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Introduction

I For <s > 1 the Riemann zeta-function ζ(s) is defined as

ζ(s) =
∑
n

1

ns

I Related to primes via

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

I Analytic continuation to all of C (Riemann).

I Most interesting in the region 1
2 ≤ <s ≤ 1 (the critical strip).

The line <s = 1
2 is of particular interest (Riemann

Hypothesis).
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Average size of ζ(s)

Theorem (Bohr-Jessen)

Let 1
2 < σ ≤ 1. Let R be a rectangle in C. Then,

1

T
meas

T≤t≤2T

{
log ζ(σ + it) ∈ R

}
→ Vσ(R)

where Vσ(·) is a probability distribution defined over C.

Theorem (Selberg)

Let R be a rectangle in C. Then,

1

T
meas

T≤t≤2T

{
log ζ(1

2 + it)
√

log log t
∈ R

}
→
∫∫
R

e−|z|
2/2 · |dz |

2π
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Average size of ζ(s)

The reason for these theorems is as follows:

I On average, we have

log ζ(σ + it) ∼
∑
p≤t

1

pσ+it

I The p−it equidistribute when t →∞.

I Therefore a good model for the average behavior of
log ζ(σ + it) is ∑

p≤t

X (p)

pσ
.

with X (p) independent and uniformly distribution on T.
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I For σ > 1
2 , the variance of

∑
p≤t X (p)p−σ converges to∑

p p−2σ as t →∞.

Therefore as t →∞ we have

P
(∑

p≤t

X (p)

pσ
∈ R

)
→ Vσ(R)

with Vσ(·) a two-dimensional probability distribution in C.

I For σ = 1
2 , the variance is

∑
p<t p−1 ∼ log log t →∞ as

t →∞. Therefore we have a central limit theorem

P
(∑

p≤t
X (p)
pσ

√
log log t

∈ R
)
→
∫∫
R

e−|z|
2/2 · |dz |

2π
.
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In practice the results we can prove are weaker than what is
predicted by the probabilistic model.

Let L = log log log T .

Theorem (Selberg)

We have,

1

T
meas

T≤t≤2T

{
log |ζ(1

2 + it)|√
1
2 log log t

∈ (α, β)

}
=

∫ β

α
e−u2/2 du√

2π
+ O(E)

where E � L2 · (log log T )−1/2.

Theorem (Selberg)

Let X (T ) be the number of sign changes of
S(t) := 1

π= log ζ(1
2 + it) in an interval of length T . Then

T log T√
log log T

· exp
(
− L2

)
� X (T )� T log T√

log log T
· L.
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Old method

I We write

log ζ(s) = AX (s) + EX (s) , AX (s) :=
∑
p≤X

1

ps

with EX (s) a sum over the zeros ρ of ζ(s) satisfying
|=ρ−=s| < (log X )−1.

On average EX � log T/ log X .

I We understand the distribution of AX (s) by taking moments∫ 2T

T
|AX (σ + it)|2kdt , k ∈ N (1)

Computing (1) is similar to solving a system of T equations in
X k variables and thus forces X k ≤ T .

I Pick X = T ε(T ) with ε(T )→ 0 as T →∞. Thus
|EX (s)| → ∞ on average. This is where we loose compared to
the probabilistic model.
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New method

I’m working on a method that in some cases allows to work with
long Dirichlet polynomials∑

p≤T δ

1

ps
, δ > 0 fixed

This removes the loss in some of the previous theorems but we
need to assume the Riemann Hypothesis. For example,

Theorem (R+,2013)

Assume the Riemann Hypothesis. Let X (T ) be the number of sign
changes of S(t) := 1

π= log ζ(1
2 + it) in an interval of length T .

Then

X (T ) � T log T√
log log T

.
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Theorem (R.,2013+)

Assume the Riemann Hypothesis. Let R be a rectangle with sides
> C with C an absolute constant. Then,

meas
T≤t≤2T

{
log ζ(1

2 + it) ∈ R
}
� T meas{R}

log log T

provided that the vertices of the rectangle R are o(
√

log log T ).

I Hence there exists a C > 0 such that the curve
t 7→ log ζ(1

2 + it) intersects every annuli |z − α| = C , α ∈ C.

I This is a weak form of Ramachandra’s conjecture asserting
that log ζ(1

2 + it) (or ζ(1
2 + it) ) is dense in C.

I The corresponding statement for log ζ(σ + it) with σ > 1
2 is

known since the times of Bohr and Jessen.
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Let s = 1
2 + it. The idea is to write,∑
p≤T δ

1

ps
=
∑

i

Ai (s) with Ai (s) =
∑

Ti−1<p≤Ti

1

ps

and Ti = exp

(
log T

(logi+1 T )10

)
. with logi+1 T the (i + 1)-th iterated

logarithm.

I The variance of each Ai (s) is V 2
i := logi+1 T . As i grows

Ai (s) varies less and we need fewer moments to control it.

I Taking V 6
i moments allows localize Ai (s) to αi + O(1/Vi ).

I We look at the joint distribution of the Ai (s)’s localizing each
Ai (s) to αi + O(1/Vi ).

I This gives rise to a value s at which∑
p≤T δ

1

ps
=
∑

i

αi + O(1).
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I This idea appears first in the context of moments of ζ(s).

I Independently, in a paper of Haper (on arxiv) and R. with
Soundararajan (forthcoming).
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Thank you!


