SQG equation on the sphere Analysis seminar, IAS

Ángel D. Martínez

Institute for Advanced Study

October 28, 2019

Active scalars are a wide class of *transport equations* where the velocity is determined from the transported quantity in a certain way.

Active scalars are a wide class of *transport equations* where the velocity is determined from the transported quantity in a certain way. In this case a temperature θ evolves following

$$\begin{cases} \partial_t \theta(x,t) + u(x,t) \cdot \nabla \theta(x,t) = 0, \\ \nabla \cdot u(x,t) = 0 \\ u(x,t) = (-R_2\theta, R_1\theta) \end{cases}$$

where R_j denotes a Riesz potential

$$R_j(\theta)(x) = \frac{1}{\pi} \int_{\mathbb{R}^2} \frac{y_j}{|y|^3} \theta(x-y) dy$$

There are at least two reasons that justify studying this

There are at least two reasons that justify studying this equation:

• It models frontogenesis in meteorology (θ represents potential temperature).

There are at least two reasons that justify studying this equation:

- It models frontogenesis in meteorology (θ represents potential temperature).
- It is related to the 3D Euler equation.

Constantin, Majda and Tabak. Settled a connection with 3D Euler. Local existence and observe a possible scenario for finite time blow up. Nonlinearity, 1994.

Constantin, Majda and Tabak. Settled a connection with 3D Euler. Local existence and observe a possible scenario for finite time blow up. Nonlinearity, 1994.

Resnick. Global existence of weak solutions. PhD dissertation, Chicago University, 1995.

Constantin, Majda and Tabak. Settled a connection with 3D Euler. Local existence and observe a possible scenario for finite time blow up. Nonlinearity, 1994.

Resnick. Global existence of weak solutions. PhD dissertation, Chicago University, 1995.

D. Córdoba. Provided a proof dismissing such an scenario, Annals of Math. 1998.

In this case we consider

$$\left\{ \begin{array}{l} \theta_t + u \cdot \nabla \theta + \kappa \Lambda^{\alpha} \theta = 0 \\ u = \nabla^{\perp} \Lambda^{-1} \theta \\ \theta(x,0) = \theta_0(x), \kappa > 0 \end{array} \right.$$

In this case we consider

$$\left\{ \begin{array}{l} \theta_t + u \cdot \nabla \theta + \kappa \Lambda^{\alpha} \theta = 0 \\ u = \nabla^{\perp} \Lambda^{-1} \theta \\ \theta(x, 0) = \theta_0(x), \kappa > 0 \end{array} \right.$$

The subcritical case, $\alpha > 1$, is well understood (Constantin-Wu, 1998).

In this case we consider

$$\begin{cases} \theta_t + u \cdot \nabla \theta + \kappa \Lambda^{\alpha} \theta = 0\\ u = \nabla^{\perp} \Lambda^{-1} \theta\\ \theta(x, 0) = \theta_0(x), \kappa > 0 \end{cases}$$

The subcritical case, $\alpha > 1$, is well understood (Constantin-Wu, 1998). Global regularity for the critical case $\alpha = 1$ has been quite more challenging due to the possible balance between opposite strengths of the non-linear and the dissipative terms.

We are interested in a number of questions about the solutions of such an equation, e.g.

Existence (local or global).

We are interested in a number of questions about the solutions of such an equation, e.g.

- Existence (local or global).
- Oniqueness.

We are interested in a number of questions about the solutions of such an equation, e.g.

- Existence (local or global).
- Oniqueness.
- Sinite time singularities (even in the compressible case).

Caffarelli, Vasseur (\mathbb{R}^2): Drift diffussion equations with fractional diffussion and the Q.G. equations, Annals of Math. 2010.

Caffarelli, Vasseur (\mathbb{R}^2): Drift diffussion equations with fractional diffussion and the Q.G. equations, Annals of Math. 2010.

Constantin, Vicol (\mathbb{R}^2 **:)** Nonlinear maximum principles for dissipative linear nonlocal operators and applications, GAFA. 2012.

Caffarelli, Vasseur (\mathbb{R}^2): Drift diffussion equations with fractional diffussion and the Q.G. equations, Annals of Math. 2010.

Constantin, Vicol (\mathbb{R}^2 **:)** Nonlinear maximum principles for dissipative linear nonlocal operators and applications, GAFA. 2012.

In fact all their proofs work in the $n\mbox{-dimensional tori}$ or euclidean spaces.

Caffarelli, Vasseur (\mathbb{R}^2): Drift diffussion equations with fractional diffussion and the Q.G. equations, Annals of Math. 2010.

Constantin, Vicol (\mathbb{R}^2 **:)** Nonlinear maximum principles for dissipative linear nonlocal operators and applications, GAFA. 2012.

In fact all their proofs work in the n-dimensional tori or euclidean spaces. Our result deals only with the two dimensional sphere, namely:

Alonso-Orán, Córdoba, M. (\mathbb{S}^2): Global well-posedness of critical SQG on the sphere, 2018.

Let (M,g) be a compact orientable surface and g be a Riemannian metric the SQG in this case takes the form

$$\begin{cases} \frac{\partial \theta}{\partial t} + u \cdot \nabla_g \theta + \Lambda_g \theta = 0, \\ u = \mathcal{R}_g^{\perp} \theta = \nabla_g^{\perp} \Lambda_g^{-1} \theta \end{cases}$$

where $\Lambda_g = (-\Delta_g)^{\frac{1}{2}}$ and $-\Delta_g$ is the Laplace-Beltrami operator.

Let (M,g) be a compact orientable surface and g be a Riemannian metric the SQG in this case takes the form

$$\begin{cases} \frac{\partial \theta}{\partial t} + u \cdot \nabla_g \theta + \Lambda_g \theta = 0, \\ u = \mathcal{R}_g^{\perp} \theta = \nabla_g^{\perp} \Lambda_g^{-1} \theta \end{cases}$$

where $\Lambda_g = (-\Delta_g)^{\frac{1}{2}}$ and $-\Delta_g$ is the Laplace-Beltrami operator.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Let $\theta_0 \in C^{\infty}(\mathbb{S}^2)$ be the initial datum, then the solution remains smooth for any time t > 0.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

There is global well-posedness in $H^{s}(\mathbb{S}^{2})$ for any s > 3. In fact, any solution with such initial datum becomes smooth instantaneously.

The integral representation of the fractional laplacian as a singular integral is well known in the euclidean space \mathbb{R}^n or the tori \mathbb{T}^n .

Fractional laplacian basics: euclidean case

The integral representation of the fractional laplacian as a singular integral is well known in the euclidean space \mathbb{R}^n or the tori \mathbb{T}^n . Indeed,

$$\Lambda^{\alpha} f(x) = c_{n,\alpha} P.V. \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{n + \alpha}} dy,$$

$$\Lambda^{\alpha} f(x) = c_{n,\alpha} P.V. \sum_{\nu \in \mathbb{Z}^n} \int_{\mathbb{T}^n} \frac{f(x) - f(y)}{|x - y - \nu|^{n + \alpha}} dy$$

for any $0 < \alpha < 2$.

Fractional laplacian basics: euclidean case

The integral representation of the fractional laplacian as a singular integral is well known in the euclidean space \mathbb{R}^n or the tori \mathbb{T}^n . Indeed,

$$\Lambda^{\alpha} f(x) = c_{n,\alpha} P.V. \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{n + \alpha}} dy,$$

$$\Lambda^{\alpha} f(x) = c_{n,\alpha} P.V. \sum_{\nu \in \mathbb{Z}^n} \int_{\mathbb{T}^n} \frac{f(x) - f(y)}{|x - y - \nu|^{n + \alpha}} dy$$

for any $0<\alpha<2.$ As an easy consequence of these one can get

Theorem (Córdoba-Córdoba inequality)

For any $\alpha \in (0,2)$ and f smooth enough, the following pointwise inequality holds

$$f(x)\Lambda^{\alpha}f(x) \ge \frac{1}{2}\Lambda^{\alpha}(f^2)(x).$$

Following the trajectories

$$\frac{dx}{dt} = u(x,t)$$

one gets

$$\frac{d}{dt}(\theta(x(t),t)) = \theta_t + \nabla \theta \cdot \frac{dx}{dt} = 0$$

deducing that $\|\theta(\cdot,t)\|_{L^p}$ remains constant under the evolution $(1 \le p \le \infty)$.

Following the trajectories

$$\frac{dx}{dt} = u(x,t)$$

one gets

$$\frac{d}{dt}(\theta(x(t),t)) = \theta_t + \nabla \theta \cdot \frac{dx}{dt} = 0$$

deducing that $\|\theta(\cdot,t)\|_{L^p}$ remains constant under the evolution $(1 \le p \le \infty)$. It is easy to check, using the Córdoba-Córdoba inequality, that the L^p norms do not increase.

The fractional Laplacian is related to another operator: the Dirichlet to Neumann operator.

The fractional Laplacian is related to another operator: the Dirichlet to Neumann operator.

Theorem (A. Córdoba, A. D. M. 2015)

The following pointwise inequality holds

$$\frac{1}{2m}DN_{\Omega}(f^{2m})(x) \le f(x)^{2m-1}DN_{\Omega}f(x)$$

for any positive integer $m \ge 1$.

The fractional Laplacian is related to another operator: the Dirichlet to Neumann operator.

Theorem (A. Córdoba, A. D. M. 2015)

The following pointwise inequality holds

$$\frac{1}{2m}DN_{\Omega}(f^{2m})(x) \le f(x)^{2m-1}DN_{\Omega}f(x)$$

for any positive integer $m \ge 1$.

 $\ensuremath{\operatorname{PROOF}}$: To begin with we propose the following Dirichlet problems in the domain

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = f & \text{in } \partial \Omega \end{cases}$$

and

$$\left\{ \begin{array}{ll} \Delta v = 0 & \mbox{in } \Omega \\ v = f^{2m} & \mbox{in } \partial \Omega \end{array} \right.$$

Then $w = u^{2m} - v$ satisfies

$$\left\{ \begin{array}{ll} \Delta w = 2m(2m-1)|\nabla u|^2 u^{2m-2} & \text{in } \Omega \\ w = 0 & \text{in } \partial \Omega \end{array} \right.$$

Ángel D. Martínez

The (spectral) fractional Laplace-Beltrami (definition)

The Laplace-Beltrami operator, Δ_g , in some local coordinates of the surface (n = 2) takes the form

$$\frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{2} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \right)$$

where $(g^{ij}) = (g_{ij})^{-1}$ is the inverse of the metric tensor.

The (spectral) fractional Laplace-Beltrami (definition)

The Laplace-Beltrami operator, Δ_g , in some local coordinates of the surface (n = 2) takes the form

$$\frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{2} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \right)$$

where $(g^{ij}) = (g_{ij})^{-1}$ is the inverse of the metric tensor. There is an orthonormal basis of eigenfunctions of this operator

$$-\Delta_g Y_\ell = \lambda_\ell^2 Y_\ell$$

where $\lambda_0 = 0$ and the eigenvalue increases to infinity as $\ell \in \mathbb{N}$ increases.

The Laplace-Beltrami operator, Δ_g , in some local coordinates of the surface (n = 2) takes the form

$$\frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{2} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \right)$$

where $(g^{ij}) = (g_{ij})^{-1}$ is the inverse of the metric tensor. There is an orthonormal basis of eigenfunctions of this operator

$$-\Delta_g Y_\ell = \lambda_\ell^2 Y_\ell$$

where $\lambda_0 = 0$ and the eigenvalue increases to infinity as $\ell \in \mathbb{N}$ increases. The fractional Laplace-Beltrami operator acts on this basis as $(-\Delta_g)^{\alpha/2}Y_\ell = \lambda_\ell^\alpha Y_\ell$ and for any other function by linearity. Usual notation is $\Lambda_g^\alpha = (-\Delta_g)^{1/2}$.

In the case of a general compact manifold (e.g. a sphere) the above was not available.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

$$\Lambda_{g}^{\alpha} f(x) = c_{n,\alpha} P.V. \int_{M} \frac{f(x) - f(y)}{d(x, y)^{n+\alpha}} (\chi u_{0} + k_{N})(x, y) \, dy + E$$

where $k_N(x,y) = O(d(x,y))$ is certain smooth function, χ is a diagonal cutoff and the error gains derivatives

$$E = O(||f||_{H^{-N}(M)}).$$

• Córdoba-Córdoba inequality with an (unsigned) error (cf. Córdoba-M., 2015).

- Córdoba-Córdoba inequality with an (unsigned) error (cf. Córdoba-M., 2015).
- Constantin-Vicol improvement with smoothing error.

- Córdoba-Córdoba inequality with an (unsigned) error (cf. Córdoba-M., 2015).
- Constantin-Vicol improvement with smoothing error.
- Fractional Sobolev embedding theorem for compact manifolds (cf. Aubin).

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Difficulties:

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Difficulties:

No dilations available.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Difficulties:

- No dilations available.
- O No bootstrapping from modulus of continuity.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum $\theta_0 \in L^2(\mathbb{S}^2)$ any weak solution becomes instantaneously continuous for any time t > 0.

Difficulties:

- No dilations available.
- O No bootstrapping from modulus of continuity.
- So The argument does not work for dimensions greater than two.

This was introduced to solve the 19th Hilbert problem.

De Giorgi's technique 101

This was introduced to solve the 19th Hilbert problem.

Lemma (Caccioppoli's (energy) inequality)

Let $u \ge 0$, $\Delta u \ge 0$ and $\varphi \in C_0^\infty(B_2)$ then

$$\int_{B_2} |\nabla(\varphi u)|^2(x) dx \le C_{\varphi} \int_{B_2} u^2.$$

This was introduced to solve the 19th Hilbert problem.

Lemma (Caccioppoli's (energy) inequality)

Let $u \ge 0$, $\Delta u \ge 0$ and $\varphi \in C_0^\infty(B_2)$ then

$$\int_{B_2} |\nabla(\varphi u)|^2(x) dx \le C_{\varphi} \int_{B_2} u^2.$$

Using Sobolev's embedding and this inequality one can prove

$$E_k \le C2^{2k} E_{k-1}^{1+1/n}$$

where

$$E_k = \int_{B_1} (\varphi_k u_k)^2 dx$$

where $u_k = (u - (1 - 2^{-k}))_+$ and φ_k is a cut off function on $B_{1+2^{-k}}.$

Ángel D. Martínez

This was introduced to solve the 19th Hilbert problem.

Lemma (Caccioppoli's (energy) inequality)

Let $u \ge 0$, $\Delta u \ge 0$ and $\varphi \in C_0^\infty(B_2)$ then

$$\int_{B_2} |\nabla(\varphi u)|^2(x) dx \le C_{\varphi} \int_{B_2} u^2.$$

Using Sobolev's embedding and this inequality one can prove

$$E_k \le C2^{2k} E_{k-1}^{1+1/n}$$

where

$$E_k = \int_{B_1} (\varphi_k u_k)^2 dx$$

where $u_k = (u - (1 - 2^{-k}))_+$ and φ_k is a cut off function on $B_{1+2^{-k}}$. Then $E_k \to 0$ if E_0 is small enough.

Ángel D. Martínez

The previous idea can be used, this time

$$E_k = \sup_{t \ge T_k} \int_M \theta_k^2 dx + 2 \int_{T_k}^\infty \int_M |\Lambda^{1/2} \theta_k|^2 dx dt$$

The previous idea can be used, this time

$$E_k = \sup_{t \ge T_k} \int_M \theta_k^2 dx + 2 \int_{T_k}^\infty \int_M |\Lambda^{1/2} \theta_k|^2 dx dt$$

to show

$$E_k \le C \frac{2^{k(1+2/n)+1}}{t_0 C^{2/n}} E_{k-1}^{1+1/n}.$$

Lemma (Local energy inequality, I)

Let θ_k satisfy

$$\partial_t \theta_k + u \cdot \nabla_g \theta_k \leq -\Lambda \theta_k$$

and denote $I(z_0) = [0, z_0]$. Let the function $\eta \theta_k^*(x, t, z)$ be vanishing in $M \times [0, \infty) \setminus B_g(h) \times I(z_0)$. Then if u satisfies

$$\sup_{t \in (s,t)} \int_{B_g(h)} |u(x,t)|^{2n} dvol_g(x) \le Ch^n$$

and $s \leq t$.

Lemma (Local energy inequality, II)

Then the following holds

$$\begin{split} \int_{s}^{t} \int_{I(z_{0})} \int_{B_{g}(h)} |\nabla_{x,z}(\eta\theta_{k}^{*})(x,t,z)|^{2} dx dz dt + \int_{B_{g}(h)} (\eta\theta_{k})^{2}(x,t) dx \\ & \leq C \left\{ \int_{B_{g}(h)} (\eta\theta_{k})^{2}(x,s) dx + h \int_{s}^{t} \int_{B_{g}(h)} |\nabla_{x}\eta\theta_{k}|^{2} dx dt \\ & + \int_{s}^{t} \int_{I(z_{0})} \int_{B_{g}(h)} |\nabla_{x,z}\eta\theta_{k}^{*}|^{2} dvol_{g}(x) dz dt \\ & + \int_{s}^{t} \int_{B_{g}(h)} (\eta\theta_{k})^{2}(x,t) dvol_{g}(x) dt \right\}. \end{split}$$

Ángel D. Martínez

• Fractional Sobolev embedding to get global $L^\infty(M)$ control out of L^2 norm.

- Fractional Sobolev embedding to get global $L^\infty(M)$ control out of L^2 norm.
- Nice barrier functions satisfying certain properties (recall no scaling!).

- Fractional Sobolev embedding to get global $L^\infty(M)$ control out of L^2 norm.
- Nice barrier functions satisfying certain properties (recall no scaling!).
- Very tricky induction argument to get oscillation decay using the above (for small energy).

- Fractional Sobolev embedding to get global $L^\infty(M)$ control out of L^2 norm.
- Nice barrier functions satisfying certain properties (recall no scaling!).
- Very tricky induction argument to get oscillation decay using the above (for small energy).
- Isoperimetric inequality on the sphere (cf. De Giorgi's to get rid of the small energy assumption).

- Fractional Sobolev embedding to get global $L^\infty(M)$ control out of L^2 norm.
- Nice barrier functions satisfying certain properties (recall no scaling!).
- Very tricky induction argument to get oscillation decay using the above (for small energy).
- Isoperimetric inequality on the sphere (cf. De Giorgi's to get rid of the small energy assumption).
- Rotations to get the logarithmic modulus of continuity.

Lemma

Let f be a smooth function on the sphere \mathbb{S}^2 and $0 < \alpha < 2$. Then provided that $|\nabla_g f(x)| \ge C ||f||_{\infty}$ we have the pointwise bound

$$\nabla_g f(x) \cdot \nabla_g \Lambda^{\alpha} f(x) \geq \frac{1}{2} \Lambda^{\alpha} (|\nabla_g f|^2)(x) + \frac{1}{4} D(x) + \frac{|\nabla_g f(x)|^{2+\alpha}}{C \|f\|_{\infty}^{\alpha}} + O(x) + O$$

where D denotes some functional (defined in the proof), $O = O(||\nabla_g f||_{\infty}^2)$ is an error term and the constant C depends on α but is independent of x.

Lemma

Let f be a smooth function on the sphere \mathbb{S}^2 and $0 < \alpha < 2$. Then provided that $|\nabla_g f(x)| \ge C ||f||_{\infty}$ we have the pointwise bound

$$\nabla_g f(x) \cdot \nabla_g \Lambda^{\alpha} f(x) \geq \frac{1}{2} \Lambda^{\alpha} (|\nabla_g f|^2)(x) + \frac{1}{4} D(x) + \frac{|\nabla_g f(x)|^{2+\alpha}}{C \|f\|_{\infty}^{\alpha}} + O(x) + O$$

where D denotes some functional (defined in the proof), $O = O(||\nabla_g f||_{\infty}^2)$ is an error term and the constant C depends on α but is independent of x.

Careful: notice the non commutativity of some operators (despite ΨDO). We need stereographic projection, integral representation with smoothing error.

Closing the argument (I)

Let
$$L = (\partial_t + u \cdot \nabla_g + \Lambda_g).$$

$$\frac{1}{2}L(|\nabla_g\theta|^2)(x) + \frac{|\nabla_g\theta(x)|^3}{c\|\theta\|_{\infty}} \leq C|\nabla_g\theta(x)|^2 + O(\|\nabla_g\theta\|_{\infty}^2)$$

holds for any t > 0.

$$\frac{1}{2}L(|\nabla_g\theta|^2)(x) + \frac{|\nabla_g\theta(x)|^3}{c\|\theta\|_{\infty}} \leq C|\nabla_g\theta(x)|^2 + O(\|\nabla_g\theta\|_{\infty}^2)$$

holds for any t > 0. Evaluating formally at \bar{x} , a point that reaches the maximum of $|\nabla_q \theta|(x)$, one gets

$$\frac{d}{dt}|\nabla_g\theta|^2(\bar{x}) \le 0$$

$$\frac{1}{2}L(|\nabla_g\theta|^2)(x) + \frac{|\nabla_g\theta(x)|^3}{c\|\theta\|_{\infty}} \leq C|\nabla_g\theta(x)|^2 + O(\|\nabla_g\theta\|_{\infty}^2)$$

holds for any t > 0. Evaluating formally at \bar{x} , a point that reaches the maximum of $|\nabla_q \theta|(x)$, one gets

$$\frac{d}{dt}|\nabla_g\theta|^2(\bar{x}) \le 0$$

Heuristically this prevents indefinite growth for the L^∞ norm of the gradient.

$$\frac{1}{2}L(|\nabla_g \theta|^2)(x) + \frac{|\nabla_g \theta(x)|^3}{c\|\theta\|_{\infty}} \le C|\nabla_g \theta(x)|^2 + O(\|\nabla_g \theta\|_{\infty}^2)$$

holds for any t > 0. Evaluating formally at \bar{x} , a point that reaches the maximum of $|\nabla_q \theta|(x)$, one gets

$$\frac{d}{dt}|\nabla_g\theta|^2(\bar{x}) \le 0$$

Heuristically this prevents indefinite growth for the L^{∞} norm of the gradient. This heuristic can be replaced by a honest argument.

From the above it follows that

$$\|\nabla_g \theta\|_{L^{\infty}(M)} < +\infty$$

in fact, it will be bounded by some absolute constant C > 0.

From the above it follows that

$$\|\nabla_g \theta\|_{L^{\infty}(M)} < +\infty$$

in fact, it will be bounded by some absolute constant C > 0. This control is all one needs to prove the theorem thanks to the usual energy estimates.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

There is global well-posedness in $H^{s}(\mathbb{S}^{2})$ for any s > 3. In fact, any solution with such initial datum becomes smooth instantaneously.

Thank you!

Ángel D. Martínez