Value distribution of long Dirichlet polynomials
and applications to ((s)

Maksym Radziwill
IAS

October 1, 2013



Introduction

» For Rs > 1 the Riemann zeta-function ((s) is defined as



Introduction

» For Rs > 1 the Riemann zeta-function ((s) is defined as



Introduction

» For Rs > 1 the Riemann zeta-function ((s) is defined as

» Related to primes via
1\ !
C(s):H<1—5> .
- p

» Analytic continuation to all of C (Riemann).

» Most interesting in the region % < Rs < 1 (the critical strip).

The line Rs = % is of particular interest (Riemann
Hypothesis).
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Theorem (Selberg)
Let R be a rectangle in C. Then,

— _meas
T T<t<2T Iog Iog
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The reason for these theorems is as follows:

» On average, we have
) 1

p<t

» The p~'t equidistribute when t — oo.
» Therefore a good model for the average behavior of
log ((o + it) is
Z X(p)
p<t P

with X(p) independent and uniformly distribution on T.
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For o > 3, the variance of > p<t X(P)p~7 converges to
ZP p 2% as t — co. Therefore as t — oo we have

P(pr(f) € R) — V,(R)

p<t

with V,(-) a two-dimensional probability distribution in C.

1 : : -1
For o = 5, the variance is Zp<tp ~ loglogt — oo as
t — 0o. Therefore we have a central limit theorem

P(Zp<t p° > // e —|z|? /2 dZ’
V/loglog t
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In practice the results we can prove are weaker than what is
predicted by the probabilistic model. Let £ = logloglog T.

Theorem (Selberg)
We have,

1 .
L meas {Iog‘C(Z—Hm6(04,5)}:/ﬂe_“2/2 du + 0(€)

T r<t<2T ,/% log log t V2

where £ < L2 - (loglog T)~1/2.

Theorem (Selberg)

Let X(T) be the number of sign changes of
S(t) := 1Slog (5 + it) in an interval of length T. Then

Tlog T 5 Tlog T
—_— - L X(T —_—
Vl0oglog T exp( ) <X(T) < Vioglog T
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Old method

» We write

log {(s) = Ax(s) + Ex(s) . Ax(s) == Z pls
p<X

with Ex(s) a sum over the zeros p of ((s) satisfying
|Sp — Ss| < (log X)L, On average Ex < log T/ log X.
» We understand the distribution of Ax(s) by taking moments

2T
/ |Ax (o + it)[**dt , k € N (1)
;

Computing (1) is similar to solving a system of T equations in
Xk variables and thus forces Xk < T.

» Pick X = T5(7) with ¢(T) — 0as T — co. Thus
|€x(s)] — oo on average. This is where we loose compared to
the probabilistic model.
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New method

I'm working on a method that in some cases allows to work with
long Dirichlet polynomials

1
Z > § > 0 fixed
p<T?e

This removes the loss in some of the previous theorems but we
need to assume the Riemann Hypothesis. For example,

Theorem (R+,2013)

Assume the Riemann Hypothesis. Let X(T) be the number of sign
changes of 5(t) := %S log (( + it) in an interval of length T.
Then

Tlog T

X(T) x —————.
(7) Vlioglog T
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Theorem (R.,2013+)

Assume the Riemann Hypothesis. Let R be a rectangle with sides
> C with C an absolute constant. Then,

_ Tmeas{R}
I liiyer) = —— 4
TgféfT{ og((3 +it) € } loglog T

provided that the vertices of the rectangle R are o(+/loglog T).

» Hence there exists a C > 0 such that the curve
t — log (3 + it) intersects every annuli |z —a| = C, a € C.

» This is a weak form of Ramachandra’s conjecture asserting
that log ((3 + it) (or {(5 +it) ) is dense in C.

» The corresponding statement for log ((o + it) with o > % is
known since the times of Bohr and Jessen.
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Z ZA ) with Ai(s) = > i

p< T5 Ti_1<p<T; P

and T; = exp <(|og|_°g1§_)10>. with log; ; T the (i + 1)-th iterated
i+

logarithm.

» The variance of each A;(s) is V? :=log;,; T. As i grows
Ai(s) varies less and we need fewer moments to control it.

» Taking V? moments allows localize A;(s) to a; + O(1/V;).

» We look at the joint distribution of the A;(s)’s localizing each
Ai(s) to aj + O(1/ V).

» This gives rise to a value s at which

3 plszza,-wa)

p<T?
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» Independently, in a paper of Haper (on arxiv) and R. with
Soundararajan (forthcoming).



Thank you!



