vol

∐
2 B4(b) = 2

3 .

Then Imψ ⊂ Imϕ is impossible (by Gromov’s 2-ball theorem)



Ideas of the proof

Common ingredient:

from B
4
(a)

s
↪→ (M4, ω) get symplectic form ωa on the blow-up

π : M1 → M

in class π∗[ω]− a e
e = PD(E ), E = [Σ]

Conversely: If π∗[ω]− a e has a symplectic representative,
non-degenerate along Σ,

then can “blow-down”, get B4(a)
s
↪→ (M, ω?)
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E(1, 2)
s
↪→ C4(1 + ε)

( ∐
2 B4(1)

s
↪→ C4(1 + ε) easy!

)

omit ε, δ ...

compactify C4(1) = D(1)× D(1) to M = S2(1)× S2(1)

∆ := {(z , z)} ⊂ S2 × S2 : holomorphic

blow-up M twice “at the right points” by size λ = 1
3

get holomorphic sphere ∆2 ⊂ M2 in class

[∆2] = S1 + S2 − E1 − E2

and a chain of spheres C1 ∪ C2 “bounding” E(λ, 2λ)

and a symplectic form ωλ in class

[ωλ] = s1 + s2 − λ(e1 + e2)
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Wish to “inflate” the form

ωλ in [ωλ] = s1 + s2 − λ(e1 + e2)

to
ω1 in [ω1] = s1 + s2 − (e1 + e2)

Inflation along e1 + e2 is impossible, but can inflate along

PD(∆2) = s1 + s2 − e1 − e2 :

∀ τ > 0 there exists a symplectic form Ωτ in class

[ωλ] + τ PD[∆2] = (1 + τ)(s1 + s2)− (λ+ τ)(e1 + e2)

Get E(λ+ τ, 2(λ+ τ))
s
↪→ C4(1 + τ)

Hence E(1, 2)
s
↪→ C4( 1+τ

λ+τ )
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E(1, 2)
s
↪→ T4(1)

Cannot do inflation, since there are no J-curves to inflate along

But: Use existence of Kähler forms on blow-ups

(much stronger than Nakai–Moishezon in the algebraic case)

(M, J) Kähler

H1,1
J (M;R): classes represented by J-invariant closed 2-forms

candidates for Kähler classes: C1,1+ (M, J) :={
α ∈ H1,1

J (M;R) | αm([V ]) > 0 ∀ complex subv. Vm ⊂ (M, J)
}



E(1, 2)
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But: Use existence of Kähler forms on blow-ups
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H1,1
J (M;R): classes represented by J-invariant closed 2-forms
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Demailly–Paun 2004 The Kähler cone of (M, J) is one of the
connected components of C1,1+ (M, J)

Hence: E(1, 2)
s
↪→ T4(1, 1 + ε) (for ε irrational)

since there is a Kähler J without J-curves
(positivity on exceptional divisors and on M2 clear)

For T4(1, 1) use approximation of (T4, ω, I ) by J close to I
without J-curves
Kähler for some ωJ with [ωJ ] close to [ω] (Kodaira–Spencer)

“Yesterday”: Entov–Verbitsky proved flexibility of ellipsoid
packings of Kähler tori in all dimensions

by directly blowing-up E(a1, . . . , an) (aj relatively prime) and
resolving the cyclic singularities (Hironaka)
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Can assume a ∈ Q

weight sequence

w(a) =
(
1, . . . , 1,w×`1

1 , . . . ,w×`N
N

)

Examples:

w(3) = (1, 1, 1), w

(
5

3

)
=

(
1,

2

3
,

(
1

3

)×2
)
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B(w(a)) :=
∐

i B(wi ) (with multiplicities)

McDuff, Frenkel–Müller:

E(1, a)
s
↪→ P(λ, λb) ⇐⇒

B(w(a))
∐

B(λ)
∐

B(λb)
s
↪→ B(λ(b + 1))
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∐

B(λb)
s
↪→ B(λ(b + 1))



Use three methods!

Method 1: obstructive classes

Method 2: dual version: reduction “at a point”

Method 3: ECH capacities



Method 1: McDuff, Polterovich, Biran, Li–Lu:

E (1, a)
s
↪→ P(λ, λb) ⇐⇒

(i) λ >

√
a

2b
volume constraint

(ii) λ >
〈m,w(a)〉
d + be

for all solutions (d , e;m) ∈ N3 of

∑
i

mi = 2(d + e)− 1,
∑
i

m2
i = 2de + 1

constraint from J-spheres
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For b > 2 all obstructions come from

En = (n, 1; 1×(2n+1)) (linear steps)

Fn =
(
n(n + 1), n + 1; n + 1, n×(2n+3)

)
(affine step)



Method 3:

Hutchings, McDuff:

ECH capacities are complete invariants for our problem:

E (a, b)
s
↪→ E (c , d) ⇐⇒ ck(E (a, b)) 6 ck(E (c , d)) for all k

In particular

E (1, a)
s
↪→ P(λ, λb) ⇐⇒ ck(E (1, a)) 6 λ ck(E (1, 2b)) for all k
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Method 2: reduction at a point

(µ; a1, . . . , ak) ∈ R1+k ordered if a1 > · · · > ak

defect of an ordered vector (µ; a): δ = µ− (a1 + a2 + a3)

(µ; a) ordered is reduced if δ > 0 and ai > 0

Cremona transform Cr: R1+k → R1+k

(µ; a) 7→ (µ+δ; a1+δ, a2+δ, a3+δ, a4, . . . , ak)

Cremona move: reorder ◦ Cr
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Tian-Jun Li, Buse–Pinsonnault:

E (1, a)
s
↪→ P(λ, λb) ⇐⇒(

λ(b + 1);λb, λ,w(a)
)

reduces under finitely many Cremona
moves to a reduced vector

Dynamical interpretation:
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Xk = blow up of CP2 in k points

E(Xk) = exceptional classes E ∈ H2(Xk ;Z) with c1(E ) = 1 and
E · E = −1 that can be represented by smoothly embedded spheres

C(Xk) = symplectic cone:{
α ∈ H2(Xk ;R) | α2 > 0 and α(E ) > 0 for all E ∈ E(Xk)

}
Pk
+ = positive cone:{

(µ; a) ∈ R1+k | µ, a1, . . . , ak > 0, ‖a‖ 6 µ
}

R = reduced vectors

Then R ⊂ C(Xk) ⊂ Pk
+
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