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First Linnik problem

For D € N put Zp = {(x,y,z) € Zgrim x>+ y?+ 22 =D}
Legendre: Zp # () iff D € D, where D = {D # 0,4,7 mod 8}.
Gauss, Siegel, Dirichlet: for D € D: |%p| = DY/?+°(1),

Write

yDZ{”ZHZVE;@D}C52={X2+)/2+22:1}.

Let 152 be the normalized Lebesgue measure on the sphere S2.



First Linnik problem

For D € N put Zp = {(x,y,z) € Zgrim x>+ y?+ 22 =D}
Legendre: Zp # () iff D € D, where D = {D # 0,4,7 mod 8}.
Gauss, Siegel, Dirichlet: for D € D: |%p| = DY/?+°(1),

Write

YD:{”ZH:ve%D}C52:{X2+y2+z2:1}.

Let 152 be the normalized Lebesgue measure on the sphere S2.

Conjecture A: Equidistribution of integer points on the sphere
For D € D let

1
AN
Ko = T >

ue.’p

Then weak-* converges to tc2 as D — oo in D.
Ky g Us




The coronavirus

Figure: Covid-19



Numerical example

Figure: Integer points of norm 104851 projected onto S2

Ellenberg, Michel, Venkatesh, Linnik's ergodic method and the
distribution of integer points on spheres



Linnik (1950-60's)

Let p > 2 be prime and write

D(p) ={DeD:-D e (F})*}.

Then p.9, AN ts2 as D — oo in D(p).

Linnik's condition D € D(p) is equivalent to

the stabilizer of a point in Zp is a split torus over Qp.
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Let p > 2 be prime and write

D(p) ={DeD:-D e (F})*}.

Then p.9, AN ps2 as D — oo in D(p).

Linnik's condition D € D(p) is equivalent to
the stabilizer of a point in Zp is a split torus over Qp.

Basic idea of ergodic method: let v be a weak-* limit.
@ Show that v has maximal entropy, by bootstrapping an upper
bound on the spacing of nearby points (Linnik’s Basic Lemma)
@ Apply uniqueness result of Einsiedler—Lindenstrauss.



Linnik (1950-60's)

Let p > 2 be prime and write

D(p) ={DeD:-D e (F})*}.

Then p.9, AN ps2 as D — oo in D(p).

Linnik's condition D € D(p) is equivalent to
the stabilizer of a point in Zp is a split torus over Qp.

Basic idea of ergodic method: let v be a weak-* limit.
@ Show that v has maximal entropy, by bootstrapping an upper
bound on the spacing of nearby points (Linnik’s Basic Lemma)
@ Apply uniqueness result of Einsiedler—Lindenstrauss.

Quantitative version: [i., AN g2 as D — oo in the set
1
{D eD:3p< DD with p split in Q(\/—D)} .
This set is all of D under GRH!



Golubeva—Fomenko (1987), following lwaniec (1987)

Conjecture A is true with a power savings rate: there is § > 0 such
that for every “nice” Q C S? we have

H5(Q) = psa(Q) + O(D).




Golubeva—Fomenko (1987), following lwaniec (1987)

Conjecture A is true with a power savings rate: there is 6 > 0 such
that for every “nice” Q C S? we have

75(Q) = p2(Q) + O(D).

Spectral (automorphic) method: bound Weyl sums

‘yD’ 2 fl

ueESp

w(f,

where f € C(52) and (f,1) = 0.
Enough to test on an orthonormal basis of L3(52).

We take an orthonormal basis of arithmetic eigenfunctions. Recall
52 =80(3)/S0(2), SO(3) = H*/R* = G(R),

where G = PB* and B = B(2>)



Let ' = G(Z). Then I acts on #Zp by conjugation. Thus

W(f, D) Z F(u),
uen\%p
where
2 _ 2
F(x) |F|ZF7X on S§°=T\5"
yel
We have

§? = G(Q)\G(4)/G(2)SO(2).



Let ' = G(Z). Then I acts on #Zp by conjugation. Thus

W(f, D) Z F(u),
uen\%p
where
2 _ 2
F(x) |F|ZF7X on S§°=T\5"
yel
We have

§? = G(Q)\G(4)/G(2)SO(2).

Take o.n.b. {f;} of L2(5?2) consisting of spherical harmonics
Aof = k(k+1)f,  k>1,

such that, upon adelization, the ¢; on §2 are joint eigenfunctions
of the Hecke algebra H(G(Z)\G(Ar)/G(Z)).



Moreover, MN\Zp is a torsor for the class group Cp of (an order in)
Q(v/—D). Fixing a base point u € .¥p we have

W(f,D) = 1D > F(tw),

where h(—D) = |Cp|. This is an adelic toric integral: let
Tp = (ResQ(\/jd)/@Gm)/Gm.
Choosing u € .¥p yields an embedding Tp < G. Let
To(Z) = Tp(Af)NG(Z) and T(R) = g'SO(2)g.
Get an adelic toric orbit (finite collection of points)
Zp = Tp(Q)\Tp(A)g/ To(Z) T(R) — S°.

Then W(f; D) = y2p; J7, %, where  is the adelization of F.



Waldspurger (1985) et al.

Let 0 = (p) on G = PB*. Let m = JL(0) on PGL,. Then

1/2,m)L(1/2,7 x np)
L(1,mp)L(1,Ad )

W(f; D)R=p- 121

Remark: If f is of degree k > 1 then oo = sym?* on
G(R) =SO(3) and oo = JL(0x) = Dak42 on PGL2(R).

Siegel bound: We have L(1,np) >, D™

The problem is reduced to subconvex bounds on twists of
L-functions by (quadratic) Dirichlet character twists.

Duke—Friedlander—lwaniec (1993)
There is § > 0 such that L(1/2, 7 x np) < D¥/?79,




Second Linnik problem
For D € N with D = 0,3 (mod 4) let
Op = {AX?+ BXY + CY? : primitive, B> —4AC = —D}/SLy(Z).
Let Y(1) = SLo(Z)\H be the modular surface.

Definition

Put #p = {unique root of Q(X,1) in H: Q € Qp} C Y(1).

Let sy (1) be the normalized hyperbolic measure on Y(1).

Conjecture B: Equidistribution of Heegner points on Y (1)
For D € N with D = 0,3 (mod 4) let

1
Bty = 0z
= ] 2 %

Then f14, weak-* converges to jiy(;) along D = 0,3 (mod 4).




Linnik (1950's-60's)

Fix p > 2 a prime. Then up v fy (1) along D = 0,3 (mod 4)
such that —D € (F})2.

Again, a quantitative version leads to Conjecture B under GRH.

Duke (1988)

Conjecture B holds unconditionally, with a power savings rate.

Same ideas: Weyl sums — Waldspurger — Subconvexity
For f € C§°(Y(1)) we wish to write the normalized Weyl sum
1 1
W(f; D) = f(z) = ——= f(t.zo)
7l 2 = D) 2

teCp

where zy € J#p, as an adelic torus integral. We have

Y (1) = PGLy(Q)\PGLy(A)/PGLy(Z)SO(2).



From zy € 7p get embedding
Tp = (Resg(y=p)/qGm)/Cm — PGLy.
Let Tp(Z) = To(Af) NPGLy(Z) and T(R) = g'SO(2)gx0. Get
Zp = Tp(Q\To(A)gee/ To(2) T(R) = Y(1).

Then W(f; D) = 7=py D) Jz, ©. where ¢ is the adelization of f.

Waldspurger (1985) et al.

Let m = (p) be cuspidal Maass on PGLy. Then

_ 12 L(1/2,m)L(1/2, 7 x np)
KGR L(1,mp)2L(1,Ad7)

Remark: Here m, is a principal series representation on PGLy(R).

The same subconvexity bound of DFI (1993) solves the problem.



Other variants

1) Sparse equidistribution: twisted Weyl sums, the numerator
becomes L(1/2, 7 x m,), subconvex bounds by Michel (2004)

2) Let Q(v/D) be real quadratic. Then Tp < PB* for any
indefinite B such that p split in Q(v/D) implies B(Q)) split.

Obtain packets of closed geodesics on the unit tangent bundle of
Shimura or modular curves.

Skubenko (1950-60's)

Equidistribution under Linnik's condition.

Duke (1987)

Equidistribution for all positive fundamental discriminants.

Both proofs follow the same pattern.



Figure: h(Q(\/377)) =1

Einsiedler—Lindenstrauss—Michel-Venkatesh, The distribution of
closed geodesics on the modular surface, and Duke’s theorem.
Ergodic proof without congruence conditions! (torus split at co)



2) Let G = PB*, where B = B(P:>) where p > 2. Then
G(Q)\G(4)/G(2)G(R) ~ ELL},
which has size 2 L 1 O(1) and has a natural probability measure

Aut(e)|t 12
| u (e)‘ — = \Aut(e)]_l
ocmns [Aut(e)| p—1

pens(e) = 5



2) Let G = PB*, where B = B(P:>) where p > 2. Then
G(Q)\G(4)/G(2)G(R) ~ ELL},
which has size 2 L 1 O(1) and has a natural probability measure

B |Aut(e)|~? _
pEns (e) = > ercrns [Aut(e)| 7t

1
|Aut(e)| L.
1
Let F be an imaginary quad field for which p is inert. Let Hr be
the Hilbert class field of F. For p | p get reduction map
Ellg) — ElIY, E — E mod p.
See Aka-Luethi-Michel-Wieser (2020).

Michel (2004)

Then the fibers of the reduction map are distributed according to
PELS as F varies over IQF for which p is inert, with power savings
in the disciminant.




Simultaneous equidistribution

We return to the Linnik problems A and B.
Let Gi = PB*, where B = B(2®), and G, = PGL,. For D €

G1 — TD — Gg,
simultaneous embeddings. We can then construct
A:Tp—= G xG, A:Zp—S*>xY(1).

Understand the distribution of AZp inside §% x Y(1) as D — oc.

Expectation

AZp should equidistribute to §2 x Y(1) since the spaces §? and
Y (1) come from non-isomorphic quaternion algebras.




Classical description of AZp

We have
Y (1) = SLy(Z)\SL2(R)/SO(2) = Lo,

where £ is the space of unimodular lattices in R? up to rotation.
Let D € D. For v € Zp consider A, = Z3 N v*. Then

— rotate to a reference plane in R3,

— normalize to have covolume 1.
We obtain [A,] € L>.



Classical description of AZp

We have
Y (1) = SLy(Z)\SL2(R)/SO(2) = Lo,
where £ is the space of unimodular lattices in R? up to rotation.
Let D € D. For v € %Zp consider A, = Z3N v+, Then
— rotate to a reference plane in R3,

— normalize to have covolume 1.
We obtain [A,] € L£2. Then

Zp = {(H I [/\v]> ve %’(D)} C S? x Y(1).
So the question becomes:

Does a primite integral point on the sphere and the shape of its
orthogonal lattice equidistribute in S?> x Y (1)?



Conjecture: Michel-Venkatesh (2006), Aka—Einsiedler—Shapira

AZp equidistributes to pg> X pry(1) as D — oo in D.




Conjecture: Michel-Venkatesh (2006), Aka—Einsiedler—Shapira

AZp equidistributes to pg> X pry(1) as D — oo in D.

Aka—-Einsiedler-Shapira (2016)

Let p,q > 2 be distinct. Then AZp equidistributes to ug2 X py(q)
as D — oo in D(p, q) N F, where

D(p,q) ={D eD:-D € (F})* (F;)*}

and F is the set of square-free integers.

No quantification is available:
— no rate of equidistribution;

— their proof does not presently allow one to replace the
congruence conditions by GRH.



|dea of proof of AES

Let v be a weak-* limit.

@ Show that the push forward along both projections
equidistributes in its copy.

@ Show, under the Linnik condition D(p, q), that v is invariant
under Stabgo,(qgs)(vs), where vs € Z% and S = {p, q}.

From (1) and (2) it follows that v is a “joining”.

© Apply Einsiedler-Lindenstrauss (2015):
a joining of higher rank torus actions is algebraic.

Since G1 and G, are distinct, there is no non-trivial algebraic
subgroup containing both G; and Gj.



Comments

— The proof is general and applies to all “hybrid situations”:

Aka—Luethi-Michel-Wieser (2020)
Let p1, p2, g1, g2 be distinct odd primes. The fibers of

EIZ — EIS x EIES,  E > (E mod p1, E mod py)

distribute according to HELS X pELS 3S D — +ocoin D(q1,q1)NF
such that pp, pp are inert in Q(v/—D).

v




Comments

— The proof is general and applies to all “hybrid situations”:

Aka—Luethi-Michel-Wieser (2020)
Let p1, p2, g1, g2 be distinct odd primes. The fibers of

EIZ} — Bl x Bl E v (E mod py, E mod p2)

distribute according to HELS X pELS 3S D — +ocoin D(q1,q1)NF
such that pp, pp are inert in Q(v/—D).

v

— One can replace 2 copies by n (pairwise non-isomorphic)
copies, with a congruence condition for each copy

— For Y(1) x Y(1) there is also a mixing conjecture of
Michel-Venkatesh, solved by Khayutin (2019) for
D € D(p,q) NF and a Landau-Siegel zero assumption.



Main result: abstract set-up

Let By, B2/Q be non-isomorphic, non-split, quaternion algebras.
Let G; = PB and G = G; x Go.

Let O; be an Eichler order in B;(Q).

Let K¢ = Ky x Ko C G(Af), where K; = PO,

Write K = KrKo where K, = SO(2) x SO(2) C G(R).

Put X = G(Q)\G(A)/K.

Let Fy be a quadratic field extension of QQ of discriminant d,
optimally embedded in O;.

Let A: Ty = (Rest/QGm)/Gm — G, the diagonal inclusion.
Let g € G(R) satisfy gooKoogol = ATy(R).
Put AZp = G(Q)AT4(A)gK, where g = (1, g)-



Main result: statement

Blomer — B. (in preparation)
Assume GRH. Then AZ, equidistributes in X with a logarithmic
rate as |d| — oo: for every “nice” Q € X we have

1az,(Q) = px(Q) + Oc((log |d])~H/**).

Our proof goes through the theory of automorphic forms and
Waldspurger's theorem.

Plan for the remaining time:
© describe a previous approach to this problem by R. Zhang;
@ motivate our different approach;

© sketch our proof.



In the AES variant, the (unnormalized) Weyl sum is

SwoiD)= 3wt )o@

VEZE V]| =D

prim’

where w is a spherical harmonic of degree k on S% and ¢ is a
Maass cusp form or unitary Eisenstein series on Y(1).



In the AES variant, the (unnormalized) Weyl sum is

Sw¢D)= Y w(H:H>¢(zv),

VEZS i lIVI=D

prim’

where w is a spherical harmonic of degree k on S% and ¢ is a
Maass cusp form or unitary Eisenstein series on Y(1).

R. Zhang (2015)
Let

E(s,gw,d)= Y, w(k(rg))d(m(rg))a(vg)~*

[v]€Moo\SL3(Z)

be the maximal Eisenstein series for SL3(Z) induced from ¢ and
transforming under K = SO(3) by w. Then

E(s,e,w,¢) = ZSwgzb

n>1




Remarks
@ It is not clear from this description how GRH would imply any
non-trivial bound on S(w, ¢; D).
@ structurally similar to Petridis—Risager—Raulf (2014): QUE for
half-integral weight Eisenstein series follows from bounds on
coefficients of a double Dirichlet series.



Remarks
@ It is not clear from this description how GRH would imply any
non-trivial bound on S(w, ¢; D).
@ structurally similar to Petridis—Risager—Raulf (2014): QUE for
half-integral weight Eisenstein series follows from bounds on
coefficients of a double Dirichlet series.

R. Zhang (2015)

We have .
Z S(w, ¢; n) e X1ate,

n<X

Want to prove S(w, ¢; D) = o(h(—D)). This does not imply any
bound on S(w, ¢; D): they could exhibit cancellation on average.



Note that Ty C Gy and Ty C G are Strong Gelfand pairs

—

V xp € Ta(Qp) : dimHomy,(g,)(0p, xp) < 1.

This multiplicity one result lies at the heart of Waldspurger's
formula, in which the toric period squared is a single L-function.

This no longer holds for AT, inside Gy x Go.



Note that Ty C Gy and Ty C G are Strong Gelfand pairs

—

V xp € Ta(Qp) : dimHomy,(g,)(0p, xp) < 1.

This multiplicity one result lies at the heart of Waldspurger's
formula, in which the toric period squared is a single L-function.

This no longer holds for AT, inside Gy x Go.

But we have the following Gelfand formation:

G1><G2

TdX Td

ATy

From which we expect to find a family of L-functions.



Take Fy IQF, Cy its class group, hgy = |Cy4|. The Weyl sum is
1 _
W(f, f;d) = o D di()da(t)  (Pi(t) = pi(t.w)).
teCy

Main estimate
Under GRH, we have W(fi, f; d) <. (log|d|)~1/4+<.




Take Fy IQF, Cy its class group, hgy = |Cy4|. The Weyl sum is
1 _
W(f, f;d) = o D di()da(t)  (Pi(t) = pi(t.w)).
teCy

Main estimate
Under GRH, we have W(fi, f; d) <. (log|d|)~1/4+<.

View as inner product on class group Cy. Plancherel formula gives
W(h, fid) =Y WA(A,x; d)Wa(, x; d).
x€Cq

Heuristic (under GRH):

— roughly ~ |d|'/? terms in the sum,

— each term is roughly Wi (fi, x; d)Wa(fy, x; d) = |d| /2
Might hope for square-root cancellation: W(f, fa; d) < |d|~1/%.



Crazy first step: void all cancellation!

(W(R, i d) < D WA, xi d)Walf, x; d)]-
x€Ca



Crazy first step: void all cancellation!
(W(fi, B d)| < Y [Wa(fi, x; d)Wa(fa, x; d)].
x€Cq
Assume Wi (f1, x; d)Wa(fa, x; d) # 0. Twisted Waldspurger gives

L(1/2,7r,- X X)

Wi(fi, x; 21 41—1/2 .

Get (using class number formula)
\W(fi, f;d)| < Lq(1)S(d),
where L£4(1) = L(1,14)2L(1, Ad )~ Y2L(1, Ad 75)~1/? and

1
5(d) = hy Z L(1/2,m x X)l/zL(1/2,772 X X)l/z.
X€Cq



Crazy first step: void all cancellation!
(W(fi, B d)| < Y [Wa(fi, x; d)Wa(fa, x; d)].
x€Cq
Assume Wi (f1, x; d)Wa(fa, x; d) # 0. Twisted Waldspurger gives

L(1/2,m X x)

Wi, x; 21 41—1/2 .
|Wi(fi, x: d)|"=Id]| (L0 L(L Ad )

Get (using class number formula)
\W(fi, f;d)| < Lq(1)S(d),
where £4(1) = L(1,7g) 2L(L, Ad ) V2L(1, Ad ) /2 and
5(d) = L > L(1/2,m x x)V2L(L/2,m x X))
hg —.
X€Cq

Note that m; # 75 since Gy % Go. Show S(d) <. (log |d|)~1/4+e.



Pointwise GRH fails (as it must)

Cauchy-Schwartz reduces this to bounding

Z L(1/2,m x x) < max L(1/2,7 x x).
x€Cqy
XECd

Clearly subconvexity is not going to do the job!

Under GRH (and Ramanujan), we have the general bound:
L(1/2,7) < exp(Alog C(m)/ loglog C(7))
Moreover (Soundararajan), there exist d € [X,2X] such that
L(1/2,14) > exp(c+/log X/ loglog X).

One can expect similar lower bounds on L(1/2, 7 x x) for x € Ca.



Structurally similar situation: unipotent coefficients

QUE for arithmetic eigenfunctions (AQUE) on the modular surface.
— even weight (holomorphic): Holowinsky (2009):

7 5 W+ )] < (og )
n~T

— 1/2-integral weight (Maass): Lester-Radziwitt (2019) on GRH:

% > L(L/2,f % 0a)/2L(L/2, f X nas1)V? < (log T) ™.

d~T
PGL; x PGL,
On average, these unipotent
coefficients are of size ~ (log n)~°,
N x N

independently on small shifts.

AN



Proof of main estimate

Let h = hy and
Li(x) = L(1/2,m x x)"? and La(x) = L(1/2,m x x)/2.
View log L1(x) as independent Gaussian random variables in x.

Put L(x) = La(x)L2(x)-

Let 11 and 02 be the expectation and variance of log L(x):

2 2
M1+ p2 oy t+o
= — and aﬁaive =1 1 2,
Can calculate each u; and 0-2 under GRH: for small x
2
] A, p)ax 7r, p°) )
log L(1/2,mixX) S ) p1/2 2 ) + i
p<x p2<x
77d(P) 1

2
The important feature is that exp (,u + %) = (log |d|)~1/4.



Proof (continued)

By partial summation we obtain
= Z / eV#{x :log L(x) > V}dV

:e“/ eVN(V)dV,
R

where 1
N(V) = T##{x : log L(x) = > V}.



Proof (continued)

By partial summation we obtain
= Z / eV#{x :log L(x) > V}dV

:e“/ eVN(V)dV,
R

where 1
N(V) = T##{x : log L(x) = > V}.
Now, for any k > 0, we have

N(V) < V72K My (V),

where

Ma(V) = £ 3 (log L(x) -



Proof (end)

By orthogonality of characters, we show, say for k > loglog |d],

Mo (V) < (2:,)](2) ;

where

2

0 = 2

+ |Og L(l T X T X Hd)

nalve

Since 71 # mp this is well-defined!



Proof (end)

By orthogonality of characters, we show, say for k > loglog |d],

Mo (V) < (2:,)](2) ;

where

2

0 = 2

+ |Og L(l T X T X Hd)

nalve

Since 71 # my this is well-defined! Then
1 (2k)! fo?\k 2k o2\ k _2
V) < v (5) = (o) <o
upon choosing k = V?/(202). Get

2
S(D) < ¢ [ e Hdy = e+ < (ogld) M. O
R
This approach dates back to Soundarajan (2009), on moments of

the Riemann zeta function.



Proof (end)

By orthogonality of characters, we show, say for k > loglog |d],

Mo (V) < (2:,)](2) ;

where

2

0 = 2

+ |Og L(l T X T X Hd)

nalve

Since 71 # my this is well-defined! Then
1 (2k)! fo?\k 2k o2\ k _2
V) < v (5) = (o) <o
upon choosing k = V?/(202). Get

2
S(D) < eu/ReV—!.de = 37 = (log|d]) V4. T

This approach dates back to Soundarajan (2009), on moments of
the Riemann zeta function.

Thank Youl



