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Active scalars

Active scalars are a wide class of transport equations where the
velocity is determined from the transported quantity in a certain
way.

In this case a temperature θ evolves following
∂tθ(x, t) + u(x, t) · ∇θ(x, t) = 0,
∇ · u(x, t) = 0
u(x, t) = (−R2θ,R1θ)

where Rj denotes a Riesz potential

Rj(θ)(x) =
1

π

∫
R2

yj
|y|3

θ(x− y)dy
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Motivation

There are at least two reasons that justify studying this

equation:

1. It models frontogenesis in meteorology (θ represents potential
temperature).

2. It is related to the 3D Euler equation.
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A glimpse of history: the origins

Constantin, Majda and Tabak. Settled a connection with 3D
Euler. Local existence and observe a possible scenario for finite
time blow up. Nonlinearity, 1994.

Resnick. Global existence of weak solutions. PhD dissertation,
Chicago University, 1995.

D. Córdoba. Provided a proof dismissing such an scenario, Annals
of Math. 1998.
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Dissipative SQG

In this case we consider
θt + u · ∇θ + κΛαθ = 0

u = ∇⊥Λ−1θ
θ(x, 0) = θ0(x), κ > 0

The subcritical case, α > 1, is well understood (Constantin-Wu,
1998). Global regularity for the critical case α = 1 has been quite
more challenging due to the possible balance between opposite
strengths of the non-linear and the dissipative terms.
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Ángel D. Mart́ınez



Dissipative SQG

In this case we consider
θt + u · ∇θ + κΛαθ = 0

u = ∇⊥Λ−1θ
θ(x, 0) = θ0(x), κ > 0

The subcritical case, α > 1, is well understood (Constantin-Wu,
1998). Global regularity for the critical case α = 1 has been quite
more challenging due to the possible balance between opposite
strengths of the non-linear and the dissipative terms.
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Questions

We are interested in a number of questions about the solutions of
such an equation, e.g.

1. Existence (local or global).

2. Uniqueness.

3. Finite time singularities (even in the compressible case).
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Global well-posedness results for critical dissipation

Kiselev, Nazarov, Volberg (T2): Global well-posedness for the
critical 2D QG-equation, Invent. Math., 2007.

Caffarelli, Vasseur (R2): Drift diffussion equations with fractional
diffussion and the Q.G. equations, Annals of Math. 2010.

Constantin, Vicol (R2:) Nonlinear maximum principles for
dissipative linear nonlocal operators and applications, GAFA. 2012.

In fact all their proofs work in the n-dimensional tori or euclidean
spaces. Our result deals only with the two dimensional sphere,
namely:

Alonso-Orán, Córdoba, M. (S2): Global well-posedness of
critical SQG on the sphere, 2018.
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The critical SQG equation on the sphere

Let (M, g) be a compact orientable surface and g be a Riemannian
metric the SQG in this case takes the form

∂θ

∂t
+ u · ∇gθ + Λgθ = 0,

u = R⊥g θ = ∇⊥g Λ−1
g θ

where Λg = (−∆g)
1
2 and −∆g is the Laplace-Beltrami operator.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Let θ0 ∈ C∞(S2) be the initial datum, then the solution remains
smooth for any time t > 0.
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Sketch

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum θ0 ∈ L2(S2) any weak solution becomes
instantaneously continuous for any time t > 0.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

There is global well-posedness in Hs(S2) for any s > 3. In fact, any
solution with such initial datum becomes smooth instantaneously.
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Fractional laplacian basics: euclidean case

The integral representation of the fractional laplacian as a singular
integral is well known in the euclidean space Rn or the tori Tn.

Indeed,

Λαf(x) = cn,αP.V.

∫
Rn

f(x)− f(y)

|x− y|n+α
dy,

Λαf(x) = cn,αP.V.
∑
ν∈Zn

∫
Tn

f(x)− f(y)

|x− y − ν|n+α
dy

for any 0 < α < 2. As an easy consequence of these one can get

Theorem (Córdoba-Córdoba inequality)

For any α ∈ (0, 2) and f smooth enough, the following pointwise
inequality holds

f(x)Λαf(x) ≥ 1

2
Λα(f2)(x).
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Underlying particle dynamics

Following the trajectories

dx

dt
= u(x, t)

one gets
d

dt
(θ(x(t), t)) = θt +∇θ · dx

dt
= 0

deducing that ‖θ(·, t)‖Lp remains constant under the evolution
(1 ≤ p ≤ ∞).

It is easy to check, using the Córdoba-Córdoba
inequality, that the Lp norms do not increase.
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Dirichlet to Neumann operator (I)

The fractional Laplacian is related to another operator: the
Dirichlet to Neumann operator.

Theorem (A. Córdoba, A. D. M. 2015)

The following pointwise inequality holds

1

2m
DNΩ(f2m)(x) ≤ f(x)2m−1DNΩf(x)

for any positive integer m ≥ 1.
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Dirichlet to Neumann operator (II)

Proof: To begin with we propose the following Dirichlet
problems in the domain{

∆u = 0 in Ω
u = f in ∂Ω

and {
∆v = 0 in Ω

v = f2m in ∂Ω

Then w = u2m − v satisfies{
∆w = 2m(2m− 1)|∇u|2u2m−2 in Ω
w = 0 in ∂Ω
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The (spectral) fractional Laplace-Beltrami (definition)

The Laplace-Beltrami operator, ∆g, in some local coordinates of
the surface (n = 2) takes the form

1√
|g|

2∑
i,j=1

∂i

(√
|g|gij∂j

)
where (gij) = (gij)

−1 is the inverse of the metric tensor.

There is
an orthonormal basis of eigenfunctions of this operator

−∆gY` = λ2
`Y`

where λ0 = 0 and the eigenvalue increases to infinity as ` ∈ N
increases.The fractional Laplace-Beltrami operator acts on this
basis as (−∆g)

α/2Y` = λα` Y` and for any other function by

linearity. Usual notation is Λαg = (−∆g)
1/2.
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Integral representation for fractional Laplace-Beltrami

In the case of a general compact manifold (e.g. a sphere) the
above was not available.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Λαg f(x) = cn,αP.V.

∫
M

f(x)− f(y)

d(x, y)n+α
(χu0 + kN )(x, y) dy + E

where kN (x, y) = O(d(x, y)) is certain smooth function, χ is a
diagonal cutoff and the error gains derivatives

E = O(‖f‖H−N (M)).

.
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Consequences

Córdoba-Córdoba inequality with an (unsigned) error (cf.
Córdoba-M., 2015).

Constantin-Vicol improvement with smoothing error.

Fractional Sobolev embedding theorem for compact manifolds
(cf. Aubin).
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The instantaneous continuity result

Recall from our previous sketch

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

Given an initial datum θ0 ∈ L2(S2) any weak solution becomes
instantaneously continuous for any time t > 0.

Difficulties:

1. No dilations available.

2. No bootstrapping from modulus of continuity.

3. The argument does not work for dimensions greater than two.
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Ángel D. Mart́ınez



The instantaneous continuity result

Recall from our previous sketch

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)
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De Giorgi’s technique 101

This was introduced to solve the 19th Hilbert problem.

Lemma (Caccioppoli’s (energy) inequality)

Let u ≥ 0, ∆u ≥ 0 and ϕ ∈ C∞0 (B2) then∫
B2

|∇(ϕu)|2(x)dx ≤ Cϕ
∫
B2

u2.

Using Sobolev’s embedding and this inequality one can prove

Ek ≤ C22kE
1+1/n
k−1

where

Ek =

∫
B1

(ϕkuk)
2dx

where uk = (u− (1− 2−k))+ and ϕk is a cut off function on
B1+2−k . Then Ek → 0 if E0 is small enough.
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From L2 to L∞

The previous idea can be used, this time

Ek = sup
t≥Tk

∫
M
θ2
kdx+ 2

∫ ∞
Tk

∫
M
|Λ1/2θk|2dxdt

to show

Ek ≤ C
2k(1+2/n)+1

t0C2/n
E

1+1/n
k−1 .
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De Giorgi’s technique I

Lemma (Local energy inequality, I)

Let θk satisfy
∂tθk + u · ∇gθk ≤ −Λθk

and denote I(z0) = [0, z0]. Let the function ηθ∗k(x, t, z) be
vanishing in M × [0,∞) \Bg(h)× I(z0). Then if u satisfies

sup
t∈(s,t)

∫
Bg(h)

|u(x, t)|2ndvolg(x) ≤ Chn

and s ≤ t.
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De Giorgi’s technique II

Lemma (Local energy inequality, II)

Then the following holds∫ t

s

∫
I(z0)

∫
Bg(h)

|∇x,z(ηθ∗k)(x, t, z)|2dxdzdt+

∫
Bg(h)

(ηθk)
2(x, t)dx

≤ C

{∫
Bg(h)

(ηθk)
2(x, s)dx+ h

∫ t

s

∫
Bg(h)

|∇xηθk|2dxdt

+

∫ t

s

∫
I(z0)

∫
Bg(h)

|∇x,zηθ∗k|2dvolg(x)dzdt

+

∫ t

s

∫
Bg(h)

(ηθk)
2(x, t)dvolg(x)dt

}
.
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De Giorgi’s technique III

Apart from this one needs

Fractional Sobolev embedding to get global L∞(M) control
out of L2 norm.

Nice barrier functions satisfying certain properties (recall no
scaling!).

Very tricky induction argument to get oscillation decay using
the above (for small energy).

Isoperimetric inequality on the sphere (cf. De Giorgi’s to get
rid of the small energy assumption).

Rotations to get the logarithmic modulus of continuity.
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Non linear maximum principle

Lemma

Let f be a smooth function on the sphere S2 and 0 < α < 2. Then
provided that |∇gf(x)| ≥ C‖f‖∞ we have the pointwise bound

∇gf(x)·∇gΛαf(x) ≥ 1

2
Λα(|∇gf |2)(x)+

1

4
D(x)+

|∇gf(x)|2+α

C‖f‖α∞
+O

where D denotes some functional (defined in the proof),
O = O(‖∇gf‖2∞) is an error term and the constant C depends on
α but is independent of x.

Careful: notice the non commutativity of some operators (despite
ΨDO). We need stereographic projection, integral representation
with smoothing error.
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Closing the argument (I)

Let L = (∂t + u · ∇g + Λg).

Using the above pointwise inequality
and some estimates on a number of terms (that employ the
uniform continuity) one can show

1

2
L(|∇gθ|2)(x) +

|∇gθ(x)|3

c‖θ‖∞
≤ C|∇gθ(x)|2 +O(‖∇gθ‖2∞)

holds for any t > 0. Evaluating formally at x̄, a point that reaches
the maximum of |∇gθ|(x), one gets

d

dt
|∇gθ|2(x̄) ≤ 0

Heuristically this prevents indefinite growth for the L∞ norm of
the gradient.This heuristic can be replaced by a honest argument.
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Closing the argument (II)

From the above it follows that

‖∇gθ‖L∞(M) < +∞

in fact, it will be bounded by some absolute constant C > 0.

This
control is all one needs to prove the theorem thanks to the usual
energy estimates.

Theorem (D. Alonso-Orán, A. Córdoba, A. D. M., 2018)

There is global well-posedness in Hs(S2) for any s > 3. In fact, any
solution with such initial datum becomes smooth instantaneously.
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Thank you!
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