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What is this lecture about?

Symplectic topology (Conley, Zehnder, Gromov, Eliashberg,
Floer, Hofer,..., 1980 – ...), discovered surprising rigidity
phenomena involving symplectic manifolds, their subsets, and their
diffeomorphisms.

Question: What are quantum footprints of symplectic rigidity?

Difficulty: Quantum-classical correspondence is not sharp
(H.J. Groenewold, 1946)

Today’s story: Quantum counterparts of symplectic displacement
energy, a fundamental symplectic invariant (Hofer, 1990):

quantum speed limit (with Laurent Charles)

noise-localization uncertainty (recent developments)
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Fidelity

H- finite dimensional complex Hilbert space

L(H)- Hermitian operators, observables
S(H) - quantum states, ρ ∈ L(H), ρ ≥ 0, trace(ρ) = 1.

Fidelity: θ, σ ∈ S(H)
Φ(θ, σ) = ‖

√
θ
√
σ‖tr .

Measures overlap between quantum states.

Example: For pure states ξ, η ∈ H, |ξ| = |η| = 1,
Φ(ξ, η) = |〈ξ, η〉|.
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Dislocation

Ft ∈ L(H) - quantum Hamiltonian.
Schrödinger equation
U̇t = − i

~FtUt ,
Ut : H → H unitary evolution, U0 = 1l, U1 = U.

Quantum Hamiltonian Ft a-dislocates a state θ ∈ S if
Φ(θ,UθU−1) ≤ a, a ∈ [0, 1).

Appears e.g. in quantum computation. Margolus-Levitin (1998)
address the question about “the maximum number of distinct [i.e.,
non-overlapping] states that the system can pass through, per unit
of time. For a classical computer, this would correspond to the
maximum number of operations per second.”
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Quantum speed limit

The total energy of the quantum evolution is given by `q(F ),

`q(F ) :=
∫ 1
0 ‖Ft‖opdt.

Quantum speed limit: universal bound on the energy required to
a-dislocate a quantum state:

Φ(θ,UθU−1) ≤ a ⇒ `q(F ) ≥ arccos(a)~

Mandelstam-Tamm, 1945 “time-energy uncertainty”, Uhlmann
1992, Margolus-Levitin, 1998
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Quantum speed limit

ξ

Uξ

U π
2 h̄

SPEED
LIMIT

Figure: “Displacing” a pure quantum state

We explore semiclassical dislocation of semiclassical states.
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Displacement energy

(M, ω) - closed symplectic manifold.
Let ft , t ∈ [0, 1] be classical Hamiltonian generating Hamiltonian
diffeomorphism ϕ ∈ Ham (M, ω). Total energy

`c(f ) =
∫ 1
0 ||ft ||dt, where ||g || := max |g |-uniform norm.

Dispacement energy of a displaceable subset X ⊂ M
e(X ) := inf `c(f ) over all displacing Hamiltonians f .

Fundamental invariant in modern symplectic topology (Hofer
1990,...) Yields biinvariant metric geometry of Ham.

Rigidity: e(X ) > 0 for all open X
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Flexibility

Counterpoint: If Vol(X ) < 1
2 · Vol(M), for all ε > 0, δ > 0 there

exists ft such that

Vol(ϕX ∩ X ) < ε, `c(f ) < δ.

No measure-theoretic symplectic rigidity

Based on Katok’s lemma, 1970, Ostrover-Wagner, 2005.

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity



Flexibility

Counterpoint: If Vol(X ) < 1
2 · Vol(M), for all ε > 0, δ > 0 there

exists ft such that

Vol(ϕX ∩ X ) < ε, `c(f ) < δ.

No measure-theoretic symplectic rigidity

Based on Katok’s lemma, 1970, Ostrover-Wagner, 2005.

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity



Flexibility

Counterpoint: If Vol(X ) < 1
2 · Vol(M), for all ε > 0, δ > 0 there

exists ft such that

Vol(ϕX ∩ X ) < ε, `c(f ) < δ.

No measure-theoretic symplectic rigidity

Based on Katok’s lemma, 1970, Ostrover-Wagner, 2005.

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity



Berezin-Toeplitz quantization-1

(M, ω)- closed Kähler manifold, quantizable: [ω]/(2π) ∈ H2(M,Z)

L- a holomorphic Hermitian line bundle over M
Curvature of Chern connection = iω.

H~ := H0(M, L⊗k) ⊂ V~ := L2(M, L⊗k).
Π~ : V~ → H~ – the orthogonal projection.
The Toeplitz operator: T~(f )(s) := Π~(fs), f ∈ C∞(M), s ∈ H~.
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Berezin-Toeplitz quantization-2

Hyperplane Ez ⊂ H, Ez := {s ∈ H~ : s(z) = 0}.

Kodaira embedding M → P(H∗~ ), z 7→ Ez

Pz,~– orthogonal projector of H~ to E⊥z coherent state projector

There exists Rawnsley function R~ ∈ C∞(M):

T~(f ) =

∫
M
f (x)R~(x)Px ,~dVol(x) ,

Definition: For classical state τ (probability measure on M)

Q~(τ) =

∫
M
Px ,~dτ(x) ∈ S(H~)

“classical” quantum state , Giraud-Braun-Braun 2008
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Displacement yields dislocation

ft-classical Hamiltonian, t ∈ [0, 1], τ -classical state.
Ft = T~(ft)- quantum Hamiltonian, θ = Q~(τ) - quantum state.

Theorem (Charles-P., 2016)

If ft displaces supp(τ) ⇒ Ft O(~∞)-dislocates θ.

Figure: ϕ-time-one-map of the flow of ft
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Dislocation yields displacement

Assume τ has smooth density, ft,~ depends on ~
and bounded with 4 derivatives, dimM = 2n.

Theorem (Charles-P., 2016, sketch)

If Ft,~ o(~n)-dislocates θ ⇒ ft,~ displaces supp(τ) and

`q(Ft,~) ≥ e(supp(τ)) .

Conclusion: Speed limit becomes more restrictive ∼ 1 than the
universal bound ∼ ~.
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Rigidity vs. flexibility on quantum side

Theorem (Charles-P., 2016)

Assume Vol(supp(τ)) < 1
2 · Vol(M). Then ∀ε, δ > 0 there exists ft

such that Ft ε-dislocates θ and `q(Ft) < δ.

Conclusion: Competition between rigidity (`q > e) vs. flexibility

(`q < δ) is governed by the rate of dislocation .

RIGIDITY FLEXIBILITY

RATE OF DISLOCATION o(~n) ε
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Remainders of BT quantization

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on
technology of V. Guillemin-L. Boutet de Monvel.
Survey by M. Schlichenmaier, 2010.
Important tool in our work.

(P1) (norm correspondence) ‖f ‖ − O(~) ≤ ‖T~(f )‖Op ≤ ‖f ‖;
(P2) (the correspondence principle)

‖ − (i/~)[T~(f ),T~(g)]− T~({f , g})‖Op = O(~) ;

(P3) (quasi-multiplicativity) ‖T~(fg)− T~(f )T~(g)‖Op = O(~);

(P4) (trace correspondence)∣∣trace(T~(f ))− (2π~)−n
∫
M f ωn

n!

∣∣ = O(~−(n−1)),

for all f , g ∈ C∞(M).
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Zooming into small scales

Theorems 1,2 extend to dislocation of semiclassical states which
“occupy” a ball of radius ~ε, ε ∈ [0, 1/2) in the phase space. The
speed limit on such a scale is ∼ ~2ε which, again, is more
restrictive than the universal quantum speed limit ∼ ~.

Involves sharp remainder bounds for BT quantization (Charles-P.,
2016; Charles, 2017)
Notation: |f |i - C i -norm.

(P1) ≤ α|f |2~;

(P2) ≤ β(|f |1 · |g |3 + |f |2 · |g |2 + |f |3 · |g |1)~ .

(P3) ≤ γ(|f |0 · |g |2 + |f |1 · |g |1 + |f |2 · |g |0)~ .

Rigidity of remainders: (Charles-P., 2016) α, β, γ cannot be
small simultaneously
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Quantum “proof” of e(B) > 0

B(r) ⊂ R2n – ball of radius r . To prove: e(B(r)) & r2.

WLOG choose r =
√
~ - quantum scale.

Let τ be the “squeezed” coherent state occupying B.

If time 1 map φ of classical Hamiltonian f displaces B, the
quantum Hamiltonian F dislocates τ , so by universal speed limit

`c(f ) ≈ `q(F ) & ~⇒ e(B(
√
~)) & ~. QED

HOW COME?? Such a proof cannot exist - not hard enough.
Resolution: Remainders of quantization are large on scale ∼

√
~
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Phase space localization

U = {Uj}- open cover of (M, ω)
Classical: Register z ∈ M in exactly
one Uj 3 z . Ambiguity because of overlaps.

Resolve at random
using a subordinated partition of unity {fj}:
z registers in Uj with probability
fj(z). “truth, but not the whole truth”

Quantize: fj 7→ Aj = T~(fj). Fix state ρ.
Register system in Uj with prob. Trace(Ajρ).
This procedure exhibits noise (increment of “variances”) governed
by ||[Ai ,Aj ]||op ≈ ~||{fi , fj}||

Noise-Localization Uncertainty (P., 2014)

Noise×max
i

Size(Ui ) ≥ C~

Fine localization ⇒ large noise.
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Poisson bracket invariants of covers

(M, ω)-closed symplectic manifold
U = {Uj}Nj=1- open cover by displaceable sets
~f = {fj} - subordinated partition of unity

Magnitude of non-commutativity:
ν(~f ) = maxx ,y∈[−1,1]N ||{

∑
xi fi ,

∑
yj fj}||.

Poisson bracket invariant: pb(U) := inf~f ν(~f )

Displacement energy: e(U) := maxj e(Uj).

Conjecture (P., counterpart of noise-localization)

pb(U) · e(U) ≥ C (M, ω) ∀U .
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The state of the art

Entov-P, 2006 Open cover U by displaceable open sets does not
admit a Poisson commuting partition of unity.

Tools: symplectic quasi-states, positive functionals linear on
(Poisson) commutative subalgebras of C (M) but not on the

whole space. Quantum indeterminism.
New proof: Umut Varolgunes, 2018 - Mayer-Vietoris in relative
sympl. homology.

EP-Zapolsky, 2007 pb(U) > C > 0, C = C (U ,N, ...).

P.,2014, Seyfaddini, 2015; Ishikawa, 2015 pb(U) · e(U) ≥ C , in
special situations (covers by balls, monotonicity,...) with
C depending on the degree of the cover .

Buhovsky-Shira Tanny-Logunov (2018): Proof for closed surfaces
with universal C . (cf. Jordan Payette, 2018).
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The End
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