Quantum footprints of symplectic rigidity

Leonid Polterovich, Tel Aviv

IAS, October, 2018

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity

伺下 イヨト イヨト

Question: What are quantum footprints of symplectic rigidity?

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Question: What are quantum footprints of symplectic rigidity?

Difficulty: Quantum-classical correspondence is not sharp (H.J. Groenewold, 1946)

イロト イボト イヨト イヨト

Question: What are quantum footprints of symplectic rigidity?

Difficulty: Quantum-classical correspondence is not sharp (H.J. Groenewold, 1946)

Today's story: Quantum counterparts of symplectic displacement energy, a fundamental symplectic invariant (Hofer, 1990):

• quantum speed limit (with Laurent Charles)

Question: What are quantum footprints of symplectic rigidity?

Difficulty: Quantum-classical correspondence is not sharp (H.J. Groenewold, 1946)

Today's story: Quantum counterparts of symplectic displacement energy, a fundamental symplectic invariant (Hofer, 1990):

- quantum speed limit (with Laurent Charles)
- noise-localization uncertainty (recent developments)

H- finite dimensional complex Hilbert space

ヘロト ヘヨト ヘヨト ヘヨト

æ

H- finite dimensional complex Hilbert space $\mathcal{L}(H)$ - Hermitian operators, observables

イロト イポト イヨト イヨト

э

H- finite dimensional complex Hilbert space $\mathcal{L}(H)$ - Hermitian operators, observables $\mathcal{S}(H)$ - quantum states, $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, trace $(\rho) = 1$.

イロト イポト イヨト イヨト

H- finite dimensional complex Hilbert space $\mathcal{L}(H)$ - Hermitian operators, observables $\mathcal{S}(H)$ - quantum states, $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, trace $(\rho) = 1$.

Fidelity: $\theta, \sigma \in \mathcal{S}(H)$ $\Phi(\theta, \sigma) = \|\sqrt{\theta}\sqrt{\sigma}\|_{tr}.$ Measures overlap between quantum states.

H- finite dimensional complex Hilbert space $\mathcal{L}(H)$ - Hermitian operators, observables $\mathcal{S}(H)$ - quantum states, $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, trace $(\rho) = 1$.

Fidelity: $\theta, \sigma \in S(H)$ $\Phi(\theta, \sigma) = \|\sqrt{\theta}\sqrt{\sigma}\|_{tr}$. Measures overlap between quantum states.

Example: For pure states $\xi, \eta \in H$, $|\xi| = |\eta| = 1$, $\Phi(\xi, \eta) = |\langle \xi, \eta \rangle|$.

イロト イボト イヨト イヨト

 $F_t \in \mathcal{L}(H)$ - quantum Hamiltonian. Schrödinger equation $\dot{U}_t = -\frac{i}{\hbar}F_tU_t$, $U_t : H \to H$ unitary evolution, $U_0 = \mathbb{1}$, $U_1 = U$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} F_t \in \mathcal{L}(H) &- \text{quantum Hamiltonian.} \\ \text{Schrödinger equation} \\ \dot{U}_t &= -\frac{i}{\hbar}F_tU_t, \\ U_t &: H \to H \text{ unitary evolution, } U_0 = \mathbb{1}, \ U_1 = U. \\ \text{Quantum Hamiltonian } F_t \text{ a-dislocates} \text{ a state } \theta \in \mathcal{S} \text{ if } \\ \Phi(\theta, U\theta U^{-1}) &\leq a, \ a \in [0, 1). \end{split}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

 $F_t \in \mathcal{L}(H)$ - quantum Hamiltonian. Schrödinger equation $\dot{U}_t = -\frac{i}{\hbar}F_tU_t$, $U_t : H \to H$ unitary evolution, $U_0 = \mathbb{1}$, $U_1 = U$. Quantum Hamiltonian F_t a-dislocates a state $\theta \in S$ if $\Phi(\theta, U\theta U^{-1}) \le a$, $a \in [0, 1)$.

Appears e.g. in quantum computation. Margolus-Levitin (1998) address the question about "the maximum number of distinct [i.e., non-overlapping] states that the system can pass through, per unit of time. For a classical computer, this would correspond to the maximum number of operations per second."

イロト イヨト イヨト

The total energy of the quantum evolution is given by $\ell_q(F)$, $\ell_q(F) := \int_0^1 ||F_t||_{op} dt$.

イロト イポト イヨト イヨト

The total energy of the quantum evolution is given by $\ell_q(F)$, $\ell_q(F) := \int_0^1 \|F_t\|_{op} dt$.

Quantum speed limit: universal bound on the energy required to *a*-dislocate a quantum state:

$$\Phi(\theta, U\theta U^{-1}) \leq a \ \Rightarrow \ \ell_q(F) \geq \arccos(a)\hbar$$

Mandelstam-Tamm, 1945 "time-energy uncertainty", Uhlmann 1992, Margolus-Levitin, 1998

イロト 不得 トイヨト イヨト 二日

Quantum speed limit

Figure: "Displacing" a pure quantum state

We explore semiclassical dislocation of semiclassical states.

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity

イロト イボト イヨト イヨト

 (M, ω) - closed symplectic manifold. Let f_t , $t \in [0, 1]$ be classical Hamiltonian generating Hamiltonian diffeomorphism $\varphi \in Ham(M, \omega)$. Total energy

 $\ell_c(f) = \int_0^1 ||f_t|| dt$, where $||g|| := \max |g|$ -uniform norm.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

 (M, ω) - closed symplectic manifold.

Let f_t , $t \in [0, 1]$ be classical Hamiltonian generating Hamiltonian diffeomorphism $\varphi \in Ham(M, \omega)$. Total energy

 $\ell_c(f) = \int_0^1 ||f_t|| dt$, where $||g|| := \max |g|$ -uniform norm.

Dispacement energy of a displaceable subset $X \subset M$ $e(X) := \inf \ell_c(f)$ over all displacing Hamiltonians f.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

 (M, ω) - closed symplectic manifold.

Let f_t , $t \in [0, 1]$ be classical Hamiltonian generating Hamiltonian diffeomorphism $\varphi \in Ham(M, \omega)$. Total energy

 $\ell_c(f) = \int_0^1 ||f_t|| dt$, where $||g|| := \max |g|$ -uniform norm.

Dispacement energy of a displaceable subset $X \subset M$ $e(X) := \inf \ell_c(f)$ over all displacing Hamiltonians f.

Fundamental invariant in modern symplectic topology (Hofer 1990,...) Yields biinvariant metric geometry of *Ham*.

 (M, ω) - closed symplectic manifold.

Let f_t , $t \in [0, 1]$ be classical Hamiltonian generating Hamiltonian diffeomorphism $\varphi \in Ham(M, \omega)$. Total energy

 $\ell_c(f) = \int_0^1 ||f_t|| dt$, where $||g|| := \max |g|$ -uniform norm.

Dispacement energy of a displaceable subset $X \subset M$ $e(X) := \inf \ell_c(f)$ over all displacing Hamiltonians f.

Fundamental invariant in modern symplectic topology (Hofer 1990,...) Yields biinvariant metric geometry of *Ham*.

Rigidity: e(X) > 0 for all open X

イロト 不得 トイヨト イヨト 三日

Counterpoint: If $Vol(X) < \frac{1}{2} \cdot Vol(M)$, for all $\epsilon > 0, \delta > 0$ there exists f_t such that

 $\operatorname{Vol}(\varphi X \cap X) < \epsilon, \ \ell_c(f) < \delta.$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Counterpoint: If $Vol(X) < \frac{1}{2} \cdot Vol(M)$, for all $\epsilon > 0, \delta > 0$ there exists f_t such that

 $\operatorname{Vol}(\varphi X \cap X) < \epsilon, \ \ell_c(f) < \delta.$

No measure-theoretic symplectic rigidity

イロト イボト イヨト イヨト

Counterpoint: If $Vol(X) < \frac{1}{2} \cdot Vol(M)$, for all $\epsilon > 0, \delta > 0$ there exists f_t such that

 $\operatorname{Vol}(\varphi X \cap X) < \epsilon, \ \ell_c(f) < \delta.$

No measure-theoretic symplectic rigidity

Based on Katok's lemma, 1970, Ostrover-Wagner, 2005.

イロト イボト イヨト イヨト

 (M, ω) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

э

 $H_{\hbar} := H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}).$

イロト 不得 トイヨト イヨト 二日

$$\begin{split} H_{\hbar} &:= H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}). \\ \Pi_{\hbar} &: V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.} \end{split}$$

イロト イヨト イヨト

 $\begin{aligned} H_{\hbar} &:= H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}). \\ \Pi_{\hbar} &: V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.} \\ \text{The Toeplitz operator: } T_{\hbar}(f)(s) &:= \Pi_{\hbar}(fs), f \in C^{\infty}(M), s \in H_{\hbar}. \end{aligned}$

イロト イポト イヨト イヨト

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$.

イロト イヨト イヨト

э

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_\hbar^*)$, $z \mapsto E_z$

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_\hbar^*)$, $z \mapsto E_z$ $P_{z,\hbar}$ - orthogonal projector of H_\hbar to E_z^{\perp} coherent state projector

イロト イポト イヨト イヨト

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_\hbar^*)$, $z \mapsto E_z$ $P_{z,\hbar}$ - orthogonal projector of H_\hbar to E_z^{\perp} coherent state projector There exists Rawnsley function $R_\hbar \in C^{\infty}(M)$:

$$T_{\hbar}(f) = \int_{M} f(x) R_{\hbar}(x) P_{x,\hbar} d\operatorname{Vol}(x) \; ,$$

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_\hbar^*)$, $z \mapsto E_z$ $P_{z,\hbar}$ - orthogonal projector of H_\hbar to E_z^{\perp} coherent state projector There exists Rawnsley function $R_\hbar \in C^{\infty}(M)$:

$$T_{\hbar}(f) = \int_{M} f(x) R_{\hbar}(x) P_{x,\hbar} d\operatorname{Vol}(x) \; ,$$

Definition: For classical state τ (probability measure on M)

$$Q_{\hbar}(au) = \int_{M} P_{x,\hbar} d au(x) \in \mathcal{S}(H_{\hbar})$$

"classical" quantum state, Giraud-Braun-Braun 2008

< ロ > < 同 > < 回 > < 回 > < □ > <

Displacement yields dislocation

 f_t -classical Hamiltonian, $t \in [0, 1]$, τ -classical state. $F_t = T_{\hbar}(f_t)$ - quantum Hamiltonian, $\theta = Q_{\hbar}(\tau)$ - quantum state.

< 同 > < 三 > < 三 >

Displacement yields dislocation

 f_t -classical Hamiltonian, $t \in [0, 1]$, τ -classical state. $F_t = T_{\hbar}(f_t)$ - quantum Hamiltonian, $\theta = Q_{\hbar}(\tau)$ - quantum state.

Theorem (Charles-P., 2016)

If f_t displaces $supp(\tau) \Rightarrow F_t O(\hbar^{\infty})$ -dislocates θ .

Figure: φ -time-one-map of the flow of f_t

イロト イボト イヨト イヨト
Assume τ has smooth density, $f_{t,\hbar}$ depends on \hbar and bounded with 4 derivatives, dim M = 2n.

Assume τ has smooth density, $f_{t,\hbar}$ depends on \hbar and bounded with 4 derivatives, dim M = 2n.

Theorem (Charles-P., 2016, sketch)

If $F_{t,\hbar}$ $o(\hbar^n)$ -dislocates $\theta \Rightarrow f_{t,\hbar}$ displaces $supp(\tau)$ and

 $\ell_q(F_{t,\hbar}) \geq e(supp(\tau))$.

Assume τ has smooth density, $f_{t,\hbar}$ depends on \hbar and bounded with 4 derivatives, dim M = 2n.

Theorem (Charles-P., 2016, sketch)

If $F_{t,\hbar}$ $o(\hbar^n)$ -dislocates $\theta \Rightarrow f_{t,\hbar}$ displaces $supp(\tau)$ and

 $\ell_q(F_{t,\hbar}) \geq e(supp(\tau))$.

Conclusion: Speed limit becomes more restrictive ~ 1 than the universal bound $\sim \hbar$.

Theorem (Charles-P., 2016)

Assume $Vol(supp(\tau)) < \frac{1}{2} \cdot Vol(M)$. Then $\forall \epsilon, \delta > 0$ there exists f_t such that $F_t \epsilon$ -dislocates θ and $\ell_q(F_t) < \delta$.

Conclusion: Competition between rigidity $(\ell_q > e)$ vs. flexibility $(\ell_q < \delta)$ is governed by the rate of dislocation.

Theorem (Charles-P., 2016)

Assume $Vol(supp(\tau)) < \frac{1}{2} \cdot Vol(M)$. Then $\forall \epsilon, \delta > 0$ there exists f_t such that $F_t \epsilon$ -dislocates θ and $\ell_q(F_t) < \delta$.

Conclusion: Competition between rigidity $(\ell_q > e)$ vs. flexibility $(\ell_q < \delta)$ is governed by the rate of dislocation.

RIGIDITYFLEXIBILITYRATE OF DISLOCATION $o(\hbar^n)$ ϵ

< ロ > < 同 > < 回 > < 回 > < □ > <

Remainders of BT quantization

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on technology of V. Guillemin-L. Boutet de Monvel. Survey by M. Schlichenmaier, 2010. Important tool in our work.

Remainders of BT quantization

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on technology of V. Guillemin-L. Boutet de Monvel. Survey by M. Schlichenmaier, 2010. Important tool in our work.

(P1) (norm correspondence) $||f|| - O(\hbar) \le ||T_{\hbar}(f)||_{Op} \le ||f||;$

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Remainders of BT quantization

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on technology of V. Guillemin-L. Boutet de Monvel. Survey by M. Schlichenmaier, 2010. Important tool in our work.

(P1) (norm correspondence) $||f|| - O(\hbar) \le ||T_{\hbar}(f)||_{Op} \le ||f||$; (P2) (the correspondence principle)

$$\|-(i/\hbar)[T_{\hbar}(f), T_{\hbar}(g)] - T_{\hbar}(\{f,g\})\|_{Op} = O(\hbar);$$

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on technology of V. Guillemin-L. Boutet de Monvel. Survey by M. Schlichenmaier, 2010. Important tool in our work.

(P1) (norm correspondence) $||f|| - O(\hbar) \le ||T_{\hbar}(f)||_{Op} \le ||f||$; (P2) (the correspondence principle)

$$\| - (i/\hbar) [T_{\hbar}(f), T_{\hbar}(g)] - T_{\hbar}(\{f,g\}) \|_{Op} = O(\hbar);$$

(P3) (quasi-multiplicativity) $||T_{\hbar}(fg) - T_{\hbar}(f)T_{\hbar}(g)||_{Op} = O(\hbar);$

イロト 不得 トイヨト イヨト 三日

M. Bordemann-E. Meinrenken-M. Schlichenmaier, 1994, based on technology of V. Guillemin-L. Boutet de Monvel. Survey by M. Schlichenmaier, 2010. Important tool in our work.

(P1) (norm correspondence) $||f|| - O(\hbar) \le ||T_{\hbar}(f)||_{Op} \le ||f||$; (P2) (the correspondence principle)

$$\|-(i/\hbar)[T_{\hbar}(f), T_{\hbar}(g)] - T_{\hbar}(\{f,g\})\|_{Op} = O(\hbar);$$

(P3) (quasi-multiplicativity) $||T_{\hbar}(fg) - T_{\hbar}(f)T_{\hbar}(g)||_{Op} = O(\hbar);$ (P4) (trace correspondence) $|\operatorname{trace}(T_{\hbar}(f)) - (2\pi\hbar)^{-n} \int_{M} f \frac{\omega^{n}}{n!} | = O(\hbar^{-(n-1)}),$ for all $f, g \in C^{\infty}(M).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017)

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

 $(\mathsf{P1}) \leq \alpha |f|_2 \hbar;$

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

```
 \begin{aligned} (\mathsf{P1}) &\leq \alpha |f|_2 \hbar; \\ (\mathsf{P2}) &\leq \beta (|f|_1 \cdot |g|_3 + |f|_2 \cdot |g|_2 + |f|_3 \cdot |g|_1) \hbar . \end{aligned}
```

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

```
 \begin{aligned} (\mathsf{P1}) &\leq \alpha |f|_2 \hbar; \\ (\mathsf{P2}) &\leq \beta (|f|_1 \cdot |g|_3 + |f|_2 \cdot |g|_2 + |f|_3 \cdot |g|_1) \hbar \\ (\mathsf{P3}) &\leq \gamma (|f|_0 \cdot |g|_2 + |f|_1 \cdot |g|_1 + |f|_2 \cdot |g|_0) \hbar . \end{aligned}
```

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

```
 \begin{aligned} (\mathsf{P1}) &\leq \alpha |f|_2 \hbar; \\ (\mathsf{P2}) &\leq \beta (|f|_1 \cdot |g|_3 + |f|_2 \cdot |g|_2 + |f|_3 \cdot |g|_1) \hbar \\ (\mathsf{P3}) &\leq \gamma (|f|_0 \cdot |g|_2 + |f|_1 \cdot |g|_1 + |f|_2 \cdot |g|_0) \hbar . \end{aligned}
```

Involves sharp remainder bounds for BT quantization (Charles-P., 2016; Charles, 2017) Notation: $|f|_i - C^i$ -norm.

```
 \begin{aligned} (\mathsf{P1}) &\leq \alpha |f|_2 \hbar; \\ (\mathsf{P2}) &\leq \beta (|f|_1 \cdot |g|_3 + |f|_2 \cdot |g|_2 + |f|_3 \cdot |g|_1) \hbar \\ (\mathsf{P3}) &\leq \gamma (|f|_0 \cdot |g|_2 + |f|_1 \cdot |g|_1 + |f|_2 \cdot |g|_0) \hbar . \end{aligned}
```

Rigidity of remainders: (Charles-P., 2016) α, β, γ cannot be small simultaneously

イロト イボト イヨト イヨト

3

 $B(r) \subset \mathbb{R}^{2n}$ – ball of radius r. To prove: $e(B(r)) \gtrsim r^2$. WLOG choose $r = \sqrt{\hbar}$ - quantum scale.

 $B(r) \subset \mathbb{R}^{2n}$ – ball of radius r. To prove: $e(B(r)) \gtrsim r^2$. WLOG choose $r = \sqrt{\hbar}$ - quantum scale.

Let τ be the "squeezed" coherent state occupying B.

イロト 不得 トイヨト イヨト 三日

 $B(r) \subset \mathbb{R}^{2n}$ – ball of radius r. To prove: $e(B(r)) \gtrsim r^2$. WLOG choose $r = \sqrt{\hbar}$ - quantum scale.

Let τ be the "squeezed" coherent state occupying B.

If time 1 map ϕ of classical Hamiltonian f displaces B, the quantum Hamiltonian F dislocates τ , so by universal speed limit $\ell_c(f) \approx \ell_q(F) \gtrsim \hbar \Rightarrow e(B(\sqrt{\hbar})) \gtrsim \hbar$. QED

 $B(r) \subset \mathbb{R}^{2n}$ – ball of radius r. To prove: $e(B(r)) \gtrsim r^2$. WLOG choose $r = \sqrt{\hbar}$ - quantum scale.

Let τ be the "squeezed" coherent state occupying B.

If time 1 map ϕ of classical Hamiltonian f displaces B, the quantum Hamiltonian F dislocates τ , so by universal speed limit $\ell_c(f) \approx \ell_q(F) \gtrsim \hbar \Rightarrow e(B(\sqrt{\hbar})) \gtrsim \hbar$. QED HOW COME?? Such a proof cannot exist - not hard enough.

 $B(r) \subset \mathbb{R}^{2n}$ – ball of radius r. To prove: $e(B(r)) \gtrsim r^2$. WLOG choose $r = \sqrt{\hbar}$ - quantum scale.

Let τ be the "squeezed" coherent state occupying B.

If time 1 map ϕ of classical Hamiltonian f displaces B, the quantum Hamiltonian F dislocates τ , so by universal speed limit $\ell_c(f) \approx \ell_q(F) \gtrsim \hbar \Rightarrow e(B(\sqrt{\hbar})) \gtrsim \hbar$. QED HOW COME?? Such a proof cannot exist - not hard enough.

Resolution: Remainders of quantization are large on scale $\sim \sqrt{\hbar}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps. Resolve **at random** using a subordinated partition of unity $\{f_j\}$: z registers in U_j with probability

 $f_j(z)$. "truth, but not the whole truth"

< 同 > < 国 > < 国 >

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps. Resolve **at random** using a subordinated partition of unity $\{f_j\}$: z registers in U_j with probability $f_i(z)$. "truth, but not the whole truth"

Quantize: $f_j \mapsto A_j = T_{\hbar}(f_j)$. Fix state ρ . Register system in U_j with prob. $Trace(A_j\rho)$.

イロト 不得 トイヨト イヨト

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps. Resolve **at random** using a subordinated partition of unity $\{f_j\}$: z registers in U_j with probability $f_i(z)$. "truth, but not the whole truth"

イロト イボト イヨト イヨト

Quantize: $f_j \mapsto A_j = T_{\hbar}(f_j)$. Fix state ρ . Register system in U_j with prob. $Trace(A_j\rho)$. This procedure exhibits **noise** (increment of "variances") governed by $||[A_i, A_j]||_{op} \approx \hbar ||\{f_i, f_j\}||$

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps. Resolve **at random** using a subordinated partition of unity $\{f_j\}$: z registers in U_j with probability $f_i(z)$. "truth, but not the whole truth"

< ロ > < 同 > < 回 > < 回 > < □ > <

Quantize: $f_j \mapsto A_j = T_{\hbar}(f_j)$. Fix state ρ . Register system in U_j with prob. $Trace(A_j\rho)$. This procedure exhibits **noise** (increment of "variances") governed by $||[A_i, A_j]||_{op} \approx \hbar ||\{f_i, f_j\}||$

Noise-Localization Uncertainty (P., 2014)

$$\mathsf{Noise} imes \max_i \mathsf{Size}(U_i) \geq C\hbar$$

 $\mathcal{U} = \{U_j\}$ - open cover of (M, ω) **Classical:** Register $z \in M$ in exactly one $U_j \ni z$. Ambiguity because of overlaps. Resolve **at random** using a subordinated partition of unity $\{f_j\}$: z registers in U_j with probability $f_i(z)$. "truth, but not the whole truth"

Quantize: $f_j \mapsto A_j = T_{\hbar}(f_j)$. Fix state ρ . Register system in U_j with prob. $Trace(A_j\rho)$. This procedure exhibits **noise** (increment of "variances") governed by $||[A_i, A_j]||_{op} \approx \hbar ||\{f_i, f_j\}||$

Noise-Localization Uncertainty (P., 2014)

 $Noise \times \max_i Size(U_i) \ge C\hbar$

Fine localization \Rightarrow large noise.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Magnitude of non-commutativity: $\nu(\vec{f}) = \max_{x,y \in [-1,1]^N} ||\{\sum x_i f_i, \sum y_j f_j\}||.$

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Magnitude of non-commutativity: $\nu(\vec{f}) = \max_{x,y \in [-1,1]^N} ||\{\sum x_i f_i, \sum y_j f_j\}||.$

Poisson bracket invariant: $pb(U) := \inf_{\vec{f}} \nu(\vec{f})$

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Magnitude of non-commutativity: $\nu(\vec{f}) = \max_{x,y \in [-1,1]^N} ||\{\sum x_i f_i, \sum y_j f_j\}||.$

Poisson bracket invariant: $pb(U) := \inf_{\vec{f}} \nu(\vec{f})$

Displacement energy: $e(U) := \max_j e(U_j)$.

4月 2 4 3 2 4 3 5 4

Magnitude of non-commutativity: $\nu(\vec{f}) = \max_{x,y \in [-1,1]^N} ||\{\sum x_i f_i, \sum y_j f_j\}||.$

Poisson bracket invariant: $pb(\mathcal{U}) := \inf_{\vec{f}} \nu(\vec{f})$

Displacement energy: $e(U) := \max_j e(U_j)$.

Conjecture (P., counterpart of noise-localization) $pb(U) \cdot e(U) \ge C(M, \omega) \quad \forall U.$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Entov-P, 2006 Open cover \mathcal{U} by displaceable open sets does not admit a Poisson commuting partition of unity.

・ 同 ト ・ ヨ ト ・ ヨ ト
Tools: symplectic quasi-states, positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Quantum indeterminism.

Tools: symplectic quasi-states, positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Quantum indeterminism. New proof: Umut Varolgunes, 2018 - Mayer-Vietoris in relative sympl. homology.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Tools: symplectic quasi-states, positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Quantum indeterminism. New proof: Umut Varolgunes, 2018 - Mayer-Vietoris in relative sympl. homology.

EP-Zapolsky, 2007 pb(U) > C > 0, C = C(U, N, ...).

イロト 不得 トイヨト イヨト

Tools: symplectic quasi-states, positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Quantum indeterminism. New proof: Umut Varolgunes, 2018 - Mayer-Vietoris in relative sympl. homology.

EP-Zapolsky, 2007 $pb(\mathcal{U}) > C > 0$, $C = C(\mathcal{U}, N, ...)$.

P.,2014, Seyfaddini, 2015; Ishikawa, 2015 $pb(U) \cdot e(U) \ge C$, in special situations (covers by balls, monotonicity,...) with *C* depending on the degree of the cover.

イロト 不得 トイヨト イヨト 二日

Tools: symplectic quasi-states, positive functionals linear on (Poisson) commutative subalgebras of C(M) but not on the whole space. Quantum indeterminism. New proof: Umut Varolgunes, 2018 - Mayer-Vietoris in relative sympl. homology.

EP-Zapolsky, 2007 $pb(\mathcal{U}) > C > 0$, $C = C(\mathcal{U}, N, ...)$.

P.,2014, Seyfaddini, 2015; Ishikawa, 2015 $pb(U) \cdot e(U) \ge C$, in special situations (covers by balls, monotonicity,...) with C depending on the degree of the cover.

Buhovsky-Shira Tanny-Logunov (2018): Proof for closed surfaces with universal *C*. (cf. Jordan Payette, 2018).

イロト 不得 トイヨト イヨト 二日

THANK YOU!

Leonid Polterovich, Tel Aviv University Quantum footprints of symplectic rigidity

- (同) - (目) - (目)