Symmetric Sums of Squares

Annie Raymond University of Massachusetts

Joint with James Saunderson (Monash University), Mohit Singh (Georgia Tech), and Rekha Thomas (UW)

April 16, 2018

Goal

Certify the nonnegativity of a symmetric polynomial over the hypercube.

Our key result: the runtime does not depend on the number of variables of the polynomial

- 1. Background
- 2. Our setting
- 3. Results
- 4. Flag algebras
- 5. Future work

Nonnegative polynomials and sums of squares

A polynomial $p \in \mathbb{R}[x_1, \dots, x_n] =: \mathbb{R}[\mathbf{x}]$ is nonnegative if $p(x_1, \dots, x_n) \geq 0$ for all $(x_1, \dots, x_n) \in \mathbb{R}^n$

p sum of squares (sos), i.e.,
$$p = \sum_{i=1}^{l} f_i^2$$
 where $f_i \in \mathbb{R}[\mathbf{x}] \Rightarrow p \geq 0$

Hilbert (1888): Not all nonnegative polynomials are sos.

Motzkin (1967, with Taussky-Todd): $M(x,y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ is a nonnegative polynomial but is not a sos.

Finding sos certificates

- $p \in \mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \dots, x_n]$ such that $\deg(p) = 2d$ $[\mathbf{x}]_d := (1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^d)^\top$ = vector of monomials in $\mathbb{R}[\mathbf{x}]$ of degree $\leq d$ • $p \operatorname{sos} \Leftrightarrow \exists Q \succeq 0 \operatorname{such that} p = [x]_d^\top Q[x]_d$

Finding sos certificates

- $p \in \mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \dots, x_n]$ such that $\deg(p) = 2d$
- $[x]_d := (1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^d)^\top$ = vector of monomials in $\mathbb{R}[\mathbf{x}]$ of degree $\leq d$

•
$$p \operatorname{sos} \Leftrightarrow \exists Q \succeq 0 \operatorname{such that} p = [x]_d^\top Q[x]_d$$

= $[x]_d^\top BB^\top [x]_d = ([x]_d^\top B)([x]_d^\top B)^\top$

Finding sos certificates

- $p \in \mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \dots, x_n]$ such that $\deg(p) = 2d$
- $[x]_d := (1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^d)^\top$ = vector of monomials in $\mathbb{R}[\mathbf{x}]$ of degree $\leq d$
- $p \operatorname{sos} \Leftrightarrow \exists \ Q \succeq 0 \operatorname{such that} \ p = [x]_d^\top Q[x]_d$ = $[x]_d^\top B B^\top [x]_d = ([x]_d^\top B)([x]_d^\top B)^\top$

$$\begin{split} \rho &= x_1^2 - x_1 x_2 + x_2^2 + 1 = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} \\ &= \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} \\ &= 1 + \frac{3}{4}(x_1 - x_2)^2 + \frac{1}{4}(x_1 + x_2)^2 \end{split}$$

Goal

Certify $p \ge 0$ over the solutions of a system of polynomial equations.

Goal

Certify $p \ge 0$ over the solutions of a system of polynomial equations.

Show that
$$1 - y \ge 0$$
 whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y - 1}{\sqrt{2}}\right)^2 - \frac{1}{2}(x^2 + y^2 - 1)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & x & y \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2}(x^2 + y^2 - 1)$$

Goal

Certify $p \ge 0$ over the solutions of a system of polynomial equations.

Show that
$$1 - y \ge 0$$
 whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y - 1}{\sqrt{2}}\right)^2 - \frac{1}{2}(x^2 + y^2 - 1)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & x & y \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2}(x^2 + y^2 - 1)$$

- Ideal $\mathcal{I} \subseteq \mathbb{R}[x]$
- $V_{\mathbb{R}}(\mathcal{I})$ =its real variety
- p is sos modulo \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ (i.e., if $\exists h \in \mathcal{I}$ such that $p = \sum_{i=1}^{l} f_i^2 + h$)
- p is d-sos mod \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ where $\deg(f_i) \leq d \ \forall \ i$

Goal

Certify $p \ge 0$ over the solutions of a system of polynomial equations.

Show that
$$1 - y \ge 0$$
 whenever $x^2 + y^2 = 1$

$$1 - y = \left(\frac{x}{\sqrt{2}}\right)^2 + \left(\frac{y - 1}{\sqrt{2}}\right)^2 - \frac{1}{2}(x^2 + y^2 - 1)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & x & y \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} - \frac{1}{2}(x^2 + y^2 - 1)$$

- Ideal $\mathcal{I} \subseteq \mathbb{R}[x]$
- $V_{\mathbb{R}}(\mathcal{I})$ =its real variety
- p is sos modulo \mathcal{I} if $p \equiv \sum_{i=1}^{l} f_i^2 \mod \mathcal{I}$ (i.e., if $\exists h \in \mathcal{I}$ such that $p = \sum_{i=1}^{l} f_i^2 + h$)
- p is d-sos $\operatorname{mod} \mathcal{I}$ if $p \equiv \sum_{i=1}^{I} f_i^2 \mod \mathcal{I}$ where $\operatorname{deg}(f_i) \leq d \ \forall \ i \Leftrightarrow \exists \ Q \succeq 0$ such that $p \equiv v^\top Q v \mod \mathcal{I}$ (semidefinite programming can find Q in $n^{O(d)}$ -time)

Our problem

Let $\mathcal{V}_{n,k} = \{0,1\}^{\binom{n}{k}}$ be the *k*-subset discrete hypercube \rightarrow coordinates indexed by *k*-element subsets of [n]

Goal

Minimize a symmetric* polynomial over $\mathcal{V}_{n,k}$

*symmetric =
$$\mathfrak{S}_n$$
-invariant

$$\mathfrak{s} \cdot x_{i_1 i_2 \dots i_k} = x_{\mathfrak{s}(i_1)\mathfrak{s}(i_2) \dots \mathfrak{s}(i_k)} \ \forall \mathfrak{s} \in \mathfrak{S}_n$$

Our problem

Let $\mathcal{V}_{n,k} = \{0,1\}^{\binom{n}{k}}$ be the *k*-subset discrete hypercube \rightarrow coordinates indexed by *k*-element subsets of [n]

Goal

Minimize a symmetric* polynomial over $\mathcal{V}_{n,k}$

*symmetric =
$$\mathfrak{S}_n$$
-invariant $\mathfrak{s} \cdot x_{i_1 i_2 \dots i_k} = x_{\mathfrak{s}(i_1)\mathfrak{s}(i_2) \dots \mathfrak{s}(i_k)} \ \forall \mathfrak{s} \in \mathfrak{S}_n$

How?

By finding sos certificates over $V_{n,k}$ that exploit symmetry, i.e., that we can find in a runtime independent of n.

k=1: see Blekherman, Gouveia, Pfeiffer (2014)

k > 2: ?

Examples of such problems

Turán-type problem

Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$

Examples of such problems

Turán-type problem

Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$

Ramsey-type problem

Color the edges of K_n ruby or sapphire. Find the smallest n for which you are guaranteed a ruby clique of size r or a sapphire clique of size s

Examples of such problems

Turán-type problem

Given a fixed graph H, determine the limiting edge density of a H-free graph on n vertices as $n \to \infty$

Ramsey-type problem

Color the edges of K_n ruby or sapphire. Find the smallest n for which you are guaranteed a ruby clique of size r or a sapphire clique of size s

Focus on
$$\mathcal{V}_n := \mathcal{V}_{n,2} = \{0,1\}^{\binom{n}{2}}$$

 \rightarrow coordinates are indexed by pairs ij, $1 \le i < j \le n$

Passing to optimization - Turán-type problem

Example

Forbidding triangles in a graph on *n* vertices, find

$$\max \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} x_{ij}$$
s.t. $x_{ij}^2 = x_{ij}$ $\forall 1 \le i < j \le n$

$$x_{ij} x_{jk} x_{ik} = 0$$
 $\forall 1 \le i < j < k \le n$

In particular, show that this is at most $\frac{1}{2} + O(\frac{1}{n})$

$$ightarrow$$
 show that $rac{1}{2} + O(rac{1}{n}) - rac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} x_{ij} \geq 0$

Issue with passing to optimization - Turán-type problem

Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$\frac{1}{2} + O\left(\frac{1}{n}\right) - \frac{1}{\binom{n}{2}} \sum_{1 \le i \le n} x_{ij} \equiv v^{\top} Q v \mod \mathcal{I}$$

where

$$\mathcal{I} = \langle x_{ij}^2 - x_{ij} \ \forall 1 \le i < j \le n,$$
$$x_{ij} x_{jk} x_{ik} \ \forall 1 \le i < j < k \le n \rangle$$

Issue with passing to optimization - Turán-type problem

Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$\frac{1}{2} + O\left(\frac{1}{n}\right) - \frac{1}{\binom{n}{2}} \sum_{1 \le i \le j \le n} x_{ij} \equiv v^{\top} Q v \mod \mathcal{I}$$

where

$$\mathcal{I} = \langle x_{ij}^2 - x_{ij} \ \forall 1 \le i < j \le n,$$
$$x_{ij} x_{jk} x_{ik} \ \forall 1 \le i < j < k \le n \rangle$$

Can we do this with semidefinite programming? The runtime would be $\binom{n}{2}^{O(d)}$

Issue with passing to optimization - Turán-type problem

Example (continued)

Find $Q \succeq 0$ and $d \in \mathbb{Z}^+$ such that

$$\frac{1}{2} + O\left(\frac{1}{n}\right) - \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} x_{ij} \equiv v^{\top} Q v \mod \mathcal{I}$$

where

$$\mathcal{I} = \langle x_{ij}^2 - x_{ij} \ \forall 1 \le i < j \le n,$$
$$x_{ij} x_{jk} x_{ik} \ \forall 1 \le i < j < k \le n \rangle$$

Can we do this with semidefinite programming?

The runtime would be $\binom{n}{2}^{O(d)} \to \infty$ as $n \to \infty$.

Foreshadowing

Example

The following is a sos proof of Mantel's theorem

$$\begin{pmatrix} 1 & q_1 \end{pmatrix} \begin{pmatrix} \frac{(n-1)^2}{2} & -\frac{2(n-1)}{n} \\ -\frac{2(n-1)}{n} & \frac{8}{n^2} \end{pmatrix} \begin{pmatrix} 1 \\ q_1 \end{pmatrix} + \operatorname{sym}\left(\left(q_2\right)\left(\frac{8}{n^2}\right)\left(q_2\right)\right)$$

where
$$q_1 = \sum_{i < j} x_{ij}$$
 and $q_2 = \sum_{i < j} x_{ij} - \frac{n-2}{2} \sum_{i=1}^{n-1} x_{in}$

Key features of desired sos certificates:

- exploits symmetry
- constant size
- entries are functions of n

Representation theory needed for exploiting symmetry

- $(\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_\lambda$ isotypic decomposition
 - partition $\lambda = (5, 3, 3, 1)$ for n = 12

Representation theory needed for exploiting symmetry

- $(\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_{\lambda}$ isotypic decomposition
 - partition $\lambda = (5, 3, 3, 1)$ for n = 12
- $V_{\lambda} = \bigoplus_{\tau_{\lambda}} W_{\tau_{\lambda}}$

standard tableau τ_{λ} :

1	4	5	6	9
2	7	10		
3	8	12		
11				

- $\mathfrak{R}_{\tau_{\lambda}}$:=row group of τ_{λ} (fixes the rows of τ_{λ})
- $W_{\tau_{\lambda}} := (V_{\lambda})^{\mathfrak{R}_{\tau_{\lambda}}} = \text{subspace of } V_{\lambda} \text{ fixed by } \mathfrak{R}_{\tau_{\lambda}}$
- ▶ n_{λ} :=number of standard tableaux of shape λ
- m_{λ} :=dimension of $W_{\tau_{\lambda}}$

Representation theory needed for exploiting symmetry

- $(\mathbb{R}[x]/\mathcal{I})_d =: V = \bigoplus_{\lambda \vdash n} V_{\lambda}$ isotypic decomposition
 - partition $\lambda = (5, 3, 3, 1)$ for n = 12
- $V_{\lambda} = \bigoplus_{\tau_{\lambda}} W_{\tau_{\lambda}}$
 - ▶ shape of λ :

standard tableau au_{λ} :

1	4	5	6	9
2	7	10		
3	8	12		
11				

- $\mathfrak{R}_{\tau_{\lambda}}$:=row group of τ_{λ} (fixes the rows of τ_{λ})
- $W_{\tau_{\lambda}} := (V_{\lambda})^{\mathfrak{R}_{\tau_{\lambda}}} = \text{subspace of } V_{\lambda} \text{ fixed by } \mathfrak{R}_{\tau_{\lambda}}$
- ▶ n_{λ} :=number of standard tableaux of shape λ
- m_{λ} :=dimension of $W_{\tau_{\lambda}}$

$$V = \bigoplus_{\lambda \vdash n} \bigoplus_{\tau_{\lambda}} W_{\tau_{\lambda}}$$

Note: $\dim(V) = \sum_{\lambda \vdash n} m_{\lambda} n_{\lambda}$

Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod $\mathcal{I} \Leftrightarrow \exists \ Q \succeq 0$ s.t. $p \equiv v^{\top} Q v \mod \mathcal{I}$ where v =vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$

Theorem (Gatermann-Parrilo, 2004)

For each λ , fix τ_{λ} and find a symmetry-adapted basis $\{b_1^{\tau_{\lambda}}, \ldots, b_{m_{\lambda}}^{\tau_{\lambda}}\}$ for $W_{\tau_{\lambda}}$.

If p is symmetric and d-sos mod \mathcal{I} , then

$$p \equiv \sum_{\lambda \vdash n} \operatorname{sym}(b^{\top} Q_{\lambda} b) \mod \mathcal{I},$$

where $b = (b_1^{\tau_\lambda}, \dots, b_{m_\lambda}^{\tau_\lambda})^\top$ and $Q_\lambda \succeq 0$ has size $m_\lambda \times m_\lambda$.

Gain: size of SDP is $\sum_{\lambda \vdash n} m_{\lambda}$ instead of $\sum_{\lambda \vdash n} m_{\lambda} n_{\lambda}$

Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod $\mathcal{I} \Leftrightarrow \exists \ Q \succeq 0$ s.t. $p \equiv v^{\top} Q v \mod \mathcal{I}$ where v = vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$

Theorem (Gatermann-Parrilo, 2004)

For each λ , fix τ_{λ} and find a symmetry-adapted basis $\{b_1^{\tau_{\lambda}}, \ldots, b_{m_{\lambda}}^{\tau_{\lambda}}\}$ for $W_{\tau_{\lambda}}$.

If p is symmetric and d-sos, then

$$p = \sum_{\lambda \vdash n} \mathsf{sym}(b^{ op} Q_{\lambda} b),$$

where $b = (b_1^{\tau_{\lambda}}, \dots, b_{m_{\lambda}}^{\tau_{\lambda}})^{\top}$ and $Q_{\lambda} \succeq 0$ has size $m_{\lambda} \times m_{\lambda}$.

Gain: size of SDP is
$$\sum_{\lambda \vdash n} m_{\lambda}$$
 instead of $\sum_{\lambda \vdash n} m_{\lambda} n_{\lambda}$

 \rightarrow how much smaller is the size of this SDP?

Gatermann-Parrilo symmetry-reduction technique

Recall: p d-sos mod $\mathcal{I} \Leftrightarrow \exists Q \succ 0$ s.t. $p \equiv v^{\top}Qv \mod \mathcal{I}$ where v =vector of basis elements of $(\mathbb{R}[x]/\mathcal{I})_d$

Theorem (Gatermann-Parrilo, 2004)

For each λ , fix τ_{λ} and find a symmetry-adapted basis $\{b_1^{\tau_{\lambda}}, \ldots, b_{m_{\lambda}}^{\tau_{\lambda}}\}$ for

 $W_{\tau_{\lambda}} \rightarrow complexity of the algorithm depends on n$

If p is symmetric and d-sos, then

$$p = \sum_{\lambda \vdash n} \mathsf{sym}(b^{ op} Q_{\lambda} b),$$

where $b = (b_1^{\tau_{\lambda}}, \dots, b_{m_{\lambda}}^{\tau_{\lambda}})^{\top}$ and $Q_{\lambda} \succeq 0$ has size $m_{\lambda} \times m_{\lambda}$.

Gain: size of SDP is
$$\sum_{\lambda \vdash n} m_{\lambda}$$
 instead of $\sum_{\lambda \vdash n} m_{\lambda} n_{\lambda}$

 \rightarrow how much smaller is the size of this SDP?

Succinct SOS

Theorem (RSST, 2016)

If p is symmetric and d-sos, then it has a symmetry-reduced sos certificate that can be obtained by solving a SDP of size independent of n by keeping only a few partitions in Gatermann-Parrilo.

Succinct SOS

Theorem (RSST, 2016)

If p is symmetric and d-sos, then it has a symmetry-reduced sos certificate that can be obtained by solving a SDP of size independent of n by keeping only a few partitions in Gatermann-Parrilo.

Example

In the sos proof of Mantel's theorem

$$\begin{pmatrix} 1 & q_1 \end{pmatrix} \begin{pmatrix} \frac{(n-1)^2}{2} & -\frac{2(n-1)}{n} \\ -\frac{2(n-1)}{n} & \frac{8}{n^2} \end{pmatrix} \begin{pmatrix} 1 \\ q_1 \end{pmatrix} + \operatorname{sym}\left(\left(q_2\right)\left(\frac{8}{n^2}\right)\left(q_2\right)\right)$$

$$\rightarrow$$
 kept partitions $(n) = \overbrace{\qquad \qquad }^{n}$ and $(n-1,1) = \overbrace{\qquad \qquad }^{n-1}$

Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

n-2d

- ullet a spanning set for $W_{ au_{\lambda}}$ for $\lambda \geq_{\mathsf{lex}}$
- of size independent of n
- that is easy to generate

Bypassing symmetry-adapted basis

Theorem (RSST, 2016)

In Gatermann-Parrilo, instead of a symmetry-adapted basis, one can use

- ullet a spanning set for $W_{ au_{\lambda}}$ for $\lambda \geq_{\mathsf{lex}}$
- of size independent of n
- that is easy to generate

Examples of spanning sets containing $W_{ au_{\lambda}}$

- ullet sym $_{ au_{\lambda}}(x^m):=rac{1}{|\mathfrak{R}_{ au_{\lambda}}|}\sum_{\mathfrak{s}\in\mathfrak{R}_{ au_{\lambda}}}\mathfrak{s}\cdot x^m$
- an appropriate Möbius transformation

Razborov's flag algebras for Turán-type problems

Use flags (=partially labelled graphs) to certify a symmetric inequality that gives a good upper bound for Turán-type problems

Key features:

- sums of squares of graph densities
- n disappears
- asymptotic results for dense graphs

Theorem (Razborov, 2010)

If
$$\mathcal{A} = \{K_4^3\}$$
, then $\max_{G:|V(G)| \to \infty} d(G) \le 0.561666$. If $\mathcal{A} = \{K_4^3, H_1\}$, then $\max_{G:|V(G)| \to \infty} d(G) = 5/9$.

Complexity Theory at Oberwolfach in 2015

"Is there a link between sums of squares theory and flag algebras?"

Complexity Theory at Oberwolfach in 2015

"Is there a link between sums of squares theory and flag algebras?"

"No."

Connection of spanning sets to flag algebras

$$\tau_{\lambda} = \underbrace{ \begin{bmatrix} 2 & 5 & 6 & 7 \\ \hline 3 & 1 \\ \hline 4 \end{bmatrix}}_{\text{4}} \rightarrow \mathsf{hook}(\tau_{\lambda}) = \underbrace{ \begin{bmatrix} 2 & 5 & 6 & 7 \\ \hline 3 \\ \hline 1 \\ \hline 4 \end{bmatrix}}_{\text{4}}$$

$$\begin{split} \mathbf{g}_{\underline{\mathbf{2}}}^{\Theta} &:= \mathsf{sym}_{\mathsf{hook}(\tau_{\lambda})} (\mathsf{x}_{12} \mathsf{x}_{13} \mathsf{x}_{14}) \\ &= \frac{1}{4} \left(\mathsf{x}_{12} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{15} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{16} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{17} \mathsf{x}_{13} \mathsf{x}_{14} \right) \end{split}$$

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

Connection of spanning sets to flag algebras

$$\tau_{\lambda} = \underbrace{ \begin{bmatrix} 2 & 5 & 6 & 7 \\ \hline 3 & 1 \end{bmatrix}}_{4} \rightarrow \mathsf{hook}(\tau_{\lambda}) = \underbrace{ \begin{bmatrix} 2 & 5 & 6 & 7 \\ \hline 3 & 1 \\ \hline 4 \end{bmatrix}}_{4}$$

$$\begin{split} g^{\Theta}_{_{2}} & := \mathsf{sym}_{\mathsf{hook}(\tau_{\lambda})}(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14}) \\ & = \frac{1}{4} \left(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{15}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{16}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{17}\mathsf{x}_{13}\mathsf{x}_{14} \right) \end{split}$$

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

Connection of spanning sets to flag algebras

$$\tau_{\lambda} = \underbrace{ \begin{bmatrix} 2 \mid 5 \mid 6 \mid 7 \\ \hline 3 \mid 1 \end{bmatrix}}_{4} \rightarrow \mathsf{hook}(\tau_{\lambda}) = \underbrace{ \begin{bmatrix} 2 \mid 5 \mid 6 \mid 7 \\ \hline 3 \\ \hline 1 \\ \hline 4 \end{bmatrix}}_{4}$$

$$\begin{split} g^{\Theta}_{_{2}} & := \mathsf{sym}_{\mathsf{hook}(\tau_{\lambda})}(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14}) \\ & = \frac{1}{4} \left(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{15}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{16}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{17}\mathsf{x}_{13}\mathsf{x}_{14} \right) \end{split}$$

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

Example:
$$g_{2}^{\Theta}$$
 $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$

$$\tau_{\lambda} = \underbrace{ \begin{bmatrix} 2 \mid 5 \mid 6 \mid 7 \\ \hline 3 \mid 1 \end{bmatrix}}_{4} \rightarrow \mathsf{hook}(\tau_{\lambda}) = \underbrace{ \begin{bmatrix} 2 \mid 5 \mid 6 \mid 7 \end{bmatrix}}_{3}$$

$$\begin{split} \mathbf{g}_{\mathbf{2}}^{\Theta} & := \mathsf{sym}_{\mathsf{hook}(\tau_{\lambda})} (\mathsf{x}_{12} \mathsf{x}_{13} \mathsf{x}_{14}) \\ & = \frac{1}{4} \left(\mathsf{x}_{12} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{15} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{16} \mathsf{x}_{13} \mathsf{x}_{14} + \mathsf{x}_{17} \mathsf{x}_{13} \mathsf{x}_{14} \right) \end{split}$$

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

$$\tau_{\lambda} = \underbrace{ 2567}_{31} \rightarrow \mathsf{hook}(\tau_{\lambda}) = \underbrace{ 2567}_{3} \\ \underbrace{ 1}_{4}$$

$$\begin{split} g^{\Theta}_{_{2}} & := \mathsf{sym}_{\mathsf{hook}(\tau_{\lambda})}(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14}) \\ & = \frac{1}{4} \left(\mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{15}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{16}\mathsf{x}_{13}\mathsf{x}_{14} + \mathsf{x}_{17}\mathsf{x}_{13}\mathsf{x}_{14} \right) \end{split}$$

where $\Theta(1) = 1$, $\Theta(2) = 4$, $\Theta(3) = 3$, and g_{2}^{Θ} is the density of $2^{1/3}$ as a subgraph in some graph on 7 vertices under Θ .

Möbius transformation \rightarrow d \ominus ₂: density of 2 \rightarrow ₃ as an *induced* subgraph in some graph on 7 vertices under Θ such that $\Theta(1)=1$, $\Theta(2)=4$, $\Theta(3)=3\rightarrow$ flag density. Example:

Theorem (RSST, 2016)

Flags provide spanning sets for $W_{\tau_{\lambda}}$ of size independent of n.

If p is symmetric and d-sos, then its nonnegativity can be established through flags on kd vertices (even in restricted cases).

Example

For the sos proof of Mantel's theorem, need at most flags:

Theorem (R., Singh, Thomas, 2015)

Every flag sos polynomial of degree kd can be written as a succinct d-sos.

Theorem (RSST, 2016)

Flag methods are equivalent to standard symmetry-reduction methods for finding sos certificates over discrete hypercubes.

Corollary (RSST, 2016)

It is possible to use flags for a fixed n, not just asymptotic situations

Example

The following flag sos yields the Ramsey number $R(3,3) \le 6$

$$-1 \equiv \frac{1}{8\binom{6}{2}^2} \left(\mathsf{d}_{\downarrow}^{\Theta} + \mathsf{d}_{\bullet}^{\Theta} \right)^2 + \mathbb{E}_{\Theta_i} \left[\frac{1}{2} \left(\mathsf{d}_{\downarrow_1}^{\Theta_i} - \mathsf{d}_{\bullet_1}^{\Theta_i} \right)^2 \right] \ \mathrm{mod} \ \mathcal{I}$$

where

$$\mathsf{d}^{\Theta}_{\downarrow} = 2 \sum_{1 \leq i < j \leq 6} \mathsf{x}_{ij}, \qquad \mathsf{d}^{\Theta}_{\bullet} = 2 \sum_{1 \leq i < j \leq 6} (1 - \mathsf{x}_{ij}),$$

$$\mathsf{d}_{\mathop{\downarrow}_{\mathbf{1}}}^{\Theta_{i}} = \sum_{j \in [6] \setminus \{i\}} \mathsf{x}_{ij}, \qquad \mathsf{d}_{\mathop{\bullet}_{\mathbf{1}}}^{\Theta_{i}} = \sum_{j \in [6] \setminus \{i\}}^{6} (1 - \mathsf{x}_{ij})$$

Corollary (RSST, 2016)

It is possible to use flags for extremal graph theoretic problems in the sparse setting.

Example

The following flag sos yields that the max edge density in C_4 -free graphs is at most $\frac{n^{3/2}}{n^2-n}+O\left(\frac{1}{n}\right)$ (Sós et al)

$$\begin{split} n + \frac{2}{n-1} s - \frac{2}{\binom{n}{2}} s^2 &\equiv \\ &\mathbb{E}_{\Theta_{jk}} \left[n \left(\mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} + \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} + \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} \right)^2 + n \left(\mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} + \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} + \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} \right)^2 \\ &\quad + \frac{1}{2} \left(\mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} - \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} \right)^2 + \frac{1}{2} \left(\mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} - \mathbf{d}_{1 \bullet \bullet 2}^{\Theta_{jk}} \right)^2 \right] \bmod \mathcal{I} \end{split}$$

Example (Grigoriev's family of polynomials, 2001)

The polynomials

$$\mathsf{f}_n = \frac{1}{\binom{n}{2}^2} \left(\sum_{e \in E(K_n)} \mathsf{x}_e - \left\lfloor \frac{\binom{n}{2}}{2} \right\rfloor \right) \left(\sum_{e \in E(K_n)} \mathsf{x}_e - \left\lfloor \frac{\binom{n}{2}}{2} \right\rfloor - 1 \right)$$

are nonnegative on $\mathcal{V}_{n,2}$.

The degree required to write f_n as a SOS is at least $\left| \frac{\binom{n}{2}}{2} \right|$

Certifying nonnegativity $f_n + O(\frac{1}{n^2})$ also requires an SOS of degree $\left\lceil \frac{\binom{n}{2}}{2} \right\rceil$ (Lee, Prakesh, de Wolf, Yuen, 2016)

Hatami-Norin (2011) showed that the nonnegativity of graph density inequalities in general is undecidable

Corollary (RSST, 2016)

There exists a family of symmetric nonnegative polynomials of fixed degree that cannot be certified with any fixed set of flags, namely

$$\frac{1}{\binom{n}{2}^2} \left(\sum_{e \in E(K_n)} \mathsf{x}_e - \left\lfloor \frac{\binom{n}{2}}{2} \right\rfloor \right) \left(\sum_{e \in E(K_n)} \mathsf{x}_e - \left\lfloor \frac{\binom{n}{2}}{2} \right\rfloor - 1 \right) + O(\frac{1}{n^2})$$

Note: Razborov allows error of size $O(\frac{1}{n})$ in his setting

• Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O(\frac{1}{n})$ with finitely many flags or with sums of squares of fixed degree.

• Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O(\frac{1}{n})$ with finitely many flags or with sums of squares of fixed degree. (Aaron Potechin?)

- Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O(\frac{1}{n})$ with finitely many flags or with sums of squares of fixed degree. (Aaron Potechin?)
- Provide certificates for open problems over $V_{n,k}$ using symmetric sums of squares.

- Find a concrete family of nonnegative polynomials on $\binom{n}{k}$ variables that one cannot approximate up to an error of order $O(\frac{1}{n})$ with finitely many flags or with sums of squares of fixed degree. (Aaron Potechin?)
- Provide certificates for open problems over $V_{n,k}$ using symmetric sums of squares.

Figure 1: Closure of $\{(\rho(G), \delta(G))\}_{G: |V(G)| \to \infty}$.

Thank you!

Also check out _forall on instagram. . . and let me interview you?