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First Linnik problem

For D ∈ N put RD = {(x , y , z) ∈ Z3
prim : x2 + y2 + z2 = D}

Legendre: RD 6= ∅ iff D ∈ D, where D = {D 6≡ 0, 4, 7 mod 8}.

Gauss, Siegel, Dirichlet: for D ∈ D: |RD | = D1/2+o(1).

Write

SD =

{
v

‖v‖
: v ∈ RD

}
⊂ S2 = {x2 + y2 + z2 = 1}.

Let µS2 be the normalized Lebesgue measure on the sphere S2.

Conjecture A: Equidistribution of integer points on the sphere

For D ∈ D let

µSD
=

1

|SD |
∑
u∈SD

δu.

Then µSD
weak-* converges to µS2 as D →∞ in D.
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The coronavirus

Figure: Covid-19



Numerical example

Figure: Integer points of norm 104851 projected onto S2

Ellenberg, Michel, Venkatesh, Linnik’s ergodic method and the
distribution of integer points on spheres



Linnik (1950-60’s)

Let p > 2 be prime and write

D(p) = {D ∈ D : −D ∈ (F×p )2}.

Then µSD

w∗−→ µS2 as D →∞ in D(p).

Linnik’s condition D ∈ D(p) is equivalent to

the stabilizer of a point in RD is a split torus over Qp.

Basic idea of ergodic method: let ν be a weak-* limit.
1 Show that ν has maximal entropy, by bootstrapping an upper

bound on the spacing of nearby points (Linnik’s Basic Lemma)
2 Apply uniqueness result of Einsiedler–Lindenstrauss.

Quantitative version: µSD

w∗−→ µS2 as D →∞ in the set{
D ∈ D : ∃ p � D

1
o(log log D) with p split in Q(

√
−D)

}
.

This set is all of D under GRH!
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Golubeva–Fomenko (1987), following Iwaniec (1987)

Conjecture A is true with a power savings rate: there is δ > 0 such
that for every “nice” Ω ⊂ S2 we have

µSD
(Ω) = µS2(Ω) + O(D−δ).

Spectral (automorphic) method: bound Weyl sums

W (f ,D) =
1

|SD |
∑
u∈SD

f (u),

where f ∈ C (S2) and 〈f , 1〉 = 0.

Enough to test on an orthonormal basis of L2
0(S2).

We take an orthonormal basis of arithmetic eigenfunctions. Recall

S2 = SO(3)/SO(2), SO(3) = H×/R× = G (R),

where G = PB× and B = B(2,∞).
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Let Γ = G (Z). Then Γ acts on RD by conjugation. Thus

W (f ,D) =
1

|Γ\SD |
∑

u∈Γ\SD

F (u),

where

F (x) =
1

|Γ|
∑
γ∈Γ

F (γx) on S2 = Γ\S2.

We have
S2 = G (Q)\G (A)/G (Ẑ)SO(2).

Take o.n.b. {fi} of L2
0(S2) consisting of spherical harmonics

∆S2fi = k(k + 1)fi , k ≥ 1,

such that, upon adelization, the ϕi on S2 are joint eigenfunctions
of the Hecke algebra H(G (Ẑ)\G (Af )/G (Ẑ)).



Let Γ = G (Z). Then Γ acts on RD by conjugation. Thus

W (f ,D) =
1

|Γ\SD |
∑

u∈Γ\SD

F (u),

where

F (x) =
1

|Γ|
∑
γ∈Γ

F (γx) on S2 = Γ\S2.

We have
S2 = G (Q)\G (A)/G (Ẑ)SO(2).
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Moreover, Γ\RD is a torsor for the class group CD of (an order in)
Q(
√
−D). Fixing a base point u ∈ SD we have

W (f ,D) =
1

h(−D)

∑
t∈CD

F (t.u),

where h(−D) = |CD |. This is an adelic toric integral: let

TD = (ResQ(
√
−d)/QGm)/Gm.

Choosing u ∈ SD yields an embedding TD ↪→ G . Let

TD(Ẑ) = TD(Af ) ∩ G (Ẑ) and T (R) = g−1
∞ SO(2)g∞.

Get an adelic toric orbit (finite collection of points)

ZD = TD(Q)\TD(A)g∞/TD(Ẑ)T (R) ↪→ S2.

Then W (f ;D) = 1
h(−D)

∫
ZD
ϕ, where ϕ is the adelization of F .



Waldspurger (1985) et al.

Let σ = 〈ϕ〉 on G = PB×. Let π = JL(σ) on PGL2. Then

|W (f ;D)|2=̇D−1/2L(1/2, π)L(1/2, π × ηD)

L(1, ηD)L(1,Adπ)
.

Remark : If f is of degree k ≥ 1 then σ∞ = sym2k on
G (R) = SO(3) and π∞ = JL(σ∞) = D2k+2 on PGL2(R).

Siegel bound: We have L(1, ηD)�ε D
−ε.

The problem is reduced to subconvex bounds on twists of
L-functions by (quadratic) Dirichlet character twists.

Duke–Friedlander–Iwaniec (1993)

There is δ > 0 such that L(1/2, π × ηD)� D1/2−δ.



Second Linnik problem

For D ∈ N with D ≡ 0, 3 (mod 4) let

QD = {AX 2 +BXY +CY 2 : primitive, B2−4AC = −D}/SL2(Z).

Let Y (1) = SL2(Z)\H be the modular surface.

Definition

Put HD = {unique root of Q(X , 1) in H : Q ∈ QD} ⊂ Y (1).

Let µY (1) be the normalized hyperbolic measure on Y (1).

Conjecture B: Equidistribution of Heegner points on Y (1)

For D ∈ N with D ≡ 0, 3 (mod 4) let

µHD
=

1

|HD |
∑
z∈HD

δz .

Then µHD
weak-* converges to µY (1) along D ≡ 0, 3 (mod 4).



Linnik (1950’s-60’s)

Fix p > 2 a prime. Then µD
w∗−→ µY (1) along D ≡ 0, 3 (mod 4)

such that −D ∈ (F×p )2.

Again, a quantitative version leads to Conjecture B under GRH.

Duke (1988)

Conjecture B holds unconditionally, with a power savings rate.

Same ideas: Weyl sums → Waldspurger → Subconvexity

For f ∈ C∞0 (Y (1)) we wish to write the normalized Weyl sum

W (f ;D) =
1

|HD |
∑
z∈HD

f (z) =
1

|h(−D)|
∑
t∈CD

f (t.z0)

where z0 ∈HD , as an adelic torus integral. We have

Y (1) = PGL2(Q)\PGL2(A)/PGL2(Ẑ)SO(2).



From z0 ∈HD get embedding

TD = (ResQ(
√
−D)/QGm)/Gm ↪→ PGL2.

Let TD(Ẑ) = TD(Af ) ∩ PGL2(Ẑ) and T (R) = g−1
∞ SO(2)g∞. Get

ZD = TD(Q)\TD(A)g∞/TD(Ẑ)T (R) ↪→ Y (1).

Then W (f ;D) = 1
h(−D)

∫
ZD
ϕ, where ϕ is the adelization of f .

Waldspurger (1985) et al.

Let π = 〈ϕ〉 be cuspidal Maass on PGL2. Then

|W (f ;D)|2=̇D−1/2L(1/2, π)L(1/2, π × ηD)

L(1, ηD)2L(1,Adπ)
.

Remark : Here π∞ is a principal series representation on PGL2(R).

The same subconvexity bound of DFI (1993) solves the problem.



Other variants

1) Sparse equidistribution: twisted Weyl sums, the numerator
becomes L(1/2, π × πχ), subconvex bounds by Michel (2004)

2) Let Q(
√
D) be real quadratic. Then TD ↪→ PB× for any

indefinite B such that p split in Q(
√
D) implies B(Qp) split.

Obtain packets of closed geodesics on the unit tangent bundle of
Shimura or modular curves.

Skubenko (1950-60’s)

Equidistribution under Linnik’s condition.

Duke (1987)

Equidistribution for all positive fundamental discriminants.

Both proofs follow the same pattern.



Figure: h(Q(
√

377)) = 1

Einsiedler–Lindenstrauss–Michel–Venkatesh, The distribution of
closed geodesics on the modular surface, and Duke’s theorem.
Ergodic proof without congruence conditions! (torus split at ∞)



2) Let G = PB×, where B = B(p,∞), where p > 2. Then

G (Q)\G (A)/G (Ẑ)G (R) ' Ellssp ,

which has size p−1
12 + O(1) and has a natural probability measure

µEllssp (e) =
|Aut(e)|−1∑

e′∈Ellssp |Aut(e
′)|−1

=
12

p − 1
|Aut(e)|−1.

Let F be an imaginary quad field for which p is inert. Let HF be
the Hilbert class field of F . For p | p get reduction map

EllcmOF
→ Ellssp , E 7→ E mod p.

See Aka–Luethi–Michel–Wieser (2020).

Michel (2004)

Then the fibers of the reduction map are distributed according to
µEllssp as F varies over IQF for which p is inert, with power savings
in the disciminant.
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Simultaneous equidistribution

We return to the Linnik problems A and B.

Let G1 = PB×, where B = B(2,∞), and G2 = PGL2. For D ∈ D:

G1 ←↩ TD ↪→ G2,

simultaneous embeddings. We can then construct

∆ : TD ↪→ G1 × G2, ∆ : ZD ↪→ S2 × Y (1).

Understand the distribution of ∆ZD inside S2 × Y (1) as D →∞.

Expectation

∆ZD should equidistribute to S2 × Y (1) since the spaces S2 and
Y (1) come from non-isomorphic quaternion algebras.



Classical description of ∆ZD

We have
Y (1) = SL2(Z)\SL2(R)/SO(2) = L2,

where L2 is the space of unimodular lattices in R2 up to rotation.

Let D ∈ D. For v ∈ RD consider Λv = Z3 ∩ v⊥. Then

– rotate to a reference plane in R3,

– normalize to have covolume 1.

We obtain [Λv ] ∈ L2.

Then

ZD =

{(
v

‖v‖
, [Λv ]

)
: v ∈ R(D)

}
⊂ S2 × Y (1).

So the question becomes:

Does a primite integral point on the sphere and the shape of its
orthogonal lattice equidistribute in S2 × Y (1)?
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Conjecture: Michel–Venkatesh (2006), Aka–Einsiedler–Shapira

∆ZD equidistributes to µS2 × µY (1) as D →∞ in D.

Aka–Einsiedler–Shapira (2016)

Let p, q > 2 be distinct. Then ∆ZD equidistributes to µS2 × µY (1)

as D →∞ in D(p, q) ∩ F, where

D(p, q) =
{
D ∈ D : −D ∈ (F×p )2, (F×q )2

}
and F is the set of square-free integers.

No quantification is available:

– no rate of equidistribution;

– their proof does not presently allow one to replace the
congruence conditions by GRH.
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Idea of proof of AES

Let ν be a weak-* limit.

1 Show that the push forward along both projections
equidistributes in its copy.

2 Show, under the Linnik condition D(p, q), that ν is invariant
under StabSO3(QS )(vS), where vS ∈ Z3

S and S = {p, q}.

From (1) and (2) it follows that ν is a “joining”.

3 Apply Einsiedler–Lindenstrauss (2015):

a joining of higher rank torus actions is algebraic.

Since G1 and G2 are distinct, there is no non-trivial algebraic
subgroup containing both G1 and G2.



Comments

– The proof is general and applies to all “hybrid situations”:

Aka–Luethi–Michel–Wieser (2020)

Let p1, p2, q1, q2 be distinct odd primes. The fibers of

EllcmOF
→ Ellssp1

× Ellssp2
, E 7→ (E mod p1,E mod p2)

distribute according to µEllssp1
× µEllssp2

as D → +∞ in D(q1, q1) ∩ F
such that p1, p2 are inert in Q(

√
−D).

– One can replace 2 copies by n (pairwise non-isomorphic)
copies, with a congruence condition for each copy

– For Y (1)× Y (1) there is also a mixing conjecture of
Michel–Venkatesh, solved by Khayutin (2019) for
D ∈ D(p, q) ∩ F and a Landau–Siegel zero assumption.
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Main result: abstract set-up

Let B1,B2/Q be non-isomorphic, non-split, quaternion algebras.

Let Gi = PB×i and G = G1 × G2.

Let Oi be an Eichler order in Bi (Q).

Let Kf = K1 × K2 ⊂ G (Af ), where Ki = PÔ×i .

Write K = KfK∞ where K∞ = SO(2)× SO(2) ⊂ G (R).

Put X = G (Q)\G (A)/K .

Let Fd be a quadratic field extension of Q of discriminant d ,
optimally embedded in Oi .

Let ∆ : Td = (ResFd/QGm)/Gm ↪→ G , the diagonal inclusion.

Let g∞ ∈ G (R) satisfy g∞K∞g−1
∞ = ∆Td(R).

Put ∆ZD = G (Q)∆Td(A)gK , where g = (1, g∞).



Main result: statement

Blomer – B. (in preparation)

Assume GRH. Then ∆Zd equidistributes in X with a logarithmic
rate as |d | → ∞: for every “nice” Ω ∈ X we have

µ∆Zd
(Ω) = µX (Ω) + Oε((log |d |)−1/4+ε).

Our proof goes through the theory of automorphic forms and
Waldspurger’s theorem.

Plan for the remaining time:

1 describe a previous approach to this problem by R. Zhang;

2 motivate our different approach;

3 sketch our proof.



In the AES variant, the (unnormalized) Weyl sum is

S(ω, φ;D) =
∑

v∈Z3
prim,‖v‖=D

ω

(
v
‖v‖

)
φ(zv ),

where ω is a spherical harmonic of degree k on S2 and φ is a
Maass cusp form or unitary Eisenstein series on Y (1).

R. Zhang (2015)

Let

E (s, g , ω, φ) =
∑

[γ]∈Γ∞\SL3(Z)

ω(k(γg))φ(m(γg))a(γg)−s

be the maximal Eisenstein series for SL3(Z) induced from φ and
transforming under K = SO(3) by ω. Then

E (s, e, ω, φ) =
∑
n≥1

S(ω, φ; n)n−s .
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Remarks

1 It is not clear from this description how GRH would imply any
non-trivial bound on S(ω, φ;D).

2 structurally similar to Petridis–Risager–Raulf (2014): QUE for
half-integral weight Eisenstein series follows from bounds on
coefficients of a double Dirichlet series.

R. Zhang (2015)

We have ∑
n≤X

S(ω, φ; n)�ε X
15
14

+ε.

Want to prove S(ω, φ;D) = o(h(−D)). This does not imply any
bound on S(ω, φ;D): they could exhibit cancellation on average.
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Note that Td ⊂ G1 and Td ⊂ G2 are Strong Gelfand pairs

∀ χp ∈ T̂d(Qp) : dimHomTd (Qp)(σp, χp) ≤ 1.

This multiplicity one result lies at the heart of Waldspurger’s
formula, in which the toric period squared is a single L-function.

This no longer holds for ∆Td inside G1 × G2.

But we have the following Gelfand formation:

G1 × G2

Td × Td

∆Td

From which we expect to find a family of L-functions.
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Take Fd IQF, Cd its class group, hd = |Cd |. The Weyl sum is

W (f1, f2; d) =
1

hd

∑
t∈Cd

Φ1(t)Φ2(t) (Φi (t) = ϕi (t.ui )).

Main estimate

Under GRH, we have W (f1, f2; d)�ε (log |d |)−1/4+ε.

View as inner product on class group Cd . Plancherel formula gives

W (f1, f2; d) =
∑
χ∈Ĉd

W1(f1, χ; d)W2(f2, χ; d).

Heuristic (under GRH):

– roughly ≈ |d |1/2 terms in the sum,

– each term is roughly W1(f1, χ; d)W2(f2, χ; d) ≈ |d |−1/2

Might hope for square-root cancellation: W (f1, f2; d)� |d |−1/4.
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Crazy first step: void all cancellation!
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|Wi (fi , χ; d)|2=̇|d |−1/2 L(1/2, πi × χ)

L(1, ηd)2L(1,Adπi )
.

Get (using class number formula)

|W (f1, f2; d)| ≤ Ld(1)S(d),

where Ld(1) = L(1, ηd)−2L(1,Adπ1)−1/2L(1,Adπ2)−1/2 and

S(d) =
1

hd

∑
χ∈Ĉd

L(1/2, π1 × χ)1/2L(1/2, π2 × χ)1/2.

Note that π1 6= π2 since G1 6' G2. Show S(d)�ε (log |d |)−1/4+ε.
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Pointwise GRH fails (as it must)

Cauchy-Schwartz reduces this to bounding

1

hd

∑
χ∈Ĉd

L(1/2, π × χ) ≤ max
χ∈Ĉd

L(1/2, π × χ).

Clearly subconvexity is not going to do the job!

Under GRH (and Ramanujan), we have the general bound:

L(1/2, π)� exp(A logC (π)/ log logC (π))

Moreover (Soundararajan), there exist d ∈ [X , 2X ] such that

L(1/2, ηd)� exp(c
√

logX/ log logX ).

One can expect similar lower bounds on L(1/2, π × χ) for χ ∈ Ĉd .



Structurally similar situation: unipotent coefficients

QUE for arithmetic eigenfunctions (AQUE) on the modular surface.

– even weight (holomorphic): Holowinsky (2009):

1

T

∑
n∼T
|λf (n)λf (n + 1)| � (logT )−δ

– 1/2-integral weight (Maass): Lester–Radziwi l l (2019) on GRH:

1

T

∑
d∼T

L(1/2, f × ηd)1/2L(1/2, f × ηd+1)1/2 � (logT )−δ.

On average, these unipotent
coefficients are of size ≈ (log n)−δ,
independently on small shifts.

PGL2 × PGL2

N ×N

∆N



Proof of main estimate

Let h = hd and

L1(χ) = L(1/2, π1 × χ)1/2 and L2(χ) = L(1/2, π2 × χ)1/2.

View log L1(χ) as independent Gaussian random variables in χ.

Put L(χ) = L2(χ)L2(χ).

Let µ and σ2 be the expectation and variance of log L(χ):

µ =
µ1 + µ2

2
and σ2

naive =
σ2

1 + σ2
2

4
.

Can calculate each µi and σ2
i under GRH: for small x

log L(1/2, πi×χ) .
∑
p≤x

λπi (p)aχ(p)

p1/2
+

1

2

∑
p2≤x

ηd (p)=1

λπi (p
2)aχ(p2)

p
+µi .

The important feature is that exp
(
µ+

σ2
naive

2

)
� (log |d |)−1/4.



Proof (continued)

By partial summation we obtain

S(d) =
1

h

∑
χ

L(χ) =
1

h

∫
R
eV #{χ : log L(χ) > V }dV

= eµ
∫
R
eVN(V )dV ,

where

N(V ) =
1

h
#{χ : log L(χ)− µ > V }.

Now, for any k ≥ 0, we have

N(V ) ≤ V−2kM2k(V ),

where

M2k(V ) =
1

h

∑
χ

(
log L(χ)− µ

)2k
.



Proof (continued)

By partial summation we obtain

S(d) =
1

h

∑
χ

L(χ) =
1

h

∫
R
eV #{χ : log L(χ) > V }dV

= eµ
∫
R
eVN(V )dV ,

where

N(V ) =
1

h
#{χ : log L(χ)− µ > V }.

Now, for any k ≥ 0, we have

N(V ) ≤ V−2kM2k(V ),

where

M2k(V ) =
1

h

∑
χ

(
log L(χ)− µ

)2k
.



Proof (end)

By orthogonality of characters, we show, say for k � log log |d |,

M2k(V )� (2k)!

k!

(σ2

2

)k
,

where
σ2 = σ2

naive + log L(1, π1 × π2 × θd)1/2.

Since π1 6= π2 this is well-defined!

Then

N(V )� 1

V 2k

(2k)!

k!

(σ2

2

)k
�
(2k σ2

eV 2

)k
� e−

V 2

2σ2

upon choosing k = V 2/(2σ2). Get

S(D)� eµ
∫
R
eV−

V 2

2σ2 dV � eµ+ 1
2
σ2 � (log |d |)−1/4.

This approach dates back to Soundarajan (2009), on moments of
the Riemann zeta function.

Thank You!
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