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Wave operators

Let V real-valued potential in Rd , bounded, sufficiently decaying,
H := −∆ + V , H0 := −∆. Define

W± := lim
t→∓∞

e itHe−itH0

Exists in the strong L2-sense: d ≥ 3, f ∈ L1 ∩ L2(Rd), V ∈ L2:

W±f = f − i

∫ ∞
0

e itHVe−itH0f dt∫ ∞
1

∥∥e itHVe−itH0f
∥∥

2
dt ≤

∫ ∞
1
‖V ‖2‖e−itH0f ‖∞ dt

. ‖V ‖2

∫ ∞
1

t−
d
2 ‖f ‖1 dt <∞

Unitarity of evolution, density of L1 ∩ L2(Rd) in L2 shows limit
exists for all f ∈ L2 and W± are isometries.
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Intertwining property of wave operators

f (H)W± = W±f (H0), or

f (H)P = f (H)W±W
∗
± = W±f (H0)W ∗

±,

with P orthogonal projection onto Ran(W±). Easy to see:
Ran(W±) ⊥ L2

pp (eigenfunctions of H).

Asymptotic completeness: Ran(W±) = L2
ac(Rd), L2

sc = {0}.
Agmon-Kato-Kuroda theory 1960s, early 70s: |V (x)| . 〈x〉−1−ε

guarantees this, and no embedded eigenvalues in the continuous
spectrum [0,∞). Short range condition.

Based on trace lemma: ‖f̂ � S‖L2(S) ≤ C‖〈x〉σf ‖L2(Rd ), σ > 1
2 ,

where S ⊂ Rd compact hyper-surface (reduces to the case of a
plane). Define restriction operator ρf := f̂ � S . Then ρ∗g = ĝσS ,
ρ∗ρ f = σ̂S ∗ f .

Weighted L2 bound: ‖wρ∗ρw f ‖2 ≤ C (S)‖f ‖2, w(x) = 〈x〉−
1
2
−ε.
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Limiting Absorption Principle

Same bound holds for the imaginary parts of the free resolvents

[(−∆− (λ2 + i0))−1 − (−∆− (λ2 − i0))−1]f = cλ−1σ̂λSd−1 ∗ f

For the full resolvent still true, Limiting Absorption Principle:

‖w(−∆− (λ2 + i0))−1w f ‖2 ≤ C (λ)‖f ‖2, w(x) = 〈x〉−
1
2
−ε

C (λ)→ 0 as λ→∞. Resolvent identity:

R(λ) = (H − (λ2 + i0))−1 = R0(λ) + R0(λ)VR(λ) =

= ... = R0(λ) + R0(λ)VR0(λ) + R0(λ)VR0(λ)VR0(λ) + . . .

If V short range, small: R(λ) inherits the limiting absorption

principle. Split V = |V |
1
2 sign(V )|V |

1
2 = |V |

1
2 U.

Large V : R(λ) = R0(λ) + R0(λ)|V |
1
2 (I − UR0(λ)|V |

1
2 )−1UR0(λ).
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Resolvent and Fourier restriction

Inverse (I − UR0(λ)|V |
1
2 )−1 : L2 → L2 exists for λ > 0 (absence

of embedded resonances and eigenvalues). For λ = 0 inverse
might not exist: zero energy eigenvalue or resonance.
Stein-Tomas in place of trace lemma: If S has nonzero Gaussian
curvature, then

‖f̂ � S‖L2(S) ≤ C‖f ‖Lpd (Rd ), pd = (2d + 2)/(d + 3)

Kenig-Ruiz-Sogge 87 established corresponding bound for R0(λ):

‖(−∆− (λ2 + i0))−1‖
Lpd (Rd )→L

p′
d (Rd )

≤ C λ−
2

d+1

Agmon-Kato-Kuroda theory in this setting:

Mq(f )(x) :=
[ ∫
|y |≤1/2

|f (x + y)|q dy
] 1

q
, q = max(

d

2
, 1+)

‖V ‖Y :=
∞∑
j=0

2j‖V ‖L∞(Dj ) <∞, MqV ∈ L
d+1

2 (Rd) (?)
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Agmon-Kato-Kuroda via restriction theory

Theorem (Ionescu-S., 2004): V real-valued, V = V1 + V2 with
constituents satisfying either of conditions in (?), σac = [0,∞), no
singular continuous spectrum, pure point spectrum lies in (−∞, 0],
discrete in (−∞, 0), eigenfunctions decay rapidly, wave operators
W± exist and complete. Suitable limiting absorption principle
holds.

Magnetic potentials also admissible for this theorem. Goldberg-S.

(2003): Stein-Tomas type limiting absorption principle for L
d
2

potentials d = 3; Ionescu-Jerison (2001): absence of embedded

eigenvalues for L
d
2 potentials; Koch-Tataru 2005: absence of

embedded evals under (?).

Condition M d
2
V ∈ L

d+1
2 (Rd) weaker than V ∈ L

d
2 (Rd) and sharp

for d ≥ 3. Ionescu-Jerison example V ∈ Lp(Rd), p > d+1
2 with

embedded evals, anisotropic decay |V (x)| ' (1 + |x1|+ |x ′|2)−1

W. S. Structure theorems for intertwining operators



Intertwining operators for random potentials

Let Hω = −∆Zd + Vω, Vω(n) = ωn〈n〉−α, ωn = ±1 iid random.

Theorem (Bourgain, 2001): d = 2, α > 1
2 , τ > 0, and

I ⊂ [−4 + τ,−τ ] ∪ [τ, 4− τ ]. Then a.s. wave operators, restricted
spectrally to I , i.e., W±(Hω,H0)E0(I ), W±(H0,Hω)Eω(I ) exist
and are complete.
Relies on resolvent expansion, estimate (S.-Shubin-Wolff 2000)

‖ρ2Vωχ[|n|'N]ρ
∗
1‖L2(S1)→L2(S2) . N

1
2
−α+ (†)

which high probability, S1,S2 curves in the plane. Bourgain’s
proof of (†) applies in any dimension, does not require curvature of
S1, S2, uses dual Sudakov entropy bound in Banach spaces.

analogy with trace lemma

randomness reduces decay in deterministic theory by 1
2 power.
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Fourier restriction and random decaying potentials

Stein-Tomas in R2 combined with Bourgain’s method yields same
result for Vω(n) = ωn vn, v ∈ wε `

3(Z2), wε(n) = 〈n〉−ε.
Gap between point wise decay of 〈n〉−

1
2 and `3(Z2). Intrinsic

problem with the key bound

‖ρ2Vωχ[|n|'N]ρ
∗
1‖L2(S1)→L2(S2) . 1

with high probability. TT ∗ on the left-hand side yields

E‖ρ2Vωχ[|n|'N]ρ
∗
1‖2

L2(S1)→L2(S2)

= E‖ρ2Vωχ[|n|'N]ρ
∗
1ρ1Vωχ[|n|'N]ρ

∗
2‖L2(S2)→L2(S2)

≥ max
‖f ‖L2(S2)=1

E〈Vωχ[|n|'N]ρ
∗
1ρ1Vωχ[|n|'N]ρ

∗
2f , ρ

∗
2f 〉

= max
‖f ‖L2(S2)=1

∑
[|n|'N]

σ̂S1(0) v2
n |F (n)|2
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Renormalizing random decaying potentials

Let f be Knapp example. Then v ∈ `3 supported on a N ×
√
N

rectangle saturates the right-hand side.

“Renormalize” away self-energy interactions: Vω  Vω + W with
non-random “correction” Wn = v2

nR0(E + i0).

Likely that Born-expansion can be controlled at energy E via sharp
restriction in the plane (Carleson-Sjölin/Zygmund L4 bound).

Consequences for a.c. spectrum of Hω without correction W .

Remove W after the fact? Problem here W just a little better
than L2(Z2).
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Yajima’s Lp theory for the intertwining operator

In the 1990s Kenji Yajima showed that W± : Lp(Rd)→ Rd(Rd),
1 ≤ p ≤ ∞, d ≥ 3, and 1 < p <∞, d = 1, 2. He needed to
assume enough decay (and regularity in d ≥ 4), and no zero energy
eigenvalue/resonance. In dim=3 he needed |V (x)| ≤ 〈x〉−5−ε. If
zero energy singular, then 3/2 < p < 3, |V (x)| ≤ 〈x〉−6−ε.

Corollary: dispersive estimates for e itω(H)Pc(H) from those for
e itω(H0) via

e itω(H)Pc(H) = We itω(H0)W ∗

Importance of 0 energy condition implied by this, too. For
example, in dim=3∥∥e itH f ∥∥∞ ≤ ‖W ‖2

∞→∞ Ct−
3
2 ‖f ‖1, f ⊥ bound states

Possible issues: (i) strong assumptions on potential (ii) in some
nonlinear applications 0 energy singularities do arise.
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Yajima’s proof, expansion of the wave operators
Iterate Duhamel with f ∈ L2:

Wf = f + W1f + . . .+ Wnf + . . . ,

W1f = i

∫
t>0

e−it∆Ve it∆f dt, . . .

Wnf = in
∫
t>s1>...>sn−1>0

e−i(t−s1)∆Ve−i(s1−s2)∆V . . .

e−isn−1∆Ve it∆f dt ds1 . . . dsn−1

Keel-Tao Strichartz endpoint (in R3)

‖e itH0f ‖
L2
tL

6,2
x
. ‖f ‖L2∥∥∥∫

R
e−isH0F (s) ds

∥∥∥
L2
x

. ‖F‖
L2
tL

6/5,2
x

,

V : L6,2
x (R3)→ L

6/5,2
x (R3), V ∈ L3,∞(R3)

Dyson series converges in L2 if ‖V ‖3/2 � 1.
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Representations of the summands Wn

V , f , g Schwartz functions, ε > 0:

〈W ε
n f , g〉 =

(−1)n

(2π)3

∫
R3(n+1)

∏n
`=1 V̂ (ξ` − ξ`−1) dξ1 . . . dξn−1∏n

`=1(|η + ξ`|2 − |η|2 + iε)
f̂ (η)ĝ(η + ξn) dη dξn

〈W ε
1+f , g〉 = − 1

(2π)3

∫
R6

V̂ (ξ)

|η + ξ|2 − |η|2 + iε
f̂ (η)ĝ(η + ξ) dη dξ

=

∫
R6

K ε
1 (x , x − y)f (y) dy g(x) dx

K ε
1 (x , z) = c |z |−2

∫ ∞
0

e−isẑ·(x−z/2)V̂ (−sẑ)e−ε
|z|
2s s ds, ẑ = z/|z |

K1(x , z) = c |z |−2L(|z | − 2x · ẑ , ẑ), L(r , ω) =

∫ ∞
0

V̂ (−sẑ)e i
rs
2 s ds
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The structure of W1 in R3

Sωx := x − 2(ω · x)ω reflection about plane ω⊥.

(W1f )(x) =

∫ ∞
0

∫
S2

L(r − 2ω · x , ω)f (x − rω) drdω

=

∫
S2

∫
R
1[r>−2ω·x]L(r , ω)f (Sωx − rω) drdω

=

∫
S2

∫
R3

g1(x , dy , ω)f (Sωx − y) dω

Therefore, with H1
`ω

Hausdorff measure on line along ω

g1(x , dy , ω) := 1[(y+2x)·ω>0]L(y · ω, ω)H1
`ω(dy)∫

S2

‖g1(x , dy , ω)‖MyL∞x dω ≤
∫
S2

∫
R
|L(r , ω)| drdω =: ‖L‖

‖W1f ‖p ≤ ‖L‖‖f ‖p
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Bounding L
Define

‖f ‖Bβ := ‖1[|x |≤1]f ‖2 +
∞∑
j=0

2jβ
∥∥1[2j≤|x |≤2j+1]f

∥∥
2
<∞

Then Ḃ
1
2 ↪→ L

3
2
,1(R3), Ḃ1 ↪→ L

6
5
,1(R3), and

‖L(r , ω)‖L2
r,ω
. ‖V ‖L2

‖L(r , ω)‖L1
r,ω
.
∑
k∈Z

2k/2‖1[2k ,2k+1](|r |)L(r , ω)‖L2
r,ω
. ‖V ‖

Ḃ
1
2
. ‖V ‖

B
1
2

Yajima showed for small potentials that ‖V ‖B1+ε � 1 implies

‖Wnf ‖p ≤ Cn‖V ‖nB1+ε ‖f ‖p

which can be summed. For large potentials he incurred significant
losses by terminating the expansion through the last term which
contains perturbed evolution.
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Structure Theorem I

Theorem (Beceanu-S. 16)

V ∈ B1+ real-valued, zero energy regular for H = −∆ + V . There
exists g(x , dy , ω) ∈ L1

ωMyL
∞
x with∫

S2

‖g(x , dy , ω)‖MyL∞x dω <∞

(W+f )(x) = f (x) +

∫
S2

∫
R3

g(x , dy , ω)f (Sωx − y) dω.

X Banach space of measurable functions on R3, invariant under
translations and reflections, Schwartz functions are dense (or dense
in Y with X = Y ∗). Assume ‖1H f ‖X ≤ A‖f ‖X for all half spaces
H ⊂ R3 and f ∈ X with some uniform constant A. Then

‖W+f ‖X ≤ AC (V )‖f ‖X ∀ f ∈ X

where C (V ) is a constant depending on V alone.
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Structure Theorem II

Theorem (Beceanu-S. 16)

V ∈ B1+2γ , 0 < γ, with 0 energy hypothesis. Then∫
S2

‖g(x , dy , ω)‖MyL∞x dω ≤ C0(1 + ‖V ‖B1+2γ )38+ 105
γ (1 + M0)4+ 3

γ

sup
η∈R3

sup
ε>0

∥∥(I + R0(|η|2 ± iε)V
)−1∥∥

∞→∞ =: M0 <∞

C0 absolute constant.

0 energy regular means that ‖
(
I + (−∆)−1V

)−1∥∥
∞→∞ <∞.

would be desirable to bound M0 through this and size of V is
some sense. Control of M0 is not effective. See
Rodnianski-Tao 2015, effective limiting absorption principles.

Fall short by 1
2 of scaling invariant class Ḃ

1
2 . First theorem

also works in B1, but lose quantitative control there.
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Wiener algebra and inversion

We cannot sum the Dyson series. Instead we use Beceanu’s
operator-valued Wiener formalism. Recall classical Wiener theorem:

Proposition

Let f ∈ L1(Rd). There exists g ∈ L1(Rd) with

(1 + f̂ )(1 + ĝ) = 1 on Rd (1)

iff 1 + f̂ 6= 0 everywhere. Equivalently, there exists g ∈ L1(Rd) so
that

(δ0 + f ) ∗ (δ0 + g) = δ0 (2)

iff 1 + f̂ 6= 0 everywhere on Rd . The function g is unique.

Two critical features (compactness as in Arzela-Ascoli):

uniform L1-modulus of continuity under translation.

vanishing at ∞ in L1 sense.
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An operator-valued version

X Banach space, WX algebra of bounded linear maps
T : X → L1(R;X ) with convolution

S ∗ T (ρ)f =

∫
R
S(ρ− σ)T (σ)f dσ

Adjoin unit, denote larger algebra W̃X . Fourier transform satisfies

sup
λ
‖T̂ (λ)‖B(X ) ≤ ‖T‖WX

Theorem (Beceanu 2009, Beceanu-Goldberg 2010)

Suppose T ∈ WX satisfies

1 lim
δ→0
‖T (ρ)− T (ρ− δ)‖WX

= 0.

2 lim
R→∞

‖Tχ|ρ|≥R‖WX
= 0.

If I + T̂ (λ) invertible in B(X ) for all λ, then 1 + T possesses an

inverse in W̃X of the form 1 + S .
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Wiener algebra and resolvents

Set R−0 (λ2)(x) = (4π|x |)−1e−iλ|x |, T̂−(λ) = VR−0 (λ2). Then

T−(ρ)f (x) = (4πρ)−1V (x)

∫
|x−y |=ρ

f (y) dy (3)

and thus∫
R3

∫
R
|T−(ρ)f (x)| dx dρ ≤ 1

4π

∫
R3

∫
R3

|V (x)|
|x − y |

|f (y)| dy dx

≤ 1

4π
‖V ‖K‖f ‖1.

where ‖V ‖K = ‖|x |−1 ∗ |V |‖∞. Algebra is WL1 , pointwise
invertibility condition on Fourier side:

(I + VR−0 (λ2))−1 ∈ B(L1)

Spectral theory/zero energy assumption. Beceanu-Goldberg thus
prove dispersive estimates for Schrödinger in R3 for ‖V ‖K <∞.

W. S. Structure theorems for intertwining operators



Algebra for intertwining operators

The formulas for Wn suggest using three-variable kernels. Set

Z := {T (x0, x1, y) ∈ S ′(R9) | FyT (x0, x1, η) ∈ L∞η L∞x1
L1
x0
}

‖T‖Z := sup
η∈R3

‖FyT (x0, x1, η)‖L∞x1
L1
x0

Operation ~ on T1,T2 ∈ Z

(T1 ~ T2)(x0, x2, y) = F−1
η

[ ∫
R3

FyT1(x0, x1, η)FyT2(x1, x2, η) dx1

]
(y)

Seminormed space V−1B defined as

V−1B = {f measurable | V (x)f (x) ∈ Bσ}

with the seminorm ‖f ‖V−1B := ‖Vf ‖Bσ . Set Xx ,y := L1
yV
−1Bx .

Then L1
yL
∞
x dense in Xx ,y .
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Xx ,y and Y spaces

Let Y be the space (algebra under ~) of three-variable kernels

Y :=
{
T (x0, x1, y) ∈ Z | ∀f ∈ L∞

(fT )(x1, y) :=

∫
R3

f (x0)T (x0, x1, y) dx0 ∈ Xx1,y

}
,

with norm

‖T‖Y := ‖T‖Z + ‖T‖B(V−1Bx0 ,Xx1,y )

For X ∈ L1
yL
∞
x , define contraction of T ∈ Y by X to be

(XT )(x , y) :=

∫
R6

X(x0, y0)T (x0, x , y − y0) dx0 dy0.

Then XT ∈ Xx ,y , ‖XT‖X ≤ ‖T‖Y ‖X‖X . This turns Y into an
algebra.
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Y and Wn

Reason behind these structures: define

FyT
ε
1+(x0, x1, η) = e−ix1η R0(|η|2 − iε)(x0, x1)V (x0) e ix0η

T ε
2+ = T ε

1+ ~ T ε
1+, T

ε
3+ = T ε

2+ ~ T ε
1+ etc.

Then

〈W ε
n+f , g〉 =

(−1)n

(2π)3

∫
R6

F−1
x0
Fxn,yT

ε
n+(0, ξn, η)f̂ (η)ĝ(η + ξn) dη dξn

= (−1)n
∫
R9

F−1
x0

T ε
n+(0, x , y)f (x − y)g(x) dy dx .

as well as

〈W ε
+f , g〉

= 〈f , g〉 − 1

(2π)3

∫
R6

F−1
x0
Fx1,yT

ε
+(0, ξ1, η)f̂ (η)ĝ(η + ξ1) dη dξn

= 〈f , g〉 −
∫
R9

F−1
x0

T ε
+(0, x , y)f (x − y)g(x) dy dx .
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Key invertibility problem

Here

FyT
ε
±(x0, x1, η) := e ix0η

(
RV (|η|2 ∓ iε)V

)
(x0, x1)e−ix1η

T ε
1+,T

ε
+ ∈ Z and resolvent identity reads as follows:

(I + T ε
1+)~ (I − T ε

+) = (I − T ε
+)~ (I + T ε

1+) = I

We need to invert this in the smaller algebra Y , otherwise too
little control of wave operators.

If I + T ε
1+ is invertible in Y , hence in Z , its inverse is I −T ε

+ both
in Z and in Y , hence we obtain that T ε

+ ∈ Y uniformly in ε > 0.
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Small potentials in B1+

Define Y with σ ≥ 1
2 fixed. Then

sup
ε>0
‖T ε

1+‖Y . ‖V ‖B 1
2 +σ whence by induction

sup
ε>0
‖T ε

n+‖Y ≤ Cn‖V ‖n
B

1
2 +σ

for all n ≥ 1

and

(Wn+f )(x) =

∫
S2

∫
R3

g εn(x , dy , ω)f (Sωx − y) dω

where for fixed x ∈ R3, ω ∈ S2 the expression g εn(x , ·, ω) is a
measure satisfying

sup
ε>0

∫
S2

‖g εn(x , dy , ω)‖MyL∞x dω ≤ Cn‖V ‖n
B

1
2 +σ
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Recursive definition of the structure functions

Identifying operator W ε
n+ with its kernel one has

W ε
n+ = (−1)n1R3T ε

n+ = (−1)n1R3(T ε
(n−1)+ ~ T ε

1+)

= −((−1)n−1
1R3T ε

(n−1)+)T ε
1+ = −W ε

(n−1)+T
ε
1+

Second line: contraction of a kernel in Y by an element of X .
Thus

sup
ε>0
‖W ε

n+‖X ≤ ‖1R3‖V−1B sup
ε>0
‖T ε

n+‖Y ≤ Cn‖V ‖n+1

B
1
2 +σ (4)

and with f εy ′(x
′) = W ε

(n−1)+(x ′, y ′) we have

g εn(x , dy , ω) :=

∫
R3

g ε1,f ε
y′

(x , d(y − Sωy
′), ω) dy ′

and g ε1,f ε
y′

is the structure function for the potential f εy ′V .
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Wiener theorem in Y

Proposition

V ∈ Bσ with 1
2 ≤ σ < 1, define Y with this σ,V . Suppose S ∈ Y

satisfies, for some N ≥ 1

lim
ε→0
‖ε−3χ(·/ε) ∗ SN − SN‖Y = 0

lim
L→∞

‖(1− χ̂(y/L))S(y)‖Y = 0

Assume I + Ŝ(η) has inverse in B(L∞) of the form
(I + Ŝ(η))−1 = I + U(η), with U(η) ∈ FY for all η ∈ R3, and
uniformly so, i.e.,

sup
η∈R3

‖U(η)‖FY <∞

Finally, suppose η 7→ Ŝ(η) is uniformly continuous R3 → B(L∞).
Then I + S is invertible in Y under ~.
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A scaling invariant condition

Schwartz V , set |||V ||| := ‖LV ‖L1
t,ω

. Recall

LV (t, ω) =

∫ ∞
0

V̂ (−τω)e
i
2
tτ τ dτ

For any Schwartz function v in R3

‖v‖B := sup
Π

∫ ∞
−∞
|||δΠ(t) v(x)||| dt

where Π is a 2-dimensional plane through the origin, and
Π(t) = Π + t ~N, ~N being the unit norm to Π. Then

‖v‖B . sup
ω∈S2

∫ ∞
−∞

∑
k∈Z

2
k
2

∥∥ψ(2−kx ′)v(x ′ + sω)‖
Ḣ

1
2 (ω⊥)

ds

This is finite on Schwartz functions.
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A scaling theorem for small potentials

Theorem (Beceanu-S. 17)

There exists c0 > 0 so that for any real-valued V with
‖V ‖B + ‖V ‖

Ḃ
1
2
≤ c0, there exists g(x , y , ω) ∈ L1

ωMyL
∞
x with∫

S2

‖g(x , dy , ω)‖MyL∞x dω . c0

such that for any f ∈ L2 one has the representation formula

(W+f )(x) = f (x) +

∫
S2

∫
R3

g(x , dy , ω)f (Sωx − y) dω.

No theorem for large scaling invariant potentials yet. Requires
redoing all the spectral theory in this new norm.
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