The many forms of rigidity for symplectic
embeddings

based on work of Dan Cristofaro-Gardiner, Michael Entov, David
Frenkel, Janko Latschev, Dusa McDuff, Dorothee Miiller, FS,
Misha Verbitsky




The problems

1. E(1,a) < Z*(A)
2. E(1,a) < CHA)

3. E(1,a) <> P(A,bA), beN

4. E(1,a) S T4(A)




The problems

1. E(1,a) < Z*(A)
2. E(1,a) < CHA)
3. E(1,a) <> P(A,bA), beN
4. E(1,a) < T4(A)

where:

2 2
E(a, b) = {(21,22) eC?| ”'Z;‘ + ”22’ < 1}

can assume: b=1, a>1



and :
Z*(A) = D(A) x
C*(A) = P(A, )
P(A,bA) = D(A) x D(bA)
T*(A) = T2(A) x T?(A)

moment map images (under (z1, z2) — (7|z1|?, 7|22|?)) :



The answers




The answers

1. Gromov 1985: E(1,a) <> Z*(A)iff A> 1

renee ces(a) = inf{A | E(1,2) z4(A)}

1

TOTAL symplectic rigidity, NO structure



To get “some structure”, truncate!




To get “some structure”, truncate!

First: Truncate all down to C*(A):

ala) = inf{A\E(l,a)é c4(A)}

\/g (Volume constraint)

WV



2. Frenkel-Miiller 2014, based on McDuff-S 2012:
ci(a) starts with the Pell stairs :

Pell numbers: Py=0 P1=1 P,=2P,_1+ Pp

HC Pell numbers: Ho=1, Hi =1, H,=2H,_1 + H,—>




2. Frenkel-Miiller 2014, based on McDuff-S 2012:

ci(a) starts with the Pell stairs :

Pell numbers: Po=0 P1=1 P,=2P,_1+ Pr_>
HC Pell numbers: Ho=1, Hi =1, H,=2H,_1 + H,—>

Form the sequence

(717727’)/37"‘) 07 TID]_ 2P3

- (&
- (3 ;g,...)

where 0 = /2 + 1 the silver ratio

P1 H> 3 Ha )

Sl



An application:

Biran 1996:
k|11 2 3 4 5 6 7 >8
1 2 8 9 48 224
Pz 1 3 5 15 29 235 1

where p, = percentage of volume of [0, 1]* C R* that can be
symplectically filled by k disjoint equal balls

What are these numbers?



The function ¢; explains Biran’s list:

::mf{ ]_[84 1) < CHA )}

k-1
Since pyx = 22 his list becomes
k
k|1 2 3 45 6 7 >8
3 3 5 7 15 k
d |l 1 5 5 3 7 % 3

and (McDuff 2009): dix = ci(k), ie

[1B% (1) & CHA) <= E(1.k) < CY(A)




Hence: It was worthwhile to elongate the domain:
B*(1) ~ E(1, a)

Now: Also elongate the target:

C*HA) =P(AA) ~ P(A bA), b>1




Hence: It was worthwhile to elongate the domain:
B*(1) ~ E(1, a)
Now: Also elongate the target:
C*HA) =P(AA) ~ P(A bA), b>1
Fora,b>1
. S
cb(3) = .nf{A | E(L,a) <> P(A, bA)}
1-parametric family of problems
a

Volume constraint: cp(a) > T



3. Cristofaro—Gardiner, Frenkel, S 2016 c;(a) is given by ...
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So: fine structure of symplectic rigidity in ¢;
first disappears (as b — 2), then reappears (as b — o0)




3. Cristofaro—Gardiner, Frenkel, S 2016 c;(a) is given by ...

So: fine structure of symplectic rigidity in ¢;
first disappears (as b — 2), then reappears (as b — o0)
Remarks

1. “The same” holds true for b € R>> (no proof)

2. The first two linear steps, and the affine step of the Pell stairs
are stable, the other steps disappear

Open problem: How does the Pell stairs disappear?
Understand cj.



4. E(1,a) < THA) :
Note: C*(A) compactifies to both S?(A) x S?(A) and T*(A)

Fact: c1(a) = inf {A | E(1,2) S c4(A)}
— inf {A | E(1,2) < S2(A) x 52(A)}




4. E(1,a) < THA) :
Note: C*(A) compactifies to both S?(A) x S?(A) and T*(A)
Fact: ¢i(a) = inf {A | E(1,a) < C4(A)}

— inf {A | E(L, a) < S2(A) x 52(A)}
On the other hand (Latschev—McDuff-S, Entov—Verbitsky 2014):
E(1,a) <> T*(A) whenever Vol E(1,a)< Vol T*(A)

(“Total flexibility")



But:

e It is unkown wether Emb(E(1, a), T*(A)) is connected
(hence <)

e Hidden rigidity (Biran): Assume that
p: BYa) > TH1),  VolB*a) =3,
¥: [L,BYb) <> THA),  Vol[[,B*(b) = 2.

Then Im C Im ¢ is impossible (by Gromov's 2-ball theorem)



|deas of the proof




|deas of the proof

Common ingredient:

from §4(a) N (M*, w) get symplectic form w, on the blow-up

7TZM1—>M

in class m*w] — ae

e = PD(E), E = [2]




|deas of the proof

Common ingredient:
from §4(a) N (M*, w) get symplectic form w, on the blow-up

7TZM1—>M

in class m*w] — ae

e = PD(E), E = [2]

Conversely: If 7*[w] — ae has a symplectic representative,
non-degenerate along X,
then can “blow-down”, get B*(a) <5 (M, w>)



E(1,2) < CH(1+¢) (ILB*(1) < C*(1+¢) easy!)




E(1,2) < CH(1+¢) (ILB*(1) < C*(1+¢) easy!)

omit &,0 ...
compactify C*(1) = D(1) x D(1) to M = S2(1) x S?(1)
A = {(z,2)} € §% x S2 : holomorphic




E(1,2) < CH(1+¢) (ILB*(1) < C*(1+¢) easy!)
omit &,0 ...

compactify C*(1) = D(1) x D(1) to M = S2(1) x S?(1)

A = {(z,2)} € §% x S2 : holomorphic

blow-up M twice “at the right points” by size A = %

get holomorphic sphere A, C My in class

[A2] =51+ S —E1— E

and a chain of spheres C; U C; “bounding” E(A,2X)

and a symplectic form w) in class

[wr] = s1+ 5 — Ae1 + )



Wish to “inflate” the form
wy in [wy] = s1+5— Ae1 + &)

to
wi in [w1] = s1+ s — (e1 + &)

Inflation along e; + e is impossible, but can inflate along

PD(A2) =S +S—€e —6e:




Wish to “inflate” the form
wy in [wy] = s1+5— Ae1 + &)

to
wi in [w1] = s1+ s — (e1 + &)

Inflation along e; + e is impossible, but can inflate along
PD(A2) = s1i+sx—e1— e
¥V 7 > 0 there exists a symplectic form €, in class
[wa] + 7PD[A2] = (1+7)(s1+s2)—(A+7)(e1 + &)

Get E(A+7,2 ( )) CH1+7)
Hence E(1, 2) — C (11' )



E(1,2) < T4(1)
Cannot do inflation, since there are no J-curves to inflate along

But: Use existence of Kahler forms on blow-ups

(much stronger than Nakai—Moishezon in the algebraic case)




E(1,2) < T4(1)
Cannot do inflation, since there are no J-curves to inflate along
But: Use existence of Kahler forms on blow-ups

(much stronger than Nakai—Moishezon in the algebraic case)

(M, J) Kahler

H}’I(M; IR): classes represented by J-invariant closed 2-forms
candidates for Kahler classes: Ci‘l(M./ J) =

{a e HYY(M;R) | a™([V]) > 0 ¥ complex subv. V™ C (M, J)}



Demailly—Paun 2004 The Kahler cone of (M, J) is one of the
connected components of Ci’l(M, J)




Demailly—Paun 2004 The Kahler cone of (M, J) is one of the
connected components of Ci’l(M, J)

Hence: E(1,2) <» T*(1,1+¢) (for ¢ irrational)
since there is a Kahler J without J-curves
(positivity on exceptional divisors and on M, clear)
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connected components of Ci’l(l\/l, J)

Hence: E(1,2) <» T*(1,1+¢) (for ¢ irrational)
since there is a Kahler J without J-curves
(positivity on exceptional divisors and on M, clear)

For T*(1,1) use approximation of (T* w, /) by J close to /
without J-curves
Kahler for some w, with [w,] close to [w] (Kodaira—Spencer)




Demailly—Paun 2004 The Kahler cone of (M, J) is one of the
connected components of Ci’l(l\/l, J)

Hence: E(1,2) <» T*(1,1+¢) (for ¢ irrational)
since there is a Kahler J without J-curves
(positivity on exceptional divisors and on M, clear)

For T*(1,1) use approximation of (T* w, /) by J close to /
without J-curves
Kahler for some w, with [w,] close to [w] (Kodaira—Spencer)

“Yesterday": Entov—Verbitsky proved flexibility of ellipsoid
packings of Kahler tori in all dimensions

by directly blowing-up E(ay, ..., as) (aj relatively prime) and
resolving the cyclic singularities (Hironaka)






Can assume a€ Q

weight sequence




Can assume a€ Q

weight sequence

Examples:

w3) = (1,1,1), w (2) _ (1,




B(w(a)) :=11; B(w;) (with multiplicities)




B(w(a)) :=11; B(w;) (with multiplicities)

McDuff, Frenkel-Miiller:

S

E(l,a) < P(A\Ab) <

B(w(a)) [T B[] B(Ab) < B(A(b+1))




Use three methods!
Method 1: obstructive classes

Method 2: dual version: reduction “at a point”

Method 3: ECH capacities




Method 1: McDuff, Polterovich, Biran, Li—Lu:

E(1,a) < P(A\,\b) <

(i) A= volume constraint

2
2b




Method 1: McDuff, Polterovich, Biran, Li—Lu:

E(1,a) < P(A\,\b) <

(i) A= 1/2%) volume constraint

(m, w(a))
d + be

S omi=2d+e)—1, > mi=2de+1

i

(i) A= for all solutions (d, e; m) € N3 of

constraint from J-spheres



For b > 2 all obstructions come from

E, = (n,1;17Cnt1) (linear steps)

Fo = (n(n+1),n+1;n+1, nX(2"+3))

(affine step)




Method 3:

Hutchings, McDuff:

ECH capacities are complete invariants for our problem:

E(a,b) < E(c,d) <= c(E(a. b)) < ck(E(c,d)) forall k




Method 3:

Hutchings, McDuff:

ECH capacities are complete invariants for our problem:

E(a,b) < E(c,d) <= c(E(a. b)) < ck(E(c,d)) forall k
In particular

E(1,a) S P(\Ab) <= c(E(1,a)) < Ac(E(1.2b))  for all k



Method 2: reduction at a point

(w;a1,...,ak) € R1K ordered if a; > --- > ay
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Method 2: reduction at a point

(w;a1,...,ak) € R1K ordered if a; > --- > ay

defect of an ordered vector (y;@): 6 = p— (a1 + a» + a3)
(14; @) ordered is reduced if 6 > 0 and a; > 0
Cremona transform Cr: Rtk — Rtk

(1;@) = (pu+0; a1+9, ax+6, a3+0, a4, ..., ax)



Method 2: reduction at a point

(w;a1,...,ak) € R1K ordered if a; > --- > ay

defect of an ordered vector (y;@): 6 = p— (a1 + a» + a3)
(14; @) ordered is reduced if 6 > 0 and a; > 0
Cremona transform Cr: Rtk — Rtk

(1;@) = (pu+0; a1+9, ax+6, a3+0, a4, ..., ax)

Cremona move: reorder o Cr



Tian-Jun Li, Buse—Pinsonnault:

E(1,a) < P(A\Ab) <

(A(b+1); Ab, A\, w(a)) reduces under finitely many Cremona
moves to a reduced vector




Tian-Jun Li, Buse—Pinsonnault:

E(1,a) < P(A\Ab) <

(A(b+1); Ab, A\, w(a)) reduces under finitely many Cremona
moves to a reduced vector

Dynamical interpretation:



Xi = blow up of CP? in k points
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E(Xk) = exceptional classes E € Ha(Xk; Z) with ¢1(E) =1 and
E - E = —1 that can be represented by smoothly embedded spheres




Xi = blow up of CP? in k points

E(Xk) = exceptional classes E € Ha(Xk; Z) with ¢1(E) =1 and
E - E = —1 that can be represented by smoothly embedded spheres

C(Xx) = symplectic cone:

{a € H¥(Xi;R) | o® > 0 and «(E) > 0 for all E € £(Xk)}




Xi = blow up of CP? in k points

E(Xk) = exceptional classes E € Ha(Xk; Z) with ¢1(E) =1 and
E - E = —1 that can be represented by smoothly embedded spheres

C(Xx) = symplectic cone:
{a € H¥(Xi;R) | o® > 0 and «(E) > 0 for all E € £(Xk)}

Pi = positive cone:

{(m:a) e RM* | a1, 4 2 0, [|a]| < pu}




Xi = blow up of CP? in k points

E(Xk) = exceptional classes E € Ha(Xk; Z) with ¢1(E) =1 and
E - E = —1 that can be represented by smoothly embedded spheres

C(Xx) = symplectic cone:
{a € H¥(Xi;R) | o® > 0 and «(E) > 0 for all E € £(Xk)}

ﬂ = positive cone:
{(r:a) e R | p,a,..., 4 >0, |la < p}
R = reduced vectors

Then R C C(Xx) C Pk



