Value distribution of long Dirichlet polynomials and applications to $\zeta(s)$

Maksym Radziwill

IAS
October 1, 2013

Introduction

- For $\Re s>1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}
$$

Introduction

- For $\Re s>1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}
$$

- Related to primes via

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Introduction

- For $\Re s>1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}
$$

- Related to primes via

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

- Analytic continuation to all of \mathbb{C} (Riemann).
- Most interesting in the region $\frac{1}{2} \leq \Re s \leq 1$ (the critical strip). The line $\Re s=\frac{1}{2}$ is of particular interest (Riemann Hypothesis).

Average size of $\zeta(s)$

Average size of $\zeta(s)$

Theorem (Bohr-Jessen)
Let $\frac{1}{2}<\sigma \leq 1$. Let \mathcal{R} be a rectangle in \mathbb{C}. Then,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\{\log \zeta(\sigma+i t) \in \mathcal{R}\} \rightarrow V_{\sigma}(\mathcal{R})
$$

where $V_{\sigma}(\cdot)$ is a probability distribution defined over \mathbb{C}.

Average size of $\zeta(s)$

Theorem (Bohr-Jessen)
Let $\frac{1}{2}<\sigma \leq 1$. Let \mathcal{R} be a rectangle in \mathbb{C}. Then,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\{\log \zeta(\sigma+i t) \in \mathcal{R}\} \rightarrow V_{\sigma}(\mathcal{R})
$$

where $V_{\sigma}(\cdot)$ is a probability distribution defined over \mathbb{C}.
Theorem (Selberg)
Let \mathcal{R} be a rectangle in \mathbb{C}. Then,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\left\{\frac{\log \zeta\left(\frac{1}{2}+i t\right)}{\sqrt{\log \log t}} \in \mathcal{R}\right\} \rightarrow \iint_{\mathcal{R}} e^{-|z|^{2} / 2} \cdot \frac{|d z|}{2 \pi}
$$

Average size of $\zeta(s)$

The reason for these theorems is as follows:

Average size of $\zeta(s)$

The reason for these theorems is as follows:

- On average, we have

$$
\log \zeta(\sigma+i t) \sim \sum_{p \leq t} \frac{1}{p^{\sigma+i t}}
$$

Average size of $\zeta(s)$

The reason for these theorems is as follows:

- On average, we have

$$
\log \zeta(\sigma+i t) \sim \sum_{p \leq t} \frac{1}{p^{\sigma+i t}}
$$

- The $p^{-i t}$ equidistribute when $t \rightarrow \infty$.

Average size of $\zeta(s)$

The reason for these theorems is as follows:

- On average, we have

$$
\log \zeta(\sigma+i t) \sim \sum_{p \leq t} \frac{1}{p^{\sigma+i t}}
$$

- The $p^{-i t}$ equidistribute when $t \rightarrow \infty$.
- Therefore a good model for the average behavior of $\log \zeta(\sigma+i t)$ is

$$
\sum_{p \leq t} \frac{X(p)}{p^{\sigma}}
$$

with $X(p)$ independent and uniformly distribution on \mathbb{T}.

- For $\sigma>\frac{1}{2}$, the variance of $\sum_{p \leq t} X(p) p^{-\sigma}$ converges to $\sum_{p} p^{-2 \sigma}$ as $t \rightarrow \infty$.
- For $\sigma>\frac{1}{2}$, the variance of $\sum_{p \leq t} X(p) p^{-\sigma}$ converges to $\sum_{p} p^{-2 \sigma}$ as $t \rightarrow \infty$. Therefore as $t \rightarrow \infty$ we have

$$
\mathbb{P}\left(\sum_{p \leq t} \frac{X(p)}{p^{\sigma}} \in \mathcal{R}\right) \rightarrow V_{\sigma}(\mathcal{R})
$$

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C}.

- For $\sigma>\frac{1}{2}$, the variance of $\sum_{p \leq t} X(p) p^{-\sigma}$ converges to $\sum_{p} p^{-2 \sigma}$ as $t \rightarrow \infty$. Therefore as $t \rightarrow \infty$ we have

$$
\mathbb{P}\left(\sum_{p \leq t} \frac{X(p)}{p^{\sigma}} \in \mathcal{R}\right) \rightarrow V_{\sigma}(\mathcal{R})
$$

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C}.

- For $\sigma=\frac{1}{2}$, the variance is $\sum_{p<t} p^{-1} \sim \log \log t \rightarrow \infty$ as $t \rightarrow \infty$.
- For $\sigma>\frac{1}{2}$, the variance of $\sum_{p \leq t} X(p) p^{-\sigma}$ converges to $\sum_{p} p^{-2 \sigma}$ as $t \rightarrow \infty$. Therefore as $t \rightarrow \infty$ we have

$$
\mathbb{P}\left(\sum_{p \leq t} \frac{X(p)}{p^{\sigma}} \in \mathcal{R}\right) \rightarrow V_{\sigma}(\mathcal{R})
$$

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C}.

- For $\sigma=\frac{1}{2}$, the variance is $\sum_{p<t} p^{-1} \sim \log \log t \rightarrow \infty$ as $t \rightarrow \infty$. Therefore we have a central limit theorem

$$
\mathbb{P}\left(\frac{\sum_{p \leq t} \frac{X(p)}{p^{\sigma}}}{\sqrt{\log \log t}} \in \mathcal{R}\right) \rightarrow \iint_{\mathcal{R}} e^{-|z|^{2} / 2} \cdot \frac{|d z|}{2 \pi} .
$$

In practice the results we can prove are weaker than what is predicted by the probabilistic model.

In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L}=\log \log \log T$.

Theorem (Selberg)
We have,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\left\{\frac{\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|}{\sqrt{\frac{1}{2} \log \log t}} \in(\alpha, \beta)\right\}=\int_{\alpha}^{\beta} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}+O(\mathcal{E})
$$

where $\mathcal{E} \ll \mathcal{L}^{2} \cdot(\log \log T)^{-1 / 2}$.

In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L}=\log \log \log T$.

Theorem (Selberg)
We have,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\left\{\frac{\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|}{\sqrt{\frac{1}{2} \log \log t}} \in(\alpha, \beta)\right\}=\int_{\alpha}^{\beta} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}+O(\mathcal{E})
$$

where $\mathcal{E} \ll \mathcal{L}^{2} \cdot(\log \log T)^{-1 / 2}$.
Theorem (Selberg)
Let $X(T)$ be the number of sign changes of $S(t):=\frac{1}{\pi} \Im \log \zeta\left(\frac{1}{2}+i t\right)$ in an interval of length T.

In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L}=\log \log \log T$.

Theorem (Selberg)
We have,

$$
\frac{1}{T} \operatorname{meas}_{T \leq t \leq 2 T}\left\{\frac{\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|}{\sqrt{\frac{1}{2} \log \log t}} \in(\alpha, \beta)\right\}=\int_{\alpha}^{\beta} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}+O(\mathcal{E})
$$

where $\mathcal{E} \ll \mathcal{L}^{2} \cdot(\log \log T)^{-1 / 2}$.
Theorem (Selberg)
Let $X(T)$ be the number of sign changes of
$S(t):=\frac{1}{\pi} \Im \log \zeta\left(\frac{1}{2}+i t\right)$ in an interval of length T. Then

$$
\frac{T \log T}{\sqrt{\log \log T}} \cdot \exp \left(-\mathcal{L}^{2}\right) \ll X(T) \ll \frac{T \log T}{\sqrt{\log \log T}} \cdot \mathcal{L}
$$

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$.

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying
$|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

- We understand the distribution of $A_{X}(s)$ by taking moments

$$
\begin{equation*}
\int_{T}^{2 T}\left|A_{X}(\sigma+i t)\right|^{2 k} d t, k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

- We understand the distribution of $A_{X}(s)$ by taking moments

$$
\begin{equation*}
\int_{T}^{2 T}\left|A_{X}(\sigma+i t)\right|^{2 k} d t, k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Computing (1) is similar to solving a system of T equations in X^{k} variables and thus forces $X^{k} \leq T$.

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

- We understand the distribution of $A_{X}(s)$ by taking moments

$$
\begin{equation*}
\int_{T}^{2 T}\left|A_{X}(\sigma+i t)\right|^{2 k} d t, k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Computing (1) is similar to solving a system of T equations in X^{k} variables and thus forces $X^{k} \leq T$.

- Pick $X=T^{\varepsilon(T)}$ with $\varepsilon(T) \rightarrow 0$ as $T \rightarrow \infty$.

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

- We understand the distribution of $A_{X}(s)$ by taking moments

$$
\begin{equation*}
\int_{T}^{2 T}\left|A_{X}(\sigma+i t)\right|^{2 k} d t, k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Computing (1) is similar to solving a system of T equations in X^{k} variables and thus forces $X^{k} \leq T$.

- Pick $X=T^{\varepsilon(T)}$ with $\varepsilon(T) \rightarrow 0$ as $T \rightarrow \infty$. Thus $\left|\mathcal{E}_{X}(s)\right| \rightarrow \infty$ on average.

Old method

- We write

$$
\log \zeta(s)=A_{X}(s)+\mathcal{E}_{X}(s), A_{X}(s):=\sum_{p \leq X} \frac{1}{p^{s}}
$$

with $\mathcal{E}_{X}(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho-\Im s|<(\log X)^{-1}$. On average $\mathcal{E}_{X} \ll \log T / \log X$.

- We understand the distribution of $A_{X}(s)$ by taking moments

$$
\begin{equation*}
\int_{T}^{2 T}\left|A_{X}(\sigma+i t)\right|^{2 k} d t, k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Computing (1) is similar to solving a system of T equations in X^{k} variables and thus forces $X^{k} \leq T$.

- Pick $X=T^{\varepsilon(T)}$ with $\varepsilon(T) \rightarrow 0$ as $T \rightarrow \infty$. Thus $\left|\mathcal{E}_{X}(s)\right| \rightarrow \infty$ on average. This is where we loose compared to the probabilistic model.

New method

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}, \delta>0 \text { fixed }
$$

New method

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}, \delta>0 \text { fixed }
$$

This removes the loss in some of the previous theorems

New method

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}, \delta>0 \text { fixed }
$$

This removes the loss in some of the previous theorems but we need to assume the Riemann Hypothesis.

New method

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}, \delta>0 \text { fixed }
$$

This removes the loss in some of the previous theorems but we need to assume the Riemann Hypothesis. For example,
Theorem (R+,2013)
Assume the Riemann Hypothesis. Let $X(T)$ be the number of sign changes of $S(t):=\frac{1}{\pi} \Im \log \zeta\left(\frac{1}{2}+i t\right)$ in an interval of length T.
Then

$$
X(T) \asymp \frac{T \log T}{\sqrt{\log \log T}}
$$

Theorem (R.,2013+)
Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides
$>C$ with C an absolute constant. Then,

$$
\operatorname{meas}_{T \leq t \leq 2 T}\left\{\log \zeta\left(\frac{1}{2}+i t\right) \in \mathcal{R}\right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}
$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

Theorem (R., 2013+)
Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides
$>C$ with C an absolute constant. Then,

$$
\operatorname{meas}_{T \leq t \leq 2 T}\left\{\log \zeta\left(\frac{1}{2}+i t\right) \in \mathcal{R}\right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}
$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

- Hence there exists a $C>0$ such that the curve $t \mapsto \log \zeta\left(\frac{1}{2}+i t\right)$ intersects every annuli $|z-\alpha|=C, \alpha \in \mathbb{C}$.

Theorem (R., 2013+)
Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides
$>C$ with C an absolute constant. Then,

$$
\operatorname{meas}_{T \leq t \leq 2 T}\left\{\log \zeta\left(\frac{1}{2}+i t\right) \in \mathcal{R}\right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}
$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

- Hence there exists a $C>0$ such that the curve $t \mapsto \log \zeta\left(\frac{1}{2}+i t\right)$ intersects every annuli $|z-\alpha|=C, \alpha \in \mathbb{C}$.
- This is a weak form of Ramachandra's conjecture asserting that $\log \zeta\left(\frac{1}{2}+i t\right)\left(\right.$ or $\left.\zeta\left(\frac{1}{2}+i t\right)\right)$ is dense in \mathbb{C}.

Theorem (R.,2013+)

Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides
$>C$ with C an absolute constant. Then,

$$
\operatorname{meas}_{T \leq t \leq 2 T}\left\{\log \zeta\left(\frac{1}{2}+i t\right) \in \mathcal{R}\right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}
$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

- Hence there exists a $C>0$ such that the curve $t \mapsto \log \zeta\left(\frac{1}{2}+i t\right)$ intersects every annuli $|z-\alpha|=C, \alpha \in \mathbb{C}$.
- This is a weak form of Ramachandra's conjecture asserting that $\log \zeta\left(\frac{1}{2}+i t\right)\left(\right.$ or $\left.\zeta\left(\frac{1}{2}+i t\right)\right)$ is dense in \mathbb{C}.
- The corresponding statement for $\log \zeta(\sigma+i t)$ with $\sigma>\frac{1}{2}$ is known since the times of Bohr and Jessen.

Let $s=\frac{1}{2}+i t$. The idea is to write,

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} A_{i}(s) \text { with } A_{i}(s)=\sum_{T_{i-1}<p \leq T_{i}} \frac{1}{p^{s}}
$$

Let $s=\frac{1}{2}+i t$. The idea is to write,

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} A_{i}(s) \text { with } A_{i}(s)=\sum_{T_{i-1}<p \leq T_{i}} \frac{1}{p^{s}}
$$

and $T_{i}=\exp \left(\frac{\log T}{\left(\log _{i+1} T\right)^{10}}\right)$. with $\log _{i+1} T$ the $(i+1)$-th iterated logarithm.

- The variance of each $A_{i}(s)$ is $V_{i}^{2}:=\log _{i+1} T$. As i grows $A_{i}(s)$ varies less and we need fewer moments to control it.

Let $s=\frac{1}{2}+i t$. The idea is to write,

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} A_{i}(s) \text { with } A_{i}(s)=\sum_{T_{i-1}<p \leq T_{i}} \frac{1}{p^{s}}
$$

and $T_{i}=\exp \left(\frac{\log T}{\left(\log _{i+1} T\right)^{10}}\right)$. with $\log _{i+1} T$ the $(i+1)$-th iterated logarithm.

- The variance of each $A_{i}(s)$ is $V_{i}^{2}:=\log _{i+1} T$. As i grows $A_{i}(s)$ varies less and we need fewer moments to control it.
- Taking V_{i}^{6} moments allows localize $A_{i}(s)$ to $\alpha_{i}+O\left(1 / V_{i}\right)$.

Let $s=\frac{1}{2}+i t$. The idea is to write,

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} A_{i}(s) \text { with } A_{i}(s)=\sum_{T_{i-1}<p \leq T_{i}} \frac{1}{p^{s}}
$$

and $T_{i}=\exp \left(\frac{\log T}{\left(\log _{i+1} T\right)^{10}}\right)$. with $\log _{i+1} T$ the $(i+1)$-th iterated logarithm.

- The variance of each $A_{i}(s)$ is $V_{i}^{2}:=\log _{i+1} T$. As i grows $A_{i}(s)$ varies less and we need fewer moments to control it.
- Taking V_{i}^{6} moments allows localize $A_{i}(s)$ to $\alpha_{i}+O\left(1 / V_{i}\right)$.
- We look at the joint distribution of the $A_{i}(s)$'s localizing each $A_{i}(s)$ to $\alpha_{i}+O\left(1 / V_{i}\right)$.

Let $s=\frac{1}{2}+i t$. The idea is to write,

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} A_{i}(s) \text { with } A_{i}(s)=\sum_{T_{i-1}<p \leq T_{i}} \frac{1}{p^{s}}
$$

and $T_{i}=\exp \left(\frac{\log T}{\left(\log _{i+1} T\right)^{10}}\right)$. with $\log _{i+1} T$ the $(i+1)$-th iterated logarithm.

- The variance of each $A_{i}(s)$ is $V_{i}^{2}:=\log _{i+1} T$. As i grows $A_{i}(s)$ varies less and we need fewer moments to control it.
- Taking V_{i}^{6} moments allows localize $A_{i}(s)$ to $\alpha_{i}+O\left(1 / V_{i}\right)$.
- We look at the joint distribution of the $A_{i}(s)$'s localizing each $A_{i}(s)$ to $\alpha_{i}+O\left(1 / V_{i}\right)$.
- This gives rise to a value s at which

$$
\sum_{p \leq T^{\delta}} \frac{1}{p^{s}}=\sum_{i} \alpha_{i}+O(1)
$$

- This idea appears first in the context of moments of $\zeta(s)$.
- This idea appears first in the context of moments of $\zeta(s)$.
- Independently, in a paper of Haper (on arxiv) and R. with Soundararajan (forthcoming).

Thank you!

