Value distribution of long Dirichlet polynomials and applications to $\zeta(s)$

Maksym Radziwill

IAS

October 1, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

• For $\Re s > 1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$\zeta(s) = \sum_{n} \frac{1}{n^s}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction

For $\Re s > 1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$\zeta(s) = \sum_{n} \frac{1}{n^s}$$

Related to primes via

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

For $\Re s > 1$ the Riemann zeta-function $\zeta(s)$ is defined as

$$\zeta(s) = \sum_{n} \frac{1}{n^s}$$

Related to primes via

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

- ▶ Analytic continuation to all of C (Riemann).
- Most interesting in the region ¹/₂ ≤ ℜs ≤ 1 (the critical strip). The line ℜs = ¹/₂ is of particular interest (Riemann Hypothesis).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Theorem (Bohr-Jessen) Let $\frac{1}{2} < \sigma \leq 1$. Let \mathcal{R} be a rectangle in \mathbb{C} . Then,

$$\frac{1}{T} \underset{T \leq t \leq 2T}{\textit{meas}} \big\{ \log \zeta(\sigma + it) \in \mathcal{R} \big\} \rightarrow V_{\sigma}(\mathcal{R})$$

where $V_{\sigma}(\cdot)$ is a probability distribution defined over \mathbb{C} .

Theorem (Bohr-Jessen) Let $\frac{1}{2} < \sigma \leq 1$. Let \mathcal{R} be a rectangle in \mathbb{C} . Then,

$$\frac{1}{T} \max_{T \le t \le 2T} \left\{ \log \zeta(\sigma + it) \in \mathcal{R} \right\} \to V_{\sigma}(\mathcal{R})$$

where $V_{\sigma}(\cdot)$ is a probability distribution defined over \mathbb{C} .

Theorem (Selberg)

Let \mathcal{R} be a rectangle in \mathbb{C} . Then,

$$\frac{1}{T} \underset{T \leq t \leq 2T}{\text{meas}} \left\{ \frac{\log \zeta(\frac{1}{2} + it)}{\sqrt{\log \log t}} \in \mathcal{R} \right\} \to \iint_{\mathcal{R}} e^{-|z|^2/2} \cdot \frac{|dz|}{2\pi}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The reason for these theorems is as follows:

The reason for these theorems is as follows:

► On average, we have

$$\log \zeta(\sigma + it) \sim \sum_{p \leq t} \frac{1}{p^{\sigma + it}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The reason for these theorems is as follows:

On average, we have

$$\log \zeta(\sigma + it) \sim \sum_{p \leq t} \frac{1}{p^{\sigma + it}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The p^{-it} equidistribute when $t \to \infty$.

The reason for these theorems is as follows:

On average, we have

$$\log \zeta(\sigma + it) \sim \sum_{p \leq t} rac{1}{p^{\sigma + it}}$$

- The p^{-it} equidistribute when $t \to \infty$.
- ► Therefore a good model for the average behavior of log ζ(σ + it) is

$$\sum_{p\leq t}\frac{X(p)}{p^{\sigma}}.$$

with X(p) independent and uniformly distribution on \mathbb{T} .

▶ For $\sigma > \frac{1}{2}$, the variance of $\sum_{p \le t} X(p)p^{-\sigma}$ converges to $\sum_{p} p^{-2\sigma}$ as $t \to \infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ For $\sigma > \frac{1}{2}$, the variance of $\sum_{p \leq t} X(p)p^{-\sigma}$ converges to $\sum_{p} p^{-2\sigma}$ as $t \to \infty$. Therefore as $t \to \infty$ we have

$$\mathbb{P}\bigg(\sum_{p\leq t}rac{X(p)}{p^{\sigma}}\in\mathcal{R}\bigg)
ightarrow V_{\sigma}(\mathcal{R})$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C} .

▶ For $\sigma > \frac{1}{2}$, the variance of $\sum_{p \leq t} X(p)p^{-\sigma}$ converges to $\sum_{p} p^{-2\sigma}$ as $t \to \infty$. Therefore as $t \to \infty$ we have

$$\mathbb{P}\bigg(\sum_{p\leq t}rac{X(p)}{p^{\sigma}}\in\mathcal{R}\bigg)
ightarrow V_{\sigma}(\mathcal{R})$$

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C} .

For $\sigma = \frac{1}{2}$, the variance is $\sum_{p < t} p^{-1} \sim \log \log t \to \infty$ as $t \to \infty$.

▶ For $\sigma > \frac{1}{2}$, the variance of $\sum_{p \le t} X(p)p^{-\sigma}$ converges to $\sum_p p^{-2\sigma}$ as $t \to \infty$. Therefore as $t \to \infty$ we have

$$\mathbb{P}\bigg(\sum_{p\leq t}rac{X(p)}{p^\sigma}\in\mathcal{R}\bigg)
ightarrow V_\sigma(\mathcal{R})$$

with $V_{\sigma}(\cdot)$ a two-dimensional probability distribution in \mathbb{C} .

For σ = 1/2, the variance is ∑_{p<t} p⁻¹ ~ log log t → ∞ as t → ∞. Therefore we have a central limit theorem

$$\mathbb{P}\left(\frac{\sum_{p\leq t}\frac{X(p)}{p^{\sigma}}}{\sqrt{\log\log t}}\in\mathcal{R}\right)\to\iint_{\mathcal{R}}e^{-|z|^{2}/2}\cdot\frac{|dz|}{2\pi}$$

In practice the results we can prove are weaker than what is predicted by the probabilistic model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L} = \log \log \log T$.

Theorem (Selberg)

We have,

$$\frac{1}{T} \max_{T \le t \le 2T} \left\{ \frac{\log |\zeta(\frac{1}{2} + it)|}{\sqrt{\frac{1}{2}\log \log t}} \in (\alpha, \beta) \right\} = \int_{\alpha}^{\beta} e^{-u^2/2} \frac{du}{\sqrt{2\pi}} + O(\mathcal{E})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\mathcal{E} \ll \mathcal{L}^2 \cdot (\log \log T)^{-1/2}$.

In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L} = \log \log \log T$.

Theorem (Selberg)

We have,

$$\frac{1}{T} \max_{T \le t \le 2T} \left\{ \frac{\log |\zeta(\frac{1}{2} + it)|}{\sqrt{\frac{1}{2} \log \log t}} \in (\alpha, \beta) \right\} = \int_{\alpha}^{\beta} e^{-u^2/2} \frac{du}{\sqrt{2\pi}} + O(\mathcal{E})$$

where
$$\mathcal{E} \ll \mathcal{L}^2 \cdot (\log \log T)^{-1/2}$$
.

Theorem (Selberg)

Let X(T) be the number of sign changes of $S(t) := \frac{1}{\pi} \Im \log \zeta(\frac{1}{2} + it)$ in an interval of length T. In practice the results we can prove are weaker than what is predicted by the probabilistic model. Let $\mathcal{L} = \log \log \log T$.

Theorem (Selberg)

We have,

$$\frac{1}{T} \max_{T \le t \le 2T} \left\{ \frac{\log |\zeta(\frac{1}{2} + it)|}{\sqrt{\frac{1}{2} \log \log t}} \in (\alpha, \beta) \right\} = \int_{\alpha}^{\beta} e^{-u^2/2} \frac{du}{\sqrt{2\pi}} + O(\mathcal{E})$$

where
$$\mathcal{E} \ll \mathcal{L}^2 \cdot (\log \log T)^{-1/2}$$
.

Theorem (Selberg)

Let X(T) be the number of sign changes of $S(t) := \frac{1}{\pi} \Im \log \zeta(\frac{1}{2} + it)$ in an interval of length T. Then

$$\frac{T \log T}{\sqrt{\log \log T}} \cdot \exp\left(-\mathcal{L}^2\right) \ll X(T) \ll \frac{T \log T}{\sqrt{\log \log T}} \cdot \mathcal{L}.$$

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) := \sum_{
ho \leq X} rac{1}{
ho^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$.

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) \coloneqq \sum_{p \leq X} rac{1}{p^s}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) := \sum_{p \leq X} rac{1}{p^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

• We understand the distribution of $A_X(s)$ by taking moments

$$\int_{T}^{2T} |A_X(\sigma + it)|^{2k} dt , k \in \mathbb{N}$$
 (1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) := \sum_{p \leq X} rac{1}{p^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

• We understand the distribution of $A_X(s)$ by taking moments

$$\int_{T}^{2T} |A_X(\sigma + it)|^{2k} dt , \ k \in \mathbb{N}$$
 (1)

Computing (1) is similar to solving a system of T equations in X^k variables and thus forces $X^k \leq T$.

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) \coloneqq \sum_{p \leq X} rac{1}{p^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

• We understand the distribution of $A_X(s)$ by taking moments

$$\int_{T}^{2T} |A_X(\sigma + it)|^{2k} dt , \ k \in \mathbb{N}$$
 (1)

Computing (1) is similar to solving a system of T equations in X^k variables and thus forces $X^k \leq T$.

• Pick
$$X = T^{\varepsilon(T)}$$
 with $\varepsilon(T) \to 0$ as $T \to \infty$.

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) := \sum_{p \leq X} rac{1}{p^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

• We understand the distribution of $A_X(s)$ by taking moments

$$\int_{\mathcal{T}}^{2\mathcal{T}} |A_X(\sigma+it)|^{2k} dt$$
 , $k \in \mathbb{N}$ (1)

Computing (1) is similar to solving a system of T equations in X^k variables and thus forces $X^k \leq T$.

▶ Pick $X = T^{\varepsilon(T)}$ with $\varepsilon(T) \to 0$ as $T \to \infty$. Thus $|\mathcal{E}_X(s)| \to \infty$ on average.

We write

$$\log \zeta(s) = A_X(s) + \mathcal{E}_X(s)$$
 , $A_X(s) := \sum_{p \leq X} rac{1}{p^s}$

with $\mathcal{E}_X(s)$ a sum over the zeros ρ of $\zeta(s)$ satisfying $|\Im \rho - \Im s| < (\log X)^{-1}$. On average $\mathcal{E}_X \ll \log T / \log X$.

• We understand the distribution of $A_X(s)$ by taking moments

$$\int_{T}^{2T} |A_X(\sigma + it)|^{2k} dt , \ k \in \mathbb{N}$$
 (1)

Computing (1) is similar to solving a system of T equations in X^k variables and thus forces $X^k \leq T$.

Pick X = T^{ε(T)} with ε(T) → 0 as T → ∞. Thus |E_X(s)| → ∞ on average. This is where we loose compared to the probabilistic model.

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$\sum_{oldsymbol{p}\leq T^{\delta}}rac{1}{oldsymbol{p}^{s}}$$
 , $\delta>0$ fixed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$\sum_{{\it p} \leq T^{\delta}} rac{1}{{\it p}^{\it s}}$$
 , $\delta > 0$ fixed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This removes the loss in some of the previous theorems

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$\sum_{oldsymbol{p}\leq T^{\delta}}rac{1}{oldsymbol{p}^{s}}$$
 , $\delta>0$ fixed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This removes the loss in some of the previous theorems but we need to assume the Riemann Hypothesis.

I'm working on a method that in some cases allows to work with long Dirichlet polynomials

$$\sum_{{\it p} \leq T^{\delta}} rac{1}{{\it p}^{\it s}}$$
 , $\delta > 0$ fixed

This removes the loss in some of the previous theorems but we need to assume the Riemann Hypothesis. For example,

Theorem (R+,2013)

Assume the Riemann Hypothesis. Let X(T) be the number of sign changes of $S(t) := \frac{1}{\pi} \Im \log \zeta(\frac{1}{2} + it)$ in an interval of length T. Then

$$X(T) \asymp \frac{I \log I}{\sqrt{\log \log T}}.$$

Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides > C with C an absolute constant. Then,

$$\max_{T \le t \le 2T} \left\{ \log \zeta(\frac{1}{2} + it) \in \mathcal{R} \right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides > C with C an absolute constant. Then,

$$\max_{T \le t \le 2T} \left\{ \log \zeta(\frac{1}{2} + it) \in \mathcal{R} \right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

Hence there exists a C > 0 such that the curve t → log ζ(¹/₂ + it) intersects every annuli |z − α| = C, α ∈ C.

Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides > C with C an absolute constant. Then,

$$\max_{T \le t \le 2T} \left\{ \log \zeta(\frac{1}{2} + it) \in \mathcal{R} \right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

- Hence there exists a C > 0 such that the curve t → log ζ(¹/₂ + it) intersects every annuli |z − α| = C, α ∈ C.
- This is a weak form of Ramachandra's conjecture asserting that log ζ(¹/₂ + it) (or ζ(¹/₂ + it)) is dense in C.

Assume the Riemann Hypothesis. Let \mathcal{R} be a rectangle with sides > C with C an absolute constant. Then,

$$\max_{T \le t \le 2T} \left\{ \log \zeta(\frac{1}{2} + it) \in \mathcal{R} \right\} \asymp \frac{T \operatorname{meas}\{\mathcal{R}\}}{\log \log T}$$

provided that the vertices of the rectangle \mathcal{R} are $o(\sqrt{\log \log T})$.

- ▶ Hence there exists a C > 0 such that the curve $t \mapsto \log \zeta(\frac{1}{2} + it)$ intersects every annuli $|z \alpha| = C$, $\alpha \in \mathbb{C}$.
- This is a weak form of Ramachandra's conjecture asserting that log ζ(¹/₂ + *it*) (or ζ(¹/₂ + *it*)) is dense in C.
- The corresponding statement for log ζ(σ + it) with σ > ¹/₂ is known since the times of Bohr and Jessen.

$$\sum_{p \leq T^{\delta}} \frac{1}{p^s} = \sum_i A_i(s) \text{ with } A_i(s) = \sum_{T_{i-1}$$

$$\sum_{p \leq T^{\delta}} \frac{1}{p^s} = \sum_i A_i(s) \text{ with } A_i(s) = \sum_{T_{i-1}$$

and $T_i = \exp\left(\frac{\log T}{(\log_{i+1} T)^{10}}\right)$. with $\log_{i+1} T$ the (i + 1)-th iterated logarithm.

The variance of each A_i(s) is V_i² := log_{i+1} T. As i grows A_i(s) varies less and we need fewer moments to control it.

$$\sum_{p \leq T^{\delta}} \frac{1}{p^s} = \sum_i A_i(s) \text{ with } A_i(s) = \sum_{T_{i-1}$$

and $T_i = \exp\left(\frac{\log T}{(\log_{i+1} T)^{10}}\right)$. with $\log_{i+1} T$ the (i + 1)-th iterated logarithm.

- ► The variance of each A_i(s) is V_i² := log_{i+1} T. As i grows A_i(s) varies less and we need fewer moments to control it.
- Taking V_i^6 moments allows localize $A_i(s)$ to $\alpha_i + O(1/V_i)$.

$$\sum_{p \leq T^{\delta}} \frac{1}{p^s} = \sum_i A_i(s) \text{ with } A_i(s) = \sum_{T_{i-1}$$

and $T_i = \exp\left(\frac{\log T}{(\log_{i+1} T)^{10}}\right)$. with $\log_{i+1} T$ the (i + 1)-th iterated logarithm.

- ► The variance of each A_i(s) is V_i² := log_{i+1} T. As i grows A_i(s) varies less and we need fewer moments to control it.
- Taking V_i^6 moments allows localize $A_i(s)$ to $\alpha_i + O(1/V_i)$.
- We look at the joint distribution of the A_i(s)'s localizing each A_i(s) to α_i + O(1/V_i).

$$\sum_{p \leq T^{\delta}} \frac{1}{p^s} = \sum_i A_i(s) \text{ with } A_i(s) = \sum_{T_{i-1}$$

and $T_i = \exp\left(\frac{\log T}{(\log_{i+1} T)^{10}}\right)$. with $\log_{i+1} T$ the (i + 1)-th iterated logarithm.

- The variance of each A_i(s) is V_i² := log_{i+1} T. As i grows A_i(s) varies less and we need fewer moments to control it.
- Taking V_i^6 moments allows localize $A_i(s)$ to $\alpha_i + O(1/V_i)$.
- We look at the joint distribution of the A_i(s)'s localizing each A_i(s) to α_i + O(1/V_i).
- This gives rise to a value s at which

$$\sum_{p\leq T^{\delta}}\frac{1}{p^{s}}=\sum_{i}\alpha_{i}+O(1).$$

• This idea appears first in the context of moments of $\zeta(s)$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- This idea appears first in the context of moments of $\zeta(s)$.
- Independently, in a paper of Haper (on arxiv) and R. with Soundararajan (forthcoming).

Thank you!