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The notion of a linear cocycle

Given

an ergodic system (X ,µ, T );

a measurable function A : X → Mat(m,R),
we call linear cocycle the skew-product map
F : X × Rm → X × Rm defined by

F (x, v) = (Tx, A(x)v) .

This map defines a new dynamical system on the
bundled space X × Rm , and its iterates are
Fn(x, v) = (Tnx, A(n)(x)v), where

A(n)(x) := A(Tn−1x) · . . . · A(Tx) · A(x) .

We usually fix the base dynamics T and identify the
cocycle F with the function A defining its fiber action.
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Example: random (i.i.d.) cocycles

� Base dynamics: (X ,µ, T ) is a Bernoulli shift i.e.
given a probability space of symbols (Σ,ν), we put

X = ΣZ,
µ = νZ and
if x = {xk}k∈Z ∈ X then Tx = {xk+1}k∈Z.

� Fiber action: A : X → GL(m,R) locally constant i.e.
it only depends on the zeroth coordinate:
If x = {xk}k∈Z, then A(x) = Â(x0) for some
measurable map Â : Σ→ GL(m, R).

Related example: Markov cocycles.



Example: quasi-periodic cocycles

� Base dynamics: (X ,µ, T ) is a torus translation
X = Td = (R/Z)d (d = 1 or d > 1),
µ = Haar measure and
Tx = x +ω for some ergodic translation ω ∈ Td.

� Fiber action: A : Td → Mat(m,R) real analytic
hence holomorphic in a neighborhood of the torus.

Other examples: cocycles over a skew-translation or
over the doubling map or over a hyperbolic toral
automorphism.



The Schrödinger cocycle

Given an ergodic system (X ,µ, T ), an observable
f : X → R determines the one-parameter family of
linear cocycles (T , AE), where AE : X → SL(2,R),

AE(x) :=

[
f (x) − E −1

1 0

]
.

AE is called a Schrödinger cocycle as it is related to
the discrete Schrödinger operator with dynamically
defined potential H(x) : `2(Z)→ `2(Z),

[H(x)ψ]n = −(ψn+1 +ψn−1) + f (Tnx)ψn

and to the corresponding Schrödinger equation

[H(x)ψ = Eψ .



The Lyapunov exponents of a linear cocycle

The singular values of a matrix g ∈ Mat(m,R) are
denoted by

s1(g) > s2(g) > . . . > sm(g) > 0 .

Let (X ,µ, T ) be an ergodic base dynamical system and
let A : X → Mat(m,R) be an integrable cocycle, i.e.

log+‖A‖ ∈ L1(X ,µ) .

By Furstenberg-Kesten’s theorem, for every 1 6 j 6 m,
the following limit exists:

Lj(A) := lim
n→∞ 1

n
log sj(A(n)(x)) µ a.e. x ∈ X

and it is called the j-th Lyapunov exponent of A.



The maximal Lyapunov exponent

Given:

an ergodic dynamical system (X ,µ, T ),

and a matrix-valued absolutely integrable
observable A : X → Mat(m,R),

consider the n-th iterate of A

A(n)(x) := A(Tn−1x) . . . A(Tx)A(x).

Then for µ a.e. x ∈ X , the “geometric average”

1
n

log‖A(n)(x)‖ → L1(A) as n →∞,

and L(A) := L1(A) is the maximal Lyapunov exponent
of the cocycle A.



Concentration inequalities in classical
probabilities

The large deviation principle of Cramér:
Let ξ0, ξ1, . . . be a real valued i.i.d. random process,
and let Sn = ξ0 + ξ1 + . . . + ξn−1 be its sum process.
Assuming finite exponential moments, asymptotically,

P
[ ∣∣∣1

n
Sn − Eξ0

∣∣∣ > ε ] ≈ e−I(ε)n

where I(ε) is an explicit rate function.

Hoeffding’s inequality: Let ξ0, ξ1, . . . , ξn−1 be a real
valued independent random process and let
Sn := ξ0 + ξ1 + . . . + ξn−1 be its sum. If for some finite
constant C,

∣∣ξi
∣∣ 6 C a.s. for all i = 0, . . . , n − 1, then

P
[ ∣∣∣1

n
Sn − E

(1
n

Sn
)∣∣∣∣ > ε ] 6 2 e−(2C)−2 ε2 n .
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Concentration inequalities in dynamical systems

Given an ergodic system (X ,µ, T ) and an integrable
observable ξ : X → R, the sequence of random variables

ξk := ξ ◦ Tk k > 0

is a real-valued stationary process.

Then the ergodic sums

Sn ξ(x) := ξ(x) + ξ(Tx) + . . . + ξ(Tn−1x)

represent the corresponding sum process.



Concentration inequalities in dynamical systems

Hoeffding-type inequalities are available for a wide
class of (non-uniformly) hyperbolic dynamical systems
and for a large space of observables.

Theorem. (J.-R. Chazottes and S. Gouëzel 2014) Let
(X ,µ, T ) be a dynamical system modeled by a Young
tower with exponential tails.
There is a constant C > 0 such that for every Lipschitz
observable ξ and for every n ∈ N,

µ

{
x ∈ X :

∣∣∣1
n

Sn ξ(x) −
∫

X
ξdµ

∣∣∣∣ > ε} 6 2 e−(2C Lip(ξ))−2 ε2 n .

Reference: J.-R. Chazottes, Fluctuations of Observables in Dynamical

Systems: From Limit Theorems to Concentration Inequalities, 2015.



Concentration inequalities in dynamical systems

Such estimates are also available for the torus
translation T : T→ T, Tx = x +ω with observables of
quite low regularity, provided ω satisfies a generic
Diophantine condition (DC).

Theorem. Let u : Ar → [−∞,∞) be a subharmonic
function on the annulus Ar of width r around the
torus T. Let ξ be the restriction of u to the torus T.
Then

µ

{
x ∈ T :

∣∣∣1
n

Sn ξ(x) −
∫
T
ξdµ

∣∣∣∣ > ε} 6 C e−c εn ,

for constants c > 0 and C <∞ that depend on certain
uniform measurements of u and on the DC of ω.

Reference: This result and versions thereof were obtained by

Bourgain and Goldstein; Goldstein and Schlag; K.; Duarte and K.



Concentration inequalities for iterates of
linear cocycles

Let (X ,µ, T ) be an ergodic base dynamical system.

Let A : X → Mat(m,R) be a linear cocycle over T .
Recall the notation

A(n)(x) := A(Tn−1x) . . . A(Tx)A(x) .

We say that the cocycle A satisfies an LDT estimate if

µ

{
x ∈ X :

∣∣∣1
n

log‖A(n)(x)‖− L(n)(A)
∣∣∣ > ε} < C e−c ε2 n

for some constants c > 0 and C <∞ and for all n ∈ N.

The LDT is called uniform if the constants c, C are
stable under small perturbations of A in some given
metric space of cocycles.



Concentration inequalities for iterates of
linear cocycles

Problem. Establish uniform LDT estimates (and other
types of statistical properties) for various spaces of
linear cocycles, i.e. for appropriate

base dynamics (X ,µ, T );

regularity assumptions on the cocycle A;

topology on the space of cocycles.

Surprisingly few such results are available.



Some available results

Random cocycles.
� Limit theorems: Guivarc’h, Raugi, Le Page,

Bougerol (90s).

� Concentration inequalities: Duarte and K. (2015).
The results above hold under an irreducibility
assumption.

� Irreducibility assumption eliminated in dim 2:
Duarte and K. (2018).

Quasi-periodic cocycles.
Assuming the translation frequency is Diophantine,
concentration inequalities were obtained for:

� Real-analytic cocycles: Bourgain and Goldstein;
Goldstein and Schlag; Duarte and K.

� Non-analytic cocycles: K.; Wang and Zhang.



Motivation regarding such concentration
inequalities

They are relevant in the study of the spectral
properties of discrete Schrödinger type operators in
mathematical physics.

Have consequences on the Lyapunov exponents of
linear cocycles, namely on their positivity, simplicity,
continuity properties.



A general approach to proving
continuity properties of Lyapunov exponents

We devised an abstract scheme to prove quantitative
continuity of the Lyapunov exponents, one that is
applicable to any base dynamics, provided that
uniform LDT estimates are available in the given space
of cocycles.

This scheme relies upon ideas introduced in the
context of quasi-periodic Schrödinger cocycles in:

Reference: Goldstein and Schlag, Hölder continuity of the integrated

density of states for quasi-periodic Schrödinger equations and averages of

shifts of subharmonic functions, Annals of Math, 2001.



The abstract continuity theorem (Duarte and K.)

Let (X ,µ, T ) be an ergodic system and let (C, d) be a
metric space of SL(2,R)-valued cocycles over it.

We assume the following:

� ‖A‖ ∈ L∞(X ,µ) for all A ∈ C.

� d(A, B) > ‖A − B‖L∞ for all A, B ∈ C.

� Every cocycle A ∈ C with L(A) > 0 satisfies a
uniform LDT estimate.

Then the following statements hold.

The Lyapunov exponent L : C→ R is a continuous
function.

Locally near every cocycle A ∈ C with L(A) > 0, the
Lyapunov exponent is Hölder continuous.



Continuity of LE for random cocycles

� Ruelle (1979)

� Furstenberg and Kifer (1983)

� Le Page (1989)

� Peres (1991)

� Bocker and Viana (2010)

� Ávila, Eskin and Viana (2014 + work in progress)

� Malheiro and Viana (2015)

� Backes, Brown, Butler (2015)

� Duarte and K. (2015 + work in progress)



Continuity of LE for quasi-periodic cocycles

� Goldstein and Schlag (2001)

� Bourgain and Jitomirskaya (2001)

� Bourgain (2005)

� Marx and Jitomirskaya (2012)

� Ávila, Jitomirskaya and Sadel (2014)

� K. (2005; 2014)

� Wang and Zhang (2015)

� Duarte and K. (2014; 2015; 2016)


