The many forms of rigidity for symplectic embeddings

based on work of Dan Cristofaro-Gardiner, Michael Entov, David Frenkel, Janko Latschev, Dusa McDuff, Dorothee Müller, FS, Misha Verbitsky

The problems

1. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{Z}^{4}(A)$
2. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(A)$
3. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{P}(A, b A), \quad b \in \mathbb{N}$
4. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(A)$

The problems

1. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} Z^{4}(A)$
2. $E(1, a) \stackrel{s}{\hookrightarrow} C^{4}(A)$
3. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{P}(A, b A), \quad b \in \mathbb{N}$
4. $\mathrm{E}(1, \mathrm{a}) \stackrel{5}{\hookrightarrow} \mathrm{~T}^{4}(A)$
where:

$$
\mathrm{E}(a, b)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b}<1\right.\right\}
$$

can assume: $b=1, a \geqslant 1$
and :

$$
\begin{array}{ll}
\mathrm{Z}^{4}(A) & =\mathrm{D}(A) \times \mathbb{C} \\
\mathrm{C}^{4}(A) & =\mathrm{P}(A, A) \\
\mathrm{P}(A, b A) & =\mathrm{D}(A) \times \mathrm{D}(b A) \\
\mathrm{T}^{4}(A) & =\mathrm{T}^{2}(A) \times \mathrm{T}^{2}(A)
\end{array}
$$

moment map images (under $\left.\left(z_{1}, z_{2}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right)\right)$:

The answers

The answers

1. Gromov 1985: $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} Z^{4}(A)$ iff $A \geqslant 1$

Hence

$$
c_{\mathrm{EZ}}(a):=\inf \left\{A \mid \mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{Z}^{4}(A)\right\} \equiv 1
$$

TOTAL symplectic rigidity, NO structure

To get＂some structure＂，truncate！

To get "some structure", truncate!
First: Truncate all down to $C^{4}(A)$:

$$
\begin{aligned}
c_{1}(a) & :=\inf \left\{A \mid \mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} C^{4}(A)\right\} \\
& \geqslant \sqrt{\frac{a}{2}} \quad(\text { Volume constraint })
\end{aligned}
$$

2. Frenkel-Müller 2014, based on McDuff-S 2012: $c_{1}(a)$ starts with the Pell stairs :
Pell numbers: $\quad P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}$
HC Pell numbers: $H_{0}=1, H_{1}=1, H_{n}=2 H_{n-1}+H_{n-2}$
3. Frenkel-Müller 2014, based on McDuff-S 2012:
$c_{1}(a)$ starts with the Pell stairs:
Pell numbers: $\quad P_{0}=0, P_{1}=1, P_{n}=2 P_{n-1}+P_{n-2}$
HC Pell numbers: $H_{0}=1, H_{1}=1, H_{n}=2 H_{n-1}+H_{n-2}$
Form the sequence

$$
\begin{aligned}
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots\right) & :=\left(\frac{P_{1}}{H_{0}}, \frac{H_{2}}{2 P_{1}}, \frac{P_{3}}{H_{2}}, \frac{H_{4}}{2 P_{3}}, \ldots\right) \\
& =\left(1, \frac{3}{2}, \quad \frac{5}{3}, \frac{17}{10}, \ldots\right) \\
& \rightarrow \frac{\sigma}{\sqrt{2}} \quad \text { where } \sigma=\sqrt{2}+1 \text { the silver ratio }
\end{aligned}
$$

An application:
Biran 1996:

k	1	2	3	4	5	6	7	$\geqslant 8$
p_{k}	$\frac{1}{2}$	1	$\frac{2}{3}$	$\frac{8}{9}$	$\frac{9}{10}$	$\frac{48}{49}$	$\frac{224}{225}$	1

where $p_{k}=$ percentage of volume of $[0,1]^{4} \subset \mathbb{R}^{4}$ that can be symplectically filled by k disjoint equal balls

What are these numbers?

The function c_{1} explains Biran's list:

$$
d_{k}:=\inf \left\{A \mid \coprod_{k} B^{4}(1) \stackrel{s}{\hookrightarrow} C^{4}(A)\right\}
$$

Since $p_{k}=\frac{k \cdot \frac{1}{2}}{d_{k}^{2}}$, his list becomes

k	1	2	3	4	5	6	7	$\geqslant 8$
d_{k}	1	1	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{7}{4}$	$\frac{15}{8}$	$\sqrt{\frac{k}{2}}$

and (McDuff 2009): $d_{k}=c_{1}(k)$, ie

$$
\coprod_{k} \mathrm{~B}^{4}(1) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(A) \Longleftrightarrow \mathrm{E}(1, k) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(A)
$$

Hence: It was worthwhile to elongate the domain:

$$
\mathrm{B}^{4}(1) \rightsquigarrow \mathrm{E}(1, a)
$$

Now: Also elongate the target:

$$
\mathrm{C}^{4}(A)=\mathrm{P}(A, A) \rightsquigarrow \mathrm{P}(A, b A), \quad b \geqslant 1
$$

Hence: It was worthwhile to elongate the domain:

$$
\mathrm{B}^{4}(1) \rightsquigarrow \mathrm{E}(1, a)
$$

Now: Also elongate the target:

$$
\mathrm{C}^{4}(A)=\mathrm{P}(A, A) \rightsquigarrow \mathrm{P}(A, b A), \quad b \geqslant 1
$$

For $a, b \geqslant 1$

$$
c_{b}(a)=\inf \{A \mid \mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{P}(A, b A)\}
$$

1-parametric family of problems
Volume constraint: $c_{b}(a) \geqslant \sqrt{\frac{a}{2 b}}$

3. Cristofaro-Gardiner, Frenkel, S $2016 \quad c_{b}(a)$ is given by ...

3. Cristofaro-Gardiner, Frenkel, S $2016 \quad c_{b}(a)$ is given by ...

So: fine structure of symplectic rigidity in c_{1} first disappears (as $b \rightarrow 2$), then reappears (as $b \rightarrow \infty$)
3. Cristofaro-Gardiner, Frenkel, S $2016 \quad c_{b}(a)$ is given by ...

So: fine structure of symplectic rigidity in c_{1} first disappears (as $b \rightarrow 2$), then reappears (as $b \rightarrow \infty$)

Remarks

1. "The same" holds true for $b \in \mathbb{R}_{\geqslant 2}$ (no proof)
2. The first two linear steps, and the affine step of the Pell stairs are stable, the other steps disappear

Open problem: How does the Pell stairs disappear?
Understand $c_{1+\varepsilon}$
4. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(A)$:

Note: $C^{4}(A)$ compactifies to both $S^{2}(A) \times S^{2}(A)$ and $T^{4}(A)$
Fact: $c_{1}(a)=\inf \left\{A \mid E(1, a) \stackrel{s}{\hookrightarrow} C^{4}(A)\right\}$

$$
=\inf \left\{A \mid \mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} S^{2}(A) \times S^{2}(A)\right\}
$$

4. $\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(A)$:

Note: $C^{4}(A)$ compactifies to both $S^{2}(A) \times S^{2}(A)$ and $T^{4}(A)$
Fact: $c_{1}(a)=\inf \left\{A \mid E(1, a) \stackrel{s}{\hookrightarrow} C^{4}(A)\right\}$

$$
=\inf \left\{A \mid \mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} S^{2}(A) \times S^{2}(A)\right\}
$$

On the other hand (Latschev-McDuff-S, Entov-Verbitsky 2014):
$\mathrm{E}(1, a) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(A)$ whenever $\operatorname{Vol} \mathrm{E}(1, a)<\operatorname{Vol~T}^{4}(A)$
("Total flexibility")

But:

- It is unkown wether $\operatorname{Emb}\left(\mathrm{E}(1, a), \mathrm{T}^{4}(A)\right)$ is connected (hence $<$)
- Hidden rigidity (Biran): Assume that

$$
\begin{aligned}
\varphi: \mathrm{B}^{4}(a) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(1), & \text { Vol } \mathrm{B}^{4}(a)=\frac{3}{4}, \\
\psi: \coprod_{2} \mathrm{~B}^{4}(b) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(A), & \operatorname{Vol}_{2} \mathrm{~B}^{4}(b)=\frac{2}{3} .
\end{aligned}
$$

Then $\operatorname{Im} \psi \subset \operatorname{Im} \varphi$ is impossible (by Gromov's 2-ball theorem)

Ideas of the proof

Ideas of the proof

Common ingredient:
from $\overline{\mathrm{B}}^{4}(a) \stackrel{s}{\hookrightarrow}\left(M^{4}, \omega\right)$ get symplectic form ω_{a} on the blow-up

$$
\begin{array}{ll}
& \pi: M_{1} \rightarrow M \\
\text { in class } & \pi^{*}[\omega]-a e \\
e=\operatorname{PD}(E), E=[\Sigma] &
\end{array}
$$

Ideas of the proof

Common ingredient:
from $\bar{B}^{4}(a) \stackrel{s}{\hookrightarrow}\left(M^{4}, \omega\right)$ get symplectic form ω_{a} on the blow-up
in class

$$
\begin{aligned}
& \pi: M_{1} \rightarrow M \\
& \pi^{*}[\omega]-a e
\end{aligned}
$$

$e=\operatorname{PD}(E), E=[\Sigma]$
Conversely: If $\pi^{*}[\omega]-a e$ has a symplectic representative, non-degenerate along Σ, then can "blow-down", get $\mathrm{B}^{4}(a) \stackrel{s}{\hookrightarrow}\left(M, \omega_{\text {? }}\right)$

$$
\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon) \quad\left(\amalg_{2} \mathrm{~B}^{4}(1) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon) \text { easy! }\right)
$$

$\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon) \quad\left(\coprod_{2} \mathrm{~B}^{4}(1) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon)\right.$ easy! $)$ omit $\varepsilon, \delta \ldots$ compactify $\mathrm{C}^{4}(1)=\mathrm{D}(1) \times \mathrm{D}(1)$ to $M=S^{2}(1) \times S^{2}(1)$
$\Delta:=\{(z, z)\} \subset S^{2} \times S^{2}:$ holomorphic

$$
\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon) \quad\left(\coprod_{2} \mathrm{~B}^{4}(1) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\varepsilon) \text { easy! }\right)
$$ omit $\varepsilon, \delta \ldots$

compactify $\mathrm{C}^{4}(1)=\mathrm{D}(1) \times \mathrm{D}(1)$ to $M=S^{2}(1) \times S^{2}(1)$
$\Delta:=\{(z, z)\} \subset S^{2} \times S^{2}:$ holomorphic
blow-up M twice "at the right points" by size $\lambda=\frac{1}{3}$ get holomorphic sphere $\Delta_{2} \subset M_{2}$ in class

$$
\left[\Delta_{2}\right]=S_{1}+S_{2}-E_{1}-E_{2}
$$

and a chain of spheres $C_{1} \cup C_{2}$ "bounding" $E(\lambda, 2 \lambda)$ and a symplectic form ω_{λ} in class

$$
\left[\omega_{\lambda}\right]=s_{1}+s_{2}-\lambda\left(e_{1}+e_{2}\right)
$$

Wish to "inflate" the form

$$
\omega_{\lambda} \text { in }\left[\omega_{\lambda}\right]=s_{1}+s_{2}-\lambda\left(e_{1}+e_{2}\right)
$$

to

$$
\omega_{1} \text { in }\left[\omega_{1}\right]=s_{1}+s_{2}-\left(e_{1}+e_{2}\right)
$$

Inflation along $e_{1}+e_{2}$ is impossible, but can inflate along

$$
\operatorname{PD}\left(\Delta_{2}\right)=s_{1}+s_{2}-e_{1}-e_{2}:
$$

Wish to "inflate" the form

$$
\omega_{\lambda} \text { in }\left[\omega_{\lambda}\right]=s_{1}+s_{2}-\lambda\left(e_{1}+e_{2}\right)
$$

to

$$
\omega_{1} \text { in }\left[\omega_{1}\right]=s_{1}+s_{2}-\left(e_{1}+e_{2}\right)
$$

Inflation along $e_{1}+e_{2}$ is impossible, but can inflate along

$$
\operatorname{PD}\left(\Delta_{2}\right)=s_{1}+s_{2}-e_{1}-e_{2}:
$$

$\forall \tau>0$ there exists a symplectic form Ω_{τ} in class

$$
\left[\omega_{\lambda}\right]+\tau \operatorname{PD}\left[\Delta_{2}\right]=(1+\tau)\left(s_{1}+s_{2}\right)-(\lambda+\tau)\left(e_{1}+e_{2}\right)
$$

Get

$$
\mathrm{E}(\lambda+\tau, 2(\lambda+\tau)) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}(1+\tau)
$$

Hence

$$
\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{C}^{4}\left(\frac{1+\tau}{\lambda+\tau}\right)
$$

$\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(1)$
Cannot do inflation, since there are no J-curves to inflate along
But: Use existence of Kähler forms on blow-ups
(much stronger than Nakai-Moishezon in the algebraic case)

$E(1,2) \stackrel{s}{\hookrightarrow} T^{4}(1)$

Cannot do inflation, since there are no J-curves to inflate along
But: Use existence of Kähler forms on blow-ups
(much stronger than Nakai-Moishezon in the algebraic case)
(M, J) Kähler
$H_{j}^{1,1}(M ; \mathbb{R})$: classes represented by J-invariant closed 2 -forms
candidates for Kähler classes: $\mathcal{C}_{+}^{1,1}(\mathrm{M}, \mathrm{J}):=$
$\left\{\alpha \in H_{j}^{1,1}(M ; \mathbb{R}) \mid \alpha^{m}([V])>0 \forall\right.$ complex subv. $\left.V^{m} \subset(M, J)\right\}$

Demailly-Paun 2004 The Kähler cone of (M, J) is one of the connected components of $\mathcal{C}_{+}^{1,1}(M, J)$

Demailly-Paun 2004 The Kähler cone of (M, J) is one of the connected components of $\mathcal{C}_{+}^{1,1}(M, J)$

Hence: $\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(1,1+\varepsilon) \quad$ (for ε irrational)
since there is a Kähler J without J-curves
(positivity on exceptional divisors and on M_{2} clear)

Demailly-Paun 2004 The Kähler cone of (M, J) is one of the connected components of $\mathcal{C}_{+}^{1,1}(M, J)$

Hence: $\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(1,1+\varepsilon) \quad$ (for ε irrational) since there is a Kähler J without J-curves
(positivity on exceptional divisors and on M_{2} clear)
For $T^{4}(1,1)$ use approximation of $\left(T^{4}, \omega, I\right)$ by J close to I without J-curves
Kähler for some ω_{J} with $\left[\omega_{J}\right]$ close to $[\omega]$ (Kodaira-Spencer)

Demailly-Paun 2004 The Kähler cone of (M, J) is one of the connected components of $\mathcal{C}_{+}^{1,1}(M, J)$
Hence: $\mathrm{E}(1,2) \stackrel{s}{\hookrightarrow} \mathrm{~T}^{4}(1,1+\varepsilon) \quad$ (for ε irrational) since there is a Kähler J without J-curves
(positivity on exceptional divisors and on M_{2} clear)
For $\mathrm{T}^{4}(1,1)$ use approximation of $\left(\mathrm{T}^{4}, \omega, I\right)$ by J close to I without J-curves
Kähler for some ω_{J} with $\left[\omega_{J}\right]$ close to $[\omega]$ (Kodaira-Spencer)
"Yesterday": Entov-Verbitsky proved flexibility of ellipsoid packings of Kähler tori in all dimensions by directly blowing-up $\mathrm{E}\left(a_{1}, \ldots, a_{n}\right)$ (a_{j} relatively prime) and resolving the cyclic singularities (Hironaka)

Can assume $\quad a \in \mathbb{Q}$
weight sequence

$$
\mathbf{w}(a)=\left(1, \ldots, 1, w_{1}^{\times \ell_{1}}, \ldots, w_{N}^{\times \ell_{N}}\right)
$$

Can assume $\quad a \in \mathbb{Q}$
weight sequence

$$
\mathbf{w}(a)=\left(1, \ldots, 1, w_{1}^{\times \ell_{1}}, \ldots, w_{N}^{\times \ell_{N}}\right)
$$

Examples:

$$
\mathbf{w}(3)=(1,1,1), \quad \mathbf{w}\left(\frac{5}{3}\right)=\left(1, \frac{2}{3},\left(\frac{1}{3}\right)^{\times 2}\right)
$$

$$
B(\mathbf{w}(a)):=\coprod_{i} B\left(w_{i}\right) \quad \text { (with multiplicities) }
$$

$B(\mathbf{w}(a)):=\coprod_{i} B\left(w_{i}\right) \quad$ (with multiplicities)
McDuff, Frenkel-Müller:

$$
\begin{aligned}
\mathrm{E}(1, a) & \stackrel{s}{\hookrightarrow} \mathrm{P}(\lambda, \lambda b) \\
B(\mathrm{w}(a)) \coprod B(\lambda) \coprod B(\lambda b) & \stackrel{s}{\hookrightarrow} B(\lambda(b+1))
\end{aligned}
$$

Use three methods!
Method 1: obstructive classes
Method 2: dual version: reduction "at a point"
Method 3: ECH capacities

Method 1: McDuff, Polterovich, Biran, Li-Lu:

$$
E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b) \Longleftrightarrow
$$

(i) $\lambda \geqslant \sqrt{\frac{a}{2 b}}$ volume constraint

Method 1: McDuff, Polterovich, Biran, Li-Lu:

$$
E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b)
$$

(i) $\lambda \geqslant \sqrt{\frac{a}{2 b}} \quad$ volume constraint
(ii) $\lambda \geqslant \frac{\langle\mathbf{m}, \mathbf{w}(a)\rangle}{d+b e}$ for all solutions $(d, e ; \mathbf{m}) \in \mathbb{N}^{3}$ of

$$
\sum_{i} m_{i}=2(d+e)-1, \quad \sum_{i} m_{i}^{2}=2 d e+1
$$

constraint from J-spheres

For $b \geqslant 2$ all obstructions come from

$$
\begin{aligned}
& E_{n}=\left(n, 1 ; 1^{\times(2 n+1)}\right) \quad \text { (linear steps) } \\
& F_{n}=\left(n(n+1), n+1 ; n+1, n^{\times(2 n+3)}\right) \quad \text { (affine step) }
\end{aligned}
$$

Method 3:

Hutchings, McDuff:
ECH capacities are complete invariants for our problem:

$$
E(a, b) \stackrel{s}{\hookrightarrow} E(c, d) \quad \Longleftrightarrow \quad c_{k}(E(a, b)) \leqslant c_{k}(E(c, d)) \quad \text { for all } k
$$

Method 3:

Hutchings, McDuff:
ECH capacities are complete invariants for our problem:

$$
E(a, b) \stackrel{s}{\hookrightarrow} E(c, d) \quad \Longleftrightarrow \quad c_{k}(E(a, b)) \leqslant c_{k}(E(c, d)) \quad \text { for all } k
$$

In particular
$E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b) \Longleftrightarrow c_{k}(E(1, a)) \leqslant \lambda c_{k}(E(1,2 b)) \quad$ for all k

Method 2: reduction at a point

$$
\left(\mu ; a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{1+k} \text { ordered if } a_{1} \geqslant \cdots \geqslant a_{k}
$$

Method 2: reduction at a point
$\left(\mu ; a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{1+k}$ ordered if $a_{1} \geqslant \cdots \geqslant a_{k}$ defect of an ordered vector $(\mu ; \mathbf{a}): \delta=\mu-\left(a_{1}+a_{2}+a_{3}\right)$

Method 2: reduction at a point
$\left(\mu ; a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{1+k}$ ordered if $a_{1} \geqslant \cdots \geqslant a_{k}$ defect of an ordered vector $(\mu ; \mathbf{a}): \delta=\mu-\left(a_{1}+a_{2}+a_{3}\right)$
($\mu ; \mathbf{a}$) ordered is reduced if $\delta \geqslant 0$ and $a_{i} \geqslant 0$

Method 2: reduction at a point
$\left(\mu ; a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{1+k}$ ordered if $a_{1} \geqslant \cdots \geqslant a_{k}$ defect of an ordered vector $(\mu ; \mathbf{a}): \delta=\mu-\left(a_{1}+a_{2}+a_{3}\right)$
($\mu ; \mathbf{a}$) ordered is reduced if $\delta \geqslant 0$ and $a_{i} \geqslant 0$
Cremona transform $\mathrm{Cr}: \mathbb{R}^{1+k} \rightarrow \mathbb{R}^{1+k}$

$$
(\mu ; \mathbf{a}) \mapsto\left(\mu+\delta ; a_{1}+\delta, a_{2}+\delta, a_{3}+\delta, a_{4}, \ldots, a_{k}\right)
$$

Method 2: reduction at a point
$\left(\mu ; a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{1+k}$ ordered if $a_{1} \geqslant \cdots \geqslant a_{k}$
defect of an ordered vector $(\mu ; \mathbf{a}): \delta=\mu-\left(a_{1}+a_{2}+a_{3}\right)$
($\mu ; \mathbf{a}$) ordered is reduced if $\delta \geqslant 0$ and $a_{i} \geqslant 0$
Cremona transform $\mathrm{Cr}: \mathbb{R}^{1+k} \rightarrow \mathbb{R}^{1+k}$

$$
(\mu ; \mathbf{a}) \mapsto\left(\mu+\delta ; a_{1}+\delta, a_{2}+\delta, a_{3}+\delta, a_{4}, \ldots, a_{k}\right)
$$

Cremona move: reorder $\circ \mathrm{Cr}$

Tian-Jun Li, Buse-Pinsonnault:
$E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b)$
$(\lambda(b+1) ; \lambda b, \lambda, \mathbf{w}(a))$ reduces under finitely many Cremona moves to a reduced vector

Tian-Jun Li, Buse-Pinsonnault:
$E(1, a) \stackrel{s}{\hookrightarrow} P(\lambda, \lambda b)$
$(\lambda(b+1) ; \lambda b, \lambda, \mathbf{w}(a))$ reduces under finitely many Cremona moves to a reduced vector

Dynamical interpretation:

$$
X_{k}=\text { blow up of } \mathbb{C} \mathrm{P}^{2} \text { in } k \text { points }
$$

$X_{k}=$ blow up of $\mathbb{C} P^{2}$ in k points
$\mathcal{E}\left(X_{k}\right)=$ exceptional classes $E \in H_{2}\left(X_{k} ; \mathbb{Z}\right)$ with $c_{1}(E)=1$ and $E \cdot E=-1$ that can be represented by smoothly embedded spheres
$X_{k}=$ blow up of $\mathbb{C} P^{2}$ in k points
$\mathcal{E}\left(X_{k}\right)=$ exceptional classes $E \in H_{2}\left(X_{k} ; \mathbb{Z}\right)$ with $c_{1}(E)=1$ and $E \cdot E=-1$ that can be represented by smoothly embedded spheres $\mathcal{C}\left(X_{k}\right)=$ symplectic cone:

$$
\left\{\alpha \in H^{2}\left(X_{k} ; \mathbb{R}\right) \mid \alpha^{2}>0 \text { and } \alpha(E)>0 \text { for all } E \in \mathcal{E}\left(X_{k}\right)\right\}
$$

$X_{k}=$ blow up of $\mathbb{C} P^{2}$ in k points
$\mathcal{E}\left(X_{k}\right)=$ exceptional classes $E \in H_{2}\left(X_{k} ; \mathbb{Z}\right)$ with $c_{1}(E)=1$ and $E \cdot E=-1$ that can be represented by smoothly embedded spheres $\mathcal{C}\left(X_{k}\right)=$ symplectic cone:

$$
\left\{\alpha \in H^{2}\left(X_{k} ; \mathbb{R}\right) \mid \alpha^{2}>0 \text { and } \alpha(E)>0 \text { for all } E \in \mathcal{E}\left(X_{k}\right)\right\}
$$

$\overline{\mathcal{P}_{+}^{k}}=$ positive cone:

$$
\left\{(\mu ; \mathbf{a}) \in \mathbb{R}^{1+k} \mid \mu, a_{1}, \ldots, a_{k} \geqslant 0,\|\mathbf{a}\| \leqslant \mu\right\}
$$

$X_{k}=$ blow up of $\mathbb{C} P^{2}$ in k points
$\mathcal{E}\left(X_{k}\right)=$ exceptional classes $E \in H_{2}\left(X_{k} ; \mathbb{Z}\right)$ with $c_{1}(E)=1$ and $E \cdot E=-1$ that can be represented by smoothly embedded spheres
$\mathcal{C}\left(X_{k}\right)=$ symplectic cone:

$$
\left\{\alpha \in H^{2}\left(X_{k} ; \mathbb{R}\right) \mid \alpha^{2}>0 \text { and } \alpha(E)>0 \text { for all } E \in \mathcal{E}\left(X_{k}\right)\right\}
$$

$\overline{\mathcal{P}_{+}^{k}}=$ positive cone:

$$
\left\{(\mu ; \mathbf{a}) \in \mathbb{R}^{1+k} \mid \mu, a_{1}, \ldots, a_{k} \geqslant 0,\|\mathbf{a}\| \leqslant \mu\right\}
$$

$\mathcal{R}=$ reduced vectors
Then $\mathcal{R} \subset \overline{\mathcal{C}\left(X_{k}\right)} \subset \overline{\mathcal{P}_{+}^{k}}$

