Joint equidistribution of adelic torus orbits and families of twisted L-functions

Farrell Brumley

Université Sorbonne Paris Nord

May 28, 2020

First Linnik problem

For $D \in \mathbb{N}$ put $\mathscr{R}_{D}=\left\{(x, y, z) \in \mathbb{Z}_{\text {prim }}^{3}: x^{2}+y^{2}+z^{2}=D\right\}$
Legendre: $\mathscr{R}_{D} \neq \emptyset$ iff $D \in \mathbb{D}$, where $\mathbb{D}=\{D \not \equiv 0,4,7 \bmod 8\}$.
Gauss, Siegel, Dirichlet: for $D \in \mathbb{D}:\left|\mathscr{R}_{D}\right|=D^{1 / 2+o(1)}$.
Write

$$
\mathscr{S}_{D}=\left\{\frac{v}{\|v\|}: v \in \mathscr{R}_{D}\right\} \subset S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}
$$

Let $\mu_{S^{2}}$ be the normalized Lebesgue measure on the sphere S^{2}.

First Linnik problem

For $D \in \mathbb{N}$ put $\mathscr{R}_{D}=\left\{(x, y, z) \in \mathbb{Z}_{\text {prim }}^{3}: x^{2}+y^{2}+z^{2}=D\right\}$
Legendre: $\mathscr{R}_{D} \neq \emptyset$ iff $D \in \mathbb{D}$, where $\mathbb{D}=\{D \not \equiv 0,4,7 \bmod 8\}$.
Gauss, Siegel, Dirichlet: for $D \in \mathbb{D}:\left|\mathscr{R}_{D}\right|=D^{1 / 2+o(1)}$.
Write

$$
\mathscr{S}_{D}=\left\{\frac{v}{\|v\|}: v \in \mathscr{R}_{D}\right\} \subset S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}
$$

Let $\mu_{S^{2}}$ be the normalized Lebesgue measure on the sphere S^{2}.

Conjecture A: Equidistribution of integer points on the sphere

For $D \in \mathbb{D}$ let

$$
\mu_{\mathscr{S}_{D}}=\frac{1}{\left|\mathscr{S}_{D}\right|} \sum_{u \in \mathscr{S}_{D}} \delta_{u}
$$

Then $\mu_{\mathscr{S}_{D}}$ weak-* converges to $\mu_{S^{2}}$ as $D \rightarrow \infty$ in \mathbb{D}.

The coronavirus

Figure: Covid-19

Numerical example

Figure: Integer points of norm 104851 projected onto S^{2}

Ellenberg, Michel, Venkatesh, Linnik's ergodic method and the distribution of integer points on spheres

Linnik (1950-60's)

Let $p>2$ be prime and write

$$
\mathbb{D}(p)=\left\{D \in \mathbb{D}:-D \in\left(\mathbb{F}_{p}^{\times}\right)^{2}\right\} .
$$

Then $\mu_{\mathscr{S}_{D}} \xrightarrow{w^{*}} \mu_{S^{2}}$ as $D \rightarrow \infty$ in $\mathbb{D}(p)$.
Linnik's condition $D \in \mathbb{D}(p)$ is equivalent to the stabilizer of a point in \mathscr{R}_{D} is a split torus over \mathbb{Q}_{p}.

Linnik (1950-60's)

Let $p>2$ be prime and write

$$
\mathbb{D}(p)=\left\{D \in \mathbb{D}:-D \in\left(\mathbb{F}_{p}^{\times}\right)^{2}\right\} .
$$

Then $\mu_{\mathscr{S}_{D}} \xrightarrow{w^{*}} \mu_{S^{2}}$ as $D \rightarrow \infty$ in $\mathbb{D}(p)$.
Linnik's condition $D \in \mathbb{D}(p)$ is equivalent to
the stabilizer of a point in \mathscr{R}_{D} is a split torus over \mathbb{Q}_{p}.
Basic idea of ergodic method: let ν be a weak-* limit.
(1) Show that ν has maximal entropy, by bootstrapping an upper bound on the spacing of nearby points (Linnik's Basic Lemma)
(2) Apply uniqueness result of Einsiedler-Lindenstrauss.

Linnik (1950-60's)

Let $p>2$ be prime and write

$$
\mathbb{D}(p)=\left\{D \in \mathbb{D}:-D \in\left(\mathbb{F}_{p}^{\times}\right)^{2}\right\} .
$$

Then $\mu_{\mathscr{S}_{D}} \xrightarrow{w^{*}} \mu_{S^{2}}$ as $D \rightarrow \infty$ in $\mathbb{D}(p)$.
Linnik's condition $D \in \mathbb{D}(p)$ is equivalent to the stabilizer of a point in \mathscr{R}_{D} is a split torus over \mathbb{Q}_{p}.
Basic idea of ergodic method: let ν be a weak-* limit.
(1) Show that ν has maximal entropy, by bootstrapping an upper bound on the spacing of nearby points (Linnik's Basic Lemma)
(2) Apply uniqueness result of Einsiedler-Lindenstrauss.

Quantitative version: $\mu_{\mathscr{S}_{D}} \xrightarrow{w^{*}} \mu_{S^{2}}$ as $D \rightarrow \infty$ in the set

$$
\left\{D \in \mathbb{D}: \exists p \ll D^{\frac{1}{\sigma(\log \log D)}} \text { with } p \text { split in } \mathbb{Q}(\sqrt{-D})\right\} .
$$

This set is all of \mathbb{D} under GRH!

Golubeva-Fomenko (1987), following Iwaniec (1987)

Conjecture A is true with a power savings rate: there is $\delta>0$ such that for every "nice" $\Omega \subset S^{2}$ we have

$$
\mu_{\mathscr{S}_{D}}(\Omega)=\mu_{S^{2}}(\Omega)+O\left(D^{-\delta}\right)
$$

Golubeva-Fomenko (1987), following Iwaniec (1987)

Conjecture A is true with a power savings rate: there is $\delta>0$ such that for every "nice" $\Omega \subset S^{2}$ we have

$$
\mu_{\mathscr{S}_{D}}(\Omega)=\mu_{S^{2}}(\Omega)+O\left(D^{-\delta}\right)
$$

Spectral (automorphic) method: bound Weyl sums

$$
W(f, D)=\frac{1}{\left|\mathscr{S}_{D}\right|} \sum_{u \in \mathscr{S}_{D}} f(u)
$$

where $f \in C\left(S^{2}\right)$ and $\langle f, 1\rangle=0$.
Enough to test on an orthonormal basis of $L_{0}^{2}\left(S^{2}\right)$.
We take an orthonormal basis of arithmetic eigenfunctions. Recall

$$
S^{2}=\mathrm{SO}(3) / \mathrm{SO}(2), \quad \mathrm{SO}(3)=\boldsymbol{H}^{\times} / \mathbb{R}^{\times}=\boldsymbol{G}(\mathbb{R})
$$

where $\boldsymbol{G}=\boldsymbol{P} \boldsymbol{B}^{\times}$and $\boldsymbol{B}=\boldsymbol{B}^{(2, \infty)}$.

Let $\Gamma=\boldsymbol{G}(\mathbb{Z})$. Then Γ acts on \mathscr{R}_{D} by conjugation. Thus

$$
W(f, D)=\frac{1}{\left|\Gamma \backslash \mathscr{S}_{D}\right|} \sum_{u \in \Gamma \backslash \mathscr{S}_{D}} F(u)
$$

where

$$
F(x)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} F(\gamma x) \quad \text { on } \quad S^{2}=\Gamma \backslash S^{2}
$$

We have

$$
\boldsymbol{S}^{2}=\boldsymbol{G}(\mathbb{Q}) \backslash \boldsymbol{G}(\mathbb{A}) / \boldsymbol{G}(\hat{\mathbb{Z}}) \mathrm{SO}(2)
$$

Let $\Gamma=\boldsymbol{G}(\mathbb{Z})$. Then Γ acts on \mathscr{R}_{D} by conjugation. Thus

$$
W(f, D)=\frac{1}{\left|\Gamma \backslash \mathscr{S}_{D}\right|} \sum_{u \in \Gamma \backslash \mathscr{S}_{D}} F(u)
$$

where

$$
F(x)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} F(\gamma x) \quad \text { on } \quad S^{2}=\Gamma \backslash S^{2}
$$

We have

$$
\boldsymbol{S}^{2}=\boldsymbol{G}(\mathbb{Q}) \backslash \boldsymbol{G}(\mathbb{A}) / \boldsymbol{G}(\hat{\mathbb{Z}}) \mathrm{SO}(2)
$$

Take o.n.b. $\left\{f_{i}\right\}$ of $L_{0}^{2}\left(S^{2}\right)$ consisting of spherical harmonics

$$
\Delta_{S^{2}} f_{i}=k(k+1) f_{i}, \quad k \geq 1
$$

such that, upon adelization, the φ_{i} on \boldsymbol{S}^{2} are joint eigenfunctions of the Hecke algebra $\mathcal{H}\left(\boldsymbol{G}(\hat{\mathbb{Z}}) \backslash \boldsymbol{G}\left(\mathbb{A}_{f}\right) / \boldsymbol{G}(\hat{\mathbb{Z}})\right)$.

Moreover, $\Gamma \backslash \mathscr{R}_{D}$ is a torsor for the class group C_{D} of (an order in) $\mathbb{Q}(\sqrt{-D})$. Fixing a base point $u \in \mathscr{S}_{D}$ we have

$$
W(f, D)=\frac{1}{h(-D)} \sum_{t \in C_{D}} F(t . u)
$$

where $h(-D)=\left|C_{D}\right|$. This is an adelic toric integral: let

$$
\boldsymbol{T}_{D}=\left(\operatorname{Res}_{\mathbb{Q}(\sqrt{-d}) / \mathbb{Q}} \mathbb{G}_{m}\right) / \mathbb{G}_{m}
$$

Choosing $u \in \mathscr{S}_{D}$ yields an embedding $\boldsymbol{T}_{D} \hookrightarrow \boldsymbol{G}$. Let

$$
\boldsymbol{T}_{D}(\hat{\mathbb{Z}})=\boldsymbol{T}_{D}\left(\mathbb{A}_{f}\right) \cap \boldsymbol{G}(\hat{\mathbb{Z}}) \quad \text { and } \quad T(\mathbb{R})=g_{\infty}^{-1} \mathrm{SO}(2) g_{\infty}
$$

Get an adelic toric orbit (finite collection of points)

$$
Z_{D}=\boldsymbol{T}_{D}(\mathbb{Q}) \backslash \boldsymbol{T}_{D}(\mathbb{A}) g_{\infty} / \boldsymbol{T}_{D}(\hat{\mathbb{Z}}) \boldsymbol{T}(\mathbb{R}) \hookrightarrow \boldsymbol{S}^{2}
$$

Then $W(f ; D)=\frac{1}{h(-D)} \int_{Z_{D}} \varphi$, where φ is the adelization of F.

Waldspurger (1985) et al.

Let $\sigma=\langle\varphi\rangle$ on $\boldsymbol{G}=\boldsymbol{P} \boldsymbol{B}^{\times}$. Let $\pi=\mathrm{JL}(\sigma)$ on PGL_{2}. Then

$$
|W(f ; D)|^{2} \doteq D^{-1 / 2} \frac{L(1 / 2, \pi) L\left(1 / 2, \pi \times \eta_{D}\right)}{L\left(1, \eta_{D}\right) L(1, \operatorname{Ad} \pi)} .
$$

Remark: If f is of degree $k \geq 1$ then $\sigma_{\infty}=\operatorname{sym}^{2 k}$ on $\boldsymbol{G}(\mathbb{R})=\mathrm{SO}(3)$ and $\pi_{\infty}=\mathrm{JL}\left(\sigma_{\infty}\right)=D_{2 k+2}$ on $\mathrm{PGL}_{2}(\mathbb{R})$.
Siegel bound: We have $L\left(1, \eta_{D}\right)>{ }_{\epsilon} D^{-\epsilon}$.
The problem is reduced to subconvex bounds on twists of L-functions by (quadratic) Dirichlet character twists.

Duke-Friedlander-Iwaniec (1993)

There is $\delta>0$ such that $L\left(1 / 2, \pi \times \eta_{D}\right) \ll D^{1 / 2-\delta}$.

Second Linnik problem

For $D \in \mathbb{N}$ with $D \equiv 0,3(\bmod 4)$ let
$\mathcal{Q}_{D}=\left\{A X^{2}+B X Y+C Y^{2}:\right.$ primitive, $\left.B^{2}-4 A C=-D\right\} / \mathrm{SL}_{2}(\mathbb{Z})$.
Let $Y(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ be the modular surface.

Definition

Put $\mathscr{H}_{D}=\left\{\right.$ unique root of $Q(X, 1)$ in $\left.\mathbb{H}: Q \in \mathcal{Q}_{D}\right\} \subset Y(1)$.
Let $\mu_{Y(1)}$ be the normalized hyperbolic measure on $Y(1)$.
Conjecture B: Equidistribution of Heegner points on $Y(1)$
For $D \in \mathbb{N}$ with $D \equiv 0,3(\bmod 4)$ let

$$
\mu_{\mathscr{H}_{D}}=\frac{1}{\left|\mathscr{H}_{D}\right|} \sum_{z \in \mathscr{H}_{D}} \delta_{z}
$$

Then $\mu_{\mathscr{H}_{D}}$ weak-* converges to $\mu_{Y(1)}$ along $D \equiv 0,3(\bmod 4)$.

Linnik (1950's-60's)

Fix $p>2$ a prime. Then $\mu_{D} \xrightarrow{w^{*}} \mu_{Y(1)}$ along $D \equiv 0,3(\bmod 4)$ such that $-D \in\left(\mathbb{F}_{p}^{\times}\right)^{2}$.

Again, a quantitative version leads to Conjecture B under GRH.

Duke (1988)

Conjecture B holds unconditionally, with a power savings rate.
Same ideas: Weyl sums \rightarrow Waldspurger \rightarrow Subconvexity
For $f \in C_{0}^{\infty}(Y(1))$ we wish to write the normalized Weyl sum

$$
W(f ; D)=\frac{1}{\left|\mathscr{H}_{D}\right|} \sum_{z \in \mathscr{H}_{D}} f(z)=\frac{1}{|h(-D)|} \sum_{t \in C_{D}} f\left(t . z_{0}\right)
$$

where $z_{0} \in \mathscr{H}_{D}$, as an adelic torus integral. We have

$$
Y(1)=\mathrm{PGL}_{2}(\mathbb{Q}) \backslash \mathrm{PGL}_{2}(\mathbb{A}) / \mathrm{PGL}_{2}(\hat{\mathbb{Z}}) \mathrm{SO}(2) .
$$

From $z_{0} \in \mathscr{H}_{D}$ get embedding

$$
\boldsymbol{T}_{D}=\left(\operatorname{Res}_{\mathbb{Q}(\sqrt{-D}) / \mathbb{Q}} \mathbb{G}_{m}\right) / \mathbb{G}_{m} \hookrightarrow \mathrm{PGL}_{2} .
$$

Let $\boldsymbol{T}_{D}(\hat{\mathbb{Z}})=\boldsymbol{T}_{D}\left(\mathbb{A}_{f}\right) \cap \mathrm{PGL}_{2}(\hat{\mathbb{Z}})$ and $T(\mathbb{R})=g_{\infty}^{-1} \mathrm{SO}(2) g_{\infty}$. Get

$$
Z_{D}=\boldsymbol{T}_{D}(\mathbb{Q}) \backslash \boldsymbol{T}_{D}(\mathbb{A}) g_{\infty} / \boldsymbol{T}_{D}(\hat{\mathbb{Z}}) \boldsymbol{T}(\mathbb{R}) \hookrightarrow Y(1)
$$

Then $W(f ; D)=\frac{1}{h(-D)} \int_{Z_{D}} \varphi$, where φ is the adelization of f.

Waldspurger (1985) et al.

Let $\pi=\langle\varphi\rangle$ be cuspidal Maass on PGL_{2}. Then

$$
|W(f ; D)|^{2} \doteq D^{-1 / 2} \frac{L(1 / 2, \pi) L\left(1 / 2, \pi \times \eta_{D}\right)}{L\left(1, \eta_{D}\right)^{2} L(1, \operatorname{Ad} \pi)} .
$$

Remark: Here π_{∞} is a principal series representation on $\mathrm{PGL}_{2}(\mathbb{R})$.
The same subconvexity bound of DFI (1993) solves the problem.

Other variants

1) Sparse equidistribution: twisted Weyl sums, the numerator becomes $L\left(1 / 2, \pi \times \pi_{\chi}\right)$, subconvex bounds by Michel (2004)
2) Let $\mathbb{Q}(\sqrt{D})$ be real quadratic. Then $\boldsymbol{T}_{D} \hookrightarrow \boldsymbol{P} \boldsymbol{B}^{\times}$for any indefinite \boldsymbol{B} such that p split in $\mathbb{Q}(\sqrt{D})$ implies $\boldsymbol{B}\left(\mathbb{Q}_{p}\right)$ split.
Obtain packets of closed geodesics on the unit tangent bundle of Shimura or modular curves.

Skubenko (1950-60's)

Equidistribution under Linnik's condition.

Duke (1987)

Equidistribution for all positive fundamental discriminants.

Both proofs follow the same pattern.

Figure: $h(\mathbb{Q}(\sqrt{377}))=1$

Einsiedler-Lindenstrauss-Michel-Venkatesh, The distribution of closed geodesics on the modular surface, and Duke's theorem. Ergodic proof without congruence conditions! (torus split at ∞)
2) Let $\boldsymbol{G}=\boldsymbol{P} \boldsymbol{B}^{\times}$, where $B=B^{(p, \infty)}$, where $p>2$. Then

$$
\boldsymbol{G}(\mathbb{Q}) \backslash \boldsymbol{G}(\mathbb{A}) / \boldsymbol{G}(\hat{\mathbb{Z}}) \boldsymbol{G}(\mathbb{R}) \simeq \operatorname{Ell}_{p}^{\mathrm{ss}}
$$

which has size $\frac{p-1}{12}+O(1)$ and has a natural probability measure

$$
\mu_{\mathrm{EIIs}_{p}^{\text {ss }}}(e)=\frac{|\operatorname{Aut}(e)|^{-1}}{\sum_{e^{\prime} \in \operatorname{EII}_{p}^{\text {ss }}}\left|\operatorname{Aut}\left(e^{\prime}\right)\right|^{-1}}=\frac{12}{p-1}|\operatorname{Aut}(e)|^{-1}
$$

2) Let $\boldsymbol{G}=\boldsymbol{P} \boldsymbol{B}^{\times}$, where $B=B^{(p, \infty)}$, where $p>2$. Then

$$
\boldsymbol{G}(\mathbb{Q}) \backslash \boldsymbol{G}(\mathbb{A}) / \boldsymbol{G}(\hat{\mathbb{Z}}) \boldsymbol{G}(\mathbb{R}) \simeq \operatorname{Ell}_{p}^{\mathrm{ss}}
$$

which has size $\frac{p-1}{12}+O(1)$ and has a natural probability measure

$$
\mu_{\mathrm{EIII}_{p}^{\mathrm{ss}}}(e)=\frac{|\operatorname{Aut}(e)|^{-1}}{\sum_{e^{\prime} \in \operatorname{EII}_{p}^{\text {ss }}}\left|\operatorname{Aut}\left(e^{\prime}\right)\right|^{-1}}=\frac{12}{p-1}|\operatorname{Aut}(e)|^{-1}
$$

Let F be an imaginary quad field for which p is inert. Let H_{F} be the Hilbert class field of F. For $\mathfrak{p} \mid p$ get reduction map

$$
\mathrm{Ell}_{\mathcal{O}_{F}}^{\mathrm{cm}} \rightarrow \mathrm{Ell}_{p}^{\mathrm{ss}}, \quad E \mapsto E \bmod \mathfrak{p}
$$

See Aka-Luethi-Michel-Wieser (2020).

Michel (2004)

Then the fibers of the reduction map are distributed according to $\mu_{\text {Eliss }}^{\text {ss }}$ as F varies over IQF for which p is inert, with power savings in the disciminant.

Simultaneous equidistribution

We return to the Linnik problems A and B.
Let $\boldsymbol{G}_{1}=\boldsymbol{P} \boldsymbol{B}^{\times}$, where $\boldsymbol{B}=\boldsymbol{B}^{(2, \infty)}$, and $\boldsymbol{G}_{2}=\mathrm{PGL}_{2}$. For $D \in \mathbb{D}$:

$$
\boldsymbol{G}_{1} \hookleftarrow \boldsymbol{T}_{D} \hookrightarrow \boldsymbol{G}_{2},
$$

simultaneous embeddings. We can then construct

$$
\Delta: \boldsymbol{T}_{D} \hookrightarrow \boldsymbol{G}_{1} \times \boldsymbol{G}_{2}, \quad \Delta: Z_{D} \hookrightarrow \boldsymbol{S}^{2} \times Y(1)
$$

Understand the distribution of ΔZ_{D} inside $\boldsymbol{S}^{2} \times Y(1)$ as $D \rightarrow \infty$.

Expectation

ΔZ_{D} should equidistribute to $\boldsymbol{S}^{2} \times Y(1)$ since the spaces \boldsymbol{S}^{2} and $Y(1)$ come from non-isomorphic quaternion algebras.

Classical description of ΔZ_{D}

We have

$$
Y(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2)=\mathcal{L}_{2}
$$

where \mathcal{L}_{2} is the space of unimodular lattices in \mathbb{R}^{2} up to rotation.
Let $D \in \mathbb{D}$. For $v \in \mathscr{R}_{D}$ consider $\Lambda_{v}=\mathbb{Z}^{3} \cap v^{\perp}$. Then

- rotate to a reference plane in \mathbb{R}^{3},
- normalize to have covolume 1.

We obtain $\left[\Lambda_{v}\right] \in \mathcal{L}_{2}$.

Classical description of ΔZ_{D}

We have

$$
Y(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(2)=\mathcal{L}_{2}
$$

where \mathcal{L}_{2} is the space of unimodular lattices in \mathbb{R}^{2} up to rotation.
Let $D \in \mathbb{D}$. For $v \in \mathscr{R}_{D}$ consider $\Lambda_{v}=\mathbb{Z}^{3} \cap v^{\perp}$. Then

- rotate to a reference plane in \mathbb{R}^{3},
- normalize to have covolume 1.

We obtain $\left[\Lambda_{v}\right] \in \mathcal{L}_{2}$. Then

$$
Z_{D}=\left\{\left(\frac{v}{\|v\|},\left[\Lambda_{v}\right]\right): v \in \mathscr{R}(D)\right\} \subset S^{2} \times Y(1)
$$

So the question becomes:
Does a primite integral point on the sphere and the shape of its orthogonal lattice equidistribute in $S^{2} \times Y(1)$?

Conjecture: Michel-Venkatesh (2006), Aka-Einsiedler-Shapira
ΔZ_{D} equidistributes to $\mu_{\boldsymbol{S}^{2}} \times \mu_{Y(1)}$ as $D \rightarrow \infty$ in \mathbb{D}.

Conjecture: Michel-Venkatesh (2006), Aka-Einsiedler-Shapira

ΔZ_{D} equidistributes to $\mu_{\mathbf{S}^{2}} \times \mu_{Y(1)}$ as $D \rightarrow \infty$ in \mathbb{D}.

Aka-Einsiedler-Shapira (2016)

Let $p, q>2$ be distinct. Then ΔZ_{D} equidistributes to $\mu_{\boldsymbol{S}^{2}} \times \mu_{Y(1)}$ as $D \rightarrow \infty$ in $\mathbb{D}(p, q) \cap \mathbb{F}$, where

$$
\mathbb{D}(p, q)=\left\{D \in \mathbb{D}:-D \in\left(\mathbb{F}_{p}^{\times}\right)^{2},\left(\mathbb{F}_{q}^{\times}\right)^{2}\right\}
$$

and \mathbb{F} is the set of square-free integers.
No quantification is available:

- no rate of equidistribution;
- their proof does not presently allow one to replace the congruence conditions by GRH.

Idea of proof of AES

Let ν be a weak-* limit.
(1) Show that the push forward along both projections equidistributes in its copy.
(2) Show, under the Linnik condition $\mathbb{D}(p, q)$, that ν is invariant under $\operatorname{Stab}_{\mathrm{SO}_{3}\left(\mathbb{Q}_{S}\right)}\left(v_{S}\right)$, where $v_{S} \in \mathbb{Z}_{S}^{3}$ and $S=\{p, q\}$.

From (1) and (2) it follows that ν is a "joining".
(3) Apply Einsiedler-Lindenstrauss (2015):
a joining of higher rank torus actions is algebraic.
Since \boldsymbol{G}_{1} and \boldsymbol{G}_{2} are distinct, there is no non-trivial algebraic subgroup containing both \boldsymbol{G}_{1} and \boldsymbol{G}_{2}.

Comments

- The proof is general and applies to all "hybrid situations":

Aka-Luethi-Michel-Wieser (2020)

Let $p_{1}, p_{2}, q_{1}, q_{2}$ be distinct odd primes. The fibers of

$$
\mathrm{Ell}_{\mathcal{O}_{F}}^{\mathrm{cm}} \rightarrow \mathrm{Ell}_{p_{1}}^{\mathrm{ss}} \times \text { Ell }_{p_{2}}^{\mathrm{ss}}, \quad E \mapsto\left(E \bmod \mathfrak{p}_{1}, E \bmod \mathfrak{p}_{2}\right)
$$

distribute according to $\mu_{\mathrm{EII}_{p_{1}}^{\text {ss }}} \times \mu_{\mathrm{Ell}_{p_{2}}^{\text {ss }}}$ as $D \rightarrow+\infty$ in $\mathbb{D}\left(q_{1}, q_{1}\right) \cap \mathbb{F}$ such that p_{1}, p_{2} are inert in $\mathbb{Q}(\sqrt{-D})$.

Comments

- The proof is general and applies to all "hybrid situations":

Aka-Luethi-Michel-Wieser (2020)

Let $p_{1}, p_{2}, q_{1}, q_{2}$ be distinct odd primes. The fibers of

$$
\mathrm{Ell}_{\mathcal{O}_{F}}^{\mathrm{cm}} \rightarrow \text { Ell }_{p_{1}}^{\mathrm{ss}} \times \text { Ell }_{p_{2}}^{\mathrm{ss}}, \quad E \mapsto\left(E \bmod \mathfrak{p}_{1}, E \bmod \mathfrak{p}_{2}\right)
$$

distribute according to $\mu_{\text {Ellis }_{p_{1}}^{\text {ss }}} \times \mu_{\mathrm{EII}_{p_{2}}^{\text {ss }}}$ as $D \rightarrow+\infty$ in $\mathbb{D}\left(q_{1}, q_{1}\right) \cap \mathbb{F}$ such that p_{1}, p_{2} are inert in $\mathbb{Q}(\sqrt{-D})$.

- One can replace 2 copies by n (pairwise non-isomorphic) copies, with a congruence condition for each copy
- For $Y(1) \times Y(1)$ there is also a mixing conjecture of Michel-Venkatesh, solved by Khayutin (2019) for $D \in \mathbb{D}(p, q) \cap \mathbb{F}$ and a Landau-Siegel zero assumption.

Main result: abstract set-up

Let $\boldsymbol{B}_{1}, \boldsymbol{B}_{2} / \mathbb{Q}$ be non-isomorphic, non-split, quaternion algebras.
Let $\boldsymbol{G}_{i}=\boldsymbol{P} \boldsymbol{B}_{i}^{\times}$and $\boldsymbol{G}=\boldsymbol{G}_{1} \times \boldsymbol{G}_{2}$.
Let \mathcal{O}_{i} be an Eichler order in $\boldsymbol{B}_{i}(\mathbb{Q})$.
Let $K_{f}=K_{1} \times K_{2} \subset \boldsymbol{G}\left(\mathbb{A}_{f}\right)$, where $K_{i}=\widehat{\boldsymbol{P} \mathcal{O}_{i}^{\times}}$.
Write $K=K_{f} K_{\infty}$ where $K_{\infty}=\mathrm{SO}(2) \times \mathrm{SO}(2) \subset \boldsymbol{G}(\mathbb{R})$.
Put $X=\boldsymbol{G}(\mathbb{Q}) \backslash \boldsymbol{G}(\mathbb{A}) / K$.
Let F_{d} be a quadratic field extension of \mathbb{Q} of discriminant d, optimally embedded in \mathcal{O}_{i}.

Let $\Delta: \boldsymbol{T}_{d}=\left(\operatorname{Res}_{F_{d} / \mathbb{Q}} \mathbb{G}_{m}\right) / \mathbb{G}_{m} \hookrightarrow \boldsymbol{G}$, the diagonal inclusion.
Let $g_{\infty} \in \boldsymbol{G}(\mathbb{R})$ satisfy $g_{\infty} K_{\infty} g_{\infty}^{-1}=\Delta \boldsymbol{T}_{d}(\mathbb{R})$.
Put $\Delta Z_{D}=\boldsymbol{G}(\mathbb{Q}) \Delta \boldsymbol{T}_{d}(\mathbb{A}) g K$, where $g=\left(1, g_{\infty}\right)$.

Main result: statement

Blomer - B. (in preparation)

Assume GRH. Then ΔZ_{d} equidistributes in X with a logarithmic rate as $|d| \rightarrow \infty$: for every "nice" $\Omega \in X$ we have

$$
\mu_{\Delta Z_{d}}(\Omega)=\mu_{X}(\Omega)+O_{\epsilon}\left((\log |d|)^{-1 / 4+\epsilon}\right) .
$$

Our proof goes through the theory of automorphic forms and Waldspurger's theorem.

Plan for the remaining time:
(1) describe a previous approach to this problem by R. Zhang;
(2) motivate our different approach;
(3) sketch our proof.

In the AES variant, the (unnormalized) Weyl sum is

$$
S(\omega, \phi ; D)=\sum_{\boldsymbol{v} \in \mathbb{Z}_{\text {prim }}^{3},\|\boldsymbol{v}\|=D} \omega\left(\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}\right) \phi\left(z_{\boldsymbol{v}}\right)
$$

where ω is a spherical harmonic of degree k on S^{2} and ϕ is a Maass cusp form or unitary Eisenstein series on $Y(1)$.

In the AES variant, the (unnormalized) Weyl sum is

$$
S(\omega, \phi ; D)=\sum_{\boldsymbol{v} \in \mathbb{Z}_{\text {prim }}^{3},\|\boldsymbol{v}\|=D} \omega\left(\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}\right) \phi\left(z_{\boldsymbol{v}}\right)
$$

where ω is a spherical harmonic of degree k on S^{2} and ϕ is a Maass cusp form or unitary Eisenstein series on $Y(1)$.

R. Zhang (2015)

Let

$$
E(s, g, \omega, \phi)=\sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_{3}(\mathbb{Z})} \omega(k(\gamma g)) \phi(m(\gamma g)) a(\gamma g)^{-s}
$$

be the maximal Eisenstein series for $\mathrm{SL}_{3}(\mathbb{Z})$ induced from ϕ and transforming under $K=\mathrm{SO}(3)$ by ω. Then

$$
E(s, e, \omega, \phi)=\sum_{n \geq 1} S(\omega, \phi ; n) n^{-s}
$$

Remarks

(1) It is not clear from this description how GRH would imply any non-trivial bound on $S(\omega, \phi ; D)$.
(2) structurally similar to Petridis-Risager-Raulf (2014): QUE for half-integral weight Eisenstein series follows from bounds on coefficients of a double Dirichlet series.

Remarks

(1) It is not clear from this description how GRH would imply any non-trivial bound on $S(\omega, \phi ; D)$.
(2) structurally similar to Petridis-Risager-Raulf (2014): QUE for half-integral weight Eisenstein series follows from bounds on coefficients of a double Dirichlet series.

R. Zhang (2015)

We have

$$
\sum_{n \leq X} S(\omega, \phi ; n) \ll_{\epsilon} X^{\frac{15}{14}+\epsilon}
$$

Want to prove $S(\omega, \phi ; D)=o(h(-D))$. This does not imply any bound on $S(\omega, \phi ; D)$: they could exhibit cancellation on average.

Note that $\boldsymbol{T}_{\boldsymbol{d}} \subset \boldsymbol{G}_{1}$ and $\boldsymbol{T}_{\boldsymbol{d}} \subset \boldsymbol{G}_{2}$ are Strong Gelfand pairs

$$
\forall \chi_{p} \in \widehat{\boldsymbol{T}_{d}\left(\mathbb{Q}_{p}\right)}: \operatorname{dim} \operatorname{Hom}_{\boldsymbol{T}_{d}\left(\mathbb{Q}_{p}\right)}\left(\sigma_{p}, \chi_{p}\right) \leq 1
$$

This multiplicity one result lies at the heart of Waldspurger's formula, in which the toric period squared is a single L-function.

This no longer holds for $\Delta \boldsymbol{T}_{\boldsymbol{d}}$ inside $\boldsymbol{G}_{1} \times \boldsymbol{G}_{2}$.

Note that $\boldsymbol{T}_{\boldsymbol{d}} \subset \boldsymbol{G}_{1}$ and $\boldsymbol{T}_{\boldsymbol{d}} \subset \boldsymbol{G}_{2}$ are Strong Gelfand pairs

$$
\forall \chi_{p} \in \widehat{\boldsymbol{T}_{d}\left(\mathbb{Q}_{p}\right)}: \operatorname{dim} \operatorname{Hom}_{\boldsymbol{T}_{d}\left(\mathbb{Q}_{p}\right)}\left(\sigma_{p}, \chi_{p}\right) \leq 1
$$

This multiplicity one result lies at the heart of Waldspurger's formula, in which the toric period squared is a single L-function.

This no longer holds for $\Delta \boldsymbol{T}_{d}$ inside $\boldsymbol{G}_{1} \times \boldsymbol{G}_{2}$.
But we have the following Gelfand formation:

From which we expect to find a family of L-functions.

Take F_{d} IQF, C_{d} its class group, $h_{d}=\left|C_{d}\right|$. The Weyl sum is

$$
W\left(f_{1}, f_{2} ; d\right)=\frac{1}{h_{d}} \sum_{t \in C_{d}} \Phi_{1}(t) \overline{\Phi_{2}(t)} \quad\left(\Phi_{i}(t)=\varphi_{i}\left(t \cdot u_{i}\right)\right)
$$

Main estimate

Under GRH, we have $W\left(f_{1}, f_{2} ; d\right) \ll_{\epsilon}(\log |d|)^{-1 / 4+\epsilon}$.

Take F_{d} IQF, C_{d} its class group, $h_{d}=\left|C_{d}\right|$. The Weyl sum is

$$
W\left(f_{1}, f_{2} ; d\right)=\frac{1}{h_{d}} \sum_{t \in C_{d}} \Phi_{1}(t) \overline{\Phi_{2}(t)} \quad\left(\Phi_{i}(t)=\varphi_{i}\left(t \cdot u_{i}\right)\right)
$$

Main estimate

Under GRH, we have $W\left(f_{1}, f_{2} ; d\right) \ll_{\epsilon}(\log |d|)^{-1 / 4+\epsilon}$.
View as inner product on class group C_{d}. Plancherel formula gives

$$
W\left(f_{1}, f_{2} ; d\right)=\sum_{\chi \in \widehat{C_{d}}} W_{1}\left(f_{1}, \chi ; d\right) \overline{W_{2}\left(f_{2}, \chi ; d\right)}
$$

Heuristic (under GRH):

- roughly $\approx|d|^{1 / 2}$ terms in the sum,
- each term is roughly $W_{1}\left(f_{1}, \chi ; d\right) \overline{W_{2}\left(f_{2}, \chi ; d\right)} \approx|d|^{-1 / 2}$

Might hope for square-root cancellation: $W\left(f_{1}, f_{2} ; d\right) \ll|d|^{-1 / 4}$.

Crazy first step: void all cancellation!

$$
\left|W\left(f_{1}, f_{2} ; d\right)\right| \leq \sum_{\chi \in \widehat{C_{d}}}\left|W_{1}\left(f_{1}, \chi ; d\right) W_{2}\left(f_{2}, \chi ; d\right)\right|
$$

Crazy first step: void all cancellation!

$$
\left|W\left(f_{1}, f_{2} ; d\right)\right| \leq \sum_{\chi \in \widehat{C_{d}}}\left|W_{1}\left(f_{1}, \chi ; d\right) W_{2}\left(f_{2}, \chi ; d\right)\right|
$$

Assume $W_{1}\left(f_{1}, \chi ; d\right) \overline{W_{2}\left(f_{2}, \chi ; d\right)} \neq 0$. Twisted Waldspurger gives

$$
\left|W_{i}\left(f_{i}, \chi ; d\right)\right|^{2} \dot{=}|d|^{-1 / 2} \frac{L\left(1 / 2, \pi_{i} \times \chi\right)}{L\left(1, \eta_{d}\right)^{2} L\left(1, \operatorname{Ad} \pi_{i}\right)}
$$

Get (using class number formula)

$$
\left|W\left(f_{1}, f_{2} ; d\right)\right| \leq \mathcal{L}_{d}(1) S(d)
$$

where $\mathcal{L}_{d}(1)=L\left(1, \eta_{d}\right)^{-2} L\left(1, \operatorname{Ad} \pi_{1}\right)^{-1 / 2} L\left(1, \operatorname{Ad} \pi_{2}\right)^{-1 / 2}$ and

$$
S(d)=\frac{1}{h_{d}} \sum_{\chi \in \widehat{C_{d}}} L\left(1 / 2, \pi_{1} \times \chi\right)^{1 / 2} L\left(1 / 2, \pi_{2} \times \chi\right)^{1 / 2}
$$

Crazy first step: void all cancellation!

$$
\left|W\left(f_{1}, f_{2} ; d\right)\right| \leq \sum_{\chi \in \widehat{C_{d}}}\left|W_{1}\left(f_{1}, \chi ; d\right) W_{2}\left(f_{2}, \chi ; d\right)\right|
$$

Assume $W_{1}\left(f_{1}, \chi ; d\right) \overline{W_{2}\left(f_{2}, \chi ; d\right)} \neq 0$. Twisted Waldspurger gives

$$
\left|W_{i}\left(f_{i}, \chi ; d\right)\right|^{2} \dot{=}|d|^{-1 / 2} \frac{L\left(1 / 2, \pi_{i} \times \chi\right)}{L\left(1, \eta_{d}\right)^{2} L\left(1, \operatorname{Ad} \pi_{i}\right)}
$$

Get (using class number formula)

$$
\left|W\left(f_{1}, f_{2} ; d\right)\right| \leq \mathcal{L}_{d}(1) S(d)
$$

where $\mathcal{L}_{d}(1)=L\left(1, \eta_{d}\right)^{-2} L\left(1, \operatorname{Ad} \pi_{1}\right)^{-1 / 2} L\left(1, \operatorname{Ad} \pi_{2}\right)^{-1 / 2}$ and

$$
S(d)=\frac{1}{h_{d}} \sum_{\chi \in \widehat{C_{d}}} L\left(1 / 2, \pi_{1} \times \chi\right)^{1 / 2} L\left(1 / 2, \pi_{2} \times \chi\right)^{1 / 2}
$$

Note that $\pi_{1} \neq \pi_{2}$ since $\boldsymbol{G}_{1} \not 千 \boldsymbol{G}_{2}$. Show $S(d) \ll_{\epsilon}(\log |d|)^{-1 / 4+\epsilon}$.

Pointwise GRH fails (as it must)

Cauchy-Schwartz reduces this to bounding

$$
\frac{1}{h_{d}} \sum_{\chi \in \widehat{C_{d}}} L(1 / 2, \pi \times \chi) \leq \max _{\chi \in \widehat{C_{d}}} L(1 / 2, \pi \times \chi)
$$

Clearly subconvexity is not going to do the job!
Under GRH (and Ramanujan), we have the general bound:

$$
L(1 / 2, \pi) \ll \exp (A \log C(\pi) / \log \log C(\pi))
$$

Moreover (Soundararajan), there exist $d \in[X, 2 X]$ such that

$$
L\left(1 / 2, \eta_{d}\right) \gg \exp (c \sqrt{\log X} / \log \log X)
$$

One can expect similar lower bounds on $L(1 / 2, \pi \times \chi)$ for $\chi \in \widehat{C_{d}}$.

Structurally similar situation: unipotent coefficients

QUE for arithmetic eigenfunctions (AQUE) on the modular surface.

- even weight (holomorphic): Holowinsky (2009):

$$
\frac{1}{T} \sum_{n \sim T}\left|\lambda_{f}(n) \lambda_{f}(n+1)\right| \ll(\log T)^{-\delta}
$$

- 1/2-integral weight (Maass): Lester-Radziwiłt (2019) on GRH:

$$
\frac{1}{T} \sum_{d \sim T} L\left(1 / 2, f \times \eta_{d}\right)^{1 / 2} L\left(1 / 2, f \times \eta_{d+1}\right)^{1 / 2} \ll(\log T)^{-\delta}
$$

$$
\mathrm{PGL}_{2} \times \mathrm{PGL}_{2}
$$

On average, these unipotent coefficients are of size $\approx(\log n)^{-\delta}$, independently on small shifts.

Proof of main estimate

Let $h=h_{d}$ and

$$
L_{1}(\chi)=L\left(1 / 2, \pi_{1} \times \chi\right)^{1 / 2} \quad \text { and } \quad L_{2}(\chi)=L\left(1 / 2, \pi_{2} \times \chi\right)^{1 / 2}
$$

View $\log L_{1}(\chi)$ as independent Gaussian random variables in χ.
Put $L(\chi)=L_{2}(\chi) L_{2}(\chi)$.
Let μ and σ^{2} be the expectation and variance of $\log L(\chi)$:

$$
\mu=\frac{\mu_{1}+\mu_{2}}{2} \quad \text { and } \quad \sigma_{\text {naive }}^{2}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{4}
$$

Can calculate each μ_{i} and σ_{i}^{2} under GRH: for small x
$\log L\left(1 / 2, \pi_{i} \times \chi\right) \lesssim \sum_{p \leq x} \frac{\lambda_{\pi_{i}}(p) a_{\chi}(p)}{p^{1 / 2}}+\frac{1}{2} \sum_{\substack{p^{2} \leq x \\ \eta_{d}(\bar{p})=1}} \frac{\lambda_{\pi_{i}}\left(p^{2}\right) a_{\chi}\left(p^{2}\right)}{p}+\mu_{i}$.
The important feature is that $\exp \left(\mu+\frac{\sigma_{\text {anive }}^{2}}{2}\right) \asymp(\log |d|)^{-1 / 4}$.

Proof (continued)

By partial summation we obtain

$$
\begin{aligned}
S(d)=\frac{1}{h} \sum_{\chi} L(\chi) & =\frac{1}{h} \int_{\mathbb{R}} e^{V} \#\{\chi: \log L(\chi)>V\} d V \\
& =e^{\mu} \int_{\mathbb{R}} e^{V} N(V) d V
\end{aligned}
$$

where

$$
N(V)=\frac{1}{h} \#\{\chi: \log L(\chi)-\mu>V\}
$$

Proof (continued)

By partial summation we obtain

$$
\begin{aligned}
S(d)=\frac{1}{h} \sum_{\chi} L(\chi) & =\frac{1}{h} \int_{\mathbb{R}} e^{V} \#\{\chi: \log L(\chi)>V\} d V \\
& =e^{\mu} \int_{\mathbb{R}} e^{V} N(V) d V
\end{aligned}
$$

where

$$
N(V)=\frac{1}{h} \#\{\chi: \log L(\chi)-\mu>V\}
$$

Now, for any $k \geq 0$, we have

$$
N(V) \leq V^{-2 k} M_{2 k}(V)
$$

where

$$
M_{2 k}(V)=\frac{1}{h} \sum_{\chi}(\log L(\chi)-\mu)^{2 k}
$$

Proof (end)

By orthogonality of characters, we show, say for $k \gg \log \log |d|$,

$$
M_{2 k}(V) \ll \frac{(2 k)!}{k!}\left(\frac{\sigma^{2}}{2}\right)^{k},
$$

where

$$
\sigma^{2}=\sigma_{\text {naive }}^{2}+\log L\left(1, \pi_{1} \times \pi_{2} \times \theta_{d}\right)^{1 / 2}
$$

Since $\pi_{1} \neq \pi_{2}$ this is well-defined!

Proof (end)

By orthogonality of characters, we show, say for $k \gg \log \log |d|$,

$$
M_{2 k}(V) \ll \frac{(2 k)!}{k!}\left(\frac{\sigma^{2}}{2}\right)^{k},
$$

where

$$
\sigma^{2}=\sigma_{\text {naive }}^{2}+\log L\left(1, \pi_{1} \times \pi_{2} \times \theta_{d}\right)^{1 / 2}
$$

Since $\pi_{1} \neq \pi_{2}$ this is well-defined! Then

$$
N(V) \ll \frac{1}{V^{2 k}} \frac{(2 k)!}{k!}\left(\frac{\sigma^{2}}{2}\right)^{k} \asymp\left(\frac{2 k \sigma^{2}}{e V^{2}}\right)^{k} \ll e^{-\frac{V^{2}}{2 \sigma^{2}}}
$$

upon choosing $k=V^{2} /\left(2 \sigma^{2}\right)$. Get

$$
S(D) \ll e^{\mu} \int_{\mathbb{R}} e^{V-\frac{V^{2}}{2 \sigma^{2}}} d V \asymp e^{\mu+\frac{1}{2} \sigma^{2}} \asymp(\log |d|)^{-1 / 4}
$$

This approach dates back to Soundarajan (2009), on moments of the Riemann zeta function.

Proof (end)

By orthogonality of characters, we show, say for $k \gg \log \log |d|$,

$$
M_{2 k}(V) \ll \frac{(2 k)!}{k!}\left(\frac{\sigma^{2}}{2}\right)^{k},
$$

where

$$
\sigma^{2}=\sigma_{\text {naive }}^{2}+\log L\left(1, \pi_{1} \times \pi_{2} \times \theta_{d}\right)^{1 / 2}
$$

Since $\pi_{1} \neq \pi_{2}$ this is well-defined! Then

$$
N(V) \ll \frac{1}{V^{2 k}} \frac{(2 k)!}{k!}\left(\frac{\sigma^{2}}{2}\right)^{k} \asymp\left(\frac{2 k \sigma^{2}}{e V^{2}}\right)^{k} \ll e^{-\frac{V^{2}}{2 \sigma^{2}}}
$$

upon choosing $k=V^{2} /\left(2 \sigma^{2}\right)$. Get

$$
S(D) \ll e^{\mu} \int_{\mathbb{R}} e^{V-\frac{V^{2}}{2 \sigma^{2}}} d V \asymp e^{\mu+\frac{1}{2} \sigma^{2}} \asymp(\log |d|)^{-1 / 4}
$$

This approach dates back to Soundarajan (2009), on moments of the Riemann zeta function.

Thank You!

