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Markowitz optimization

N correlated random variables (zero mean, unit variance)

Find the linear combination (weight vector w) with minimum variance
under a linear constraint

In matrix notation:
variance: R2 = wT Cw

gain constraint: G = wT g

optimal weights: wC = G
C−1g

gT C−1g

w overweighs small eigenvalues
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Empirical Eigenvalues

N = 406 T = 1300
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Marčenko and Pastur (1967)

Given a true N × N covariance matrix C, what is the resolvant and
eigenvalues density of a sample covariance matrix E (with q = N/T )?

zGE(z) = ZGC(Z )

with
Z =

z
1 + q(zGE(z)− 1)

.

When there are no correlations (C = I), they gave an explicit result:

ρ(λ) =

√
(λ+ − λ)(λ− λ−)

2πqλ
with λ± = (1±

√
q)2
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Marčenko-Pastur at work
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Empirical measure widens the eigenvalue distribution
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Empirical Eigenvalues II
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Marčenko-Pastur
distribution fits the data
well: most eigenvalues
are noise

But the fit is not perfect:
there is ‘signal’
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Empirical Eigenvalues III
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‘True’ eigenvalues are mostly clustered around 1 with some very large
outliers (power-law tail)
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In and out of sample risk

t
0

t
1

t
2

E1 E2

Estimate E1 using data from t0 to t1 and then test out-of-sample risk with
E2 measured from t1 to t2

“In-sample” risk: R2
in = wT

E E1wE =
G2

gT E−1
1 g

True minimal risk: R2
true = wT

CCwC =
G2

gT C−1g

“Out-of-sample” risk: R2
out = wT

E E2wE =
G2gT E−1

1 CE−1
1 g

(gT E−1
1 g)2

Using optimality: R2
in ≤ R2

true ≤ R2
out
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Is E biased?

The empirical matrix E1 is an unbiased estimator of C

E[E1] = C or equivalently E[E1ij ] = 〈ri rj〉

E1 gives an unbiased estimate of the risk of an independent portfolio w .

E

∑
ij

wiE1ijwj

 =
∑

ij

wiCijwj =

〈(∑
i

wi rj

)2〉

But an optimized portfolio such as wE is not independent of E1, so using
E1 will generated a biased estimate:

E

∑
ij

wEiE1ijwEj

 ≤ E

〈(∑
i

wEi rj

)2〉
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In and out of sample risk II

We can make these inequalities more precise

For N large and T large with q = N/T

Tr(E−1) = −GE(0) = −GC(0)

1− q
=

Tr(C−1)

1− q

Tr(E−1CE−1) =
Tr(C−1)

(1− q)2

Allowing to compute the different risks:

R2
in = R2

true(1− q) and R2
out =

R2
true

1− q

This result is independant of the ‘true’ C.

As N → T (q → 1) R2
in goes to zero and R2

out diverges!
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Bayesian approach

Ad-hoc cleaning methods exist but is there an optimal one?

The Markowitz problem needs the expectation value of C

〈ri rj〉 = 〈Cij〉

The empirical covariance matrix is the maximum-likelihood estimator of
C but not its expectation value.

To define the expectation value, we need a Bayesian framework.

What is the probablity of a ‘true C’ given what we have observed?

P(C|{r t
i }) =

P({r t
i }|C)P0(C)

P({r t
i })

The optimal cleaning will depend on the choice of P0(C).

Did we gain anything?
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Posterior distribution as a matrix model

The measurement process.

P({r t
i }|C) =

(det C)−
T
2

(2π)
NT
2

exp

−1
2

∑
ijt

C−1
ij r t

i r t
j


∝ exp

(
−T

2
Tr
{

EC−1 + log C
})

We will assume a rotationally invariant prior of the form

P0(C) ∝ exp
{
−N

a
TrV0(C)

}
where 〈C〉0 = I and a governs the width the distribution.
Posterior distribution⇐⇒ Matrix model:

Ĉ =

∫
DCC exp {−NTrVE(C)}∫
DC exp {−NTrVE(C)}

.

where VE(C) is our Bayes potential function (q = N/T ):

VE(C) =
1

2q
log C +

1
2q

EC−1 +
1
a

V0(C)
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The prior is in the data!

Assume rotational invariance

Use the self-averaging properties of
RMT⇒ 1 sample gives the whole
distribution.
Need to inverse the M-P formula:

– parametrically
– non-parametrically (?)

We will come back to this later
(numerical method). 0 1 2 3 4

λ
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"True" eigenvalues
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Some simple priors for analytical computation

A Wigner matrix centered at the Identity

P0(C) ∝ exp

− N
4a

∑
i,j

(Ci,j − δi,j )
2


whose potential function is

V0(C) =
1
4

(
C2 − 2C + I

)
A Wishart matrix

P0(C) ∝ det (C)
N(a−1−1)−1

2 exp
(
− N

2a
TrC
)

whose potential function is

V0(C) =
1
2

(C + (1− a) log C)

0 1 2 3

0 1 2 3
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Inverse-Wishart prior

C is an Inverse-Wishart matrix if C = C−1
W where CW is a Wishart matrix

The simplest prior for computations. It has the same form as the
‘measurement process’:

P0(C) ∝ exp
(
−N

a
Tr
{

C−1 + (a + 1) log C
})

The eigenvalue density has a
reasonable form:

ρ(λ) =

√
2(a + 1)λ− λ2 − 1

aπλ2

With this prior, linear shrinkage is
optimal

Ĉ = (1− α)E + αI with α =
2q

2q + a 0 1 2 3 4
λ

0

0.5

1

1.5

ρ(
λ)
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Inverse-Wishart prior (II)

The Inverse-Wishart distribution is the conjugate prior of the Multivariate
Gaussian distribution known by statisticians (e.g. [Haff, 1980]).

The linear Shrinkage was popularized by [Ledoit and Wolf, 2004] where
they found a nice way to estimate the Shrinkage parameter α from the
data.

As far as we know, nobody ever considered this prior as a ’true’
distribution of eigenvalues.
Does the eigenvalues spectrum make sense?

– Does the α parameter of Ledoit-Wolf correspond to a reasonable a for the
prior?
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Matrix saddle-point

Our aim: evaluate 〈C〉P(C|E)

Explicit solution for the Inverse-Wishart prior, but not for other priors

⇒ First method: use a matrix Saddle-point to have a suitable point at which
one can start a perturbation theory in the number of loops.

The saddle-point C0 is such that

V ′E(C0) =
1

2q
C−1

0 −
1

2q
EC−2

0 +
1
a

V ′0(C0) = 0.

Applications of the saddle-point (let α = q/a)
– For the Wigner prior:

αC0 − αI + C−1
0 + EC−2

0 = 0

– For the Wishart prior :

(1− α+ q)C−1
0 − EC−2

0 + I = 0
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Matrix saddle-point (II)

1
2q

C−1
0 −

1
2q

EC−2
0 +

1
a

V ′0(C0) = 0.

Our matrix saddle point C0 is not exact.

The are still fluctuations coming form the measurement process (q) and
from the prior distribution (a).

It is exact in the limit q → 0 and a→ 0 with fixed α = q/a.

C0 also contains higher order terms in q, we denote C00 = limq→0 C0

C0 and E commute.

At this order, the Baysian estimator is a (non-linear) shrinkage function
applied to the eigenvalues of E.

Eigenvectors of E are left unchanged.
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Perturbation theory on C

Let C0 the solution of the saddle-point equation. By a simple change of
variable

C = C1/2
0 (I + X )C1/2

0

Our Bayes potential function becomes

VE(C) =
1

2q
log
(

C1/2
0 (I + X )C1/2

0

)
+

1
2q

E
(

C1/2
0 (I + X )C1/2

0

)−1

+
1
a

V0(C1/2
0 (I + X )C1/2

0 )

Ignoring constants and cyclical permutations (α = q/a)

VE(C) =
1

2q

[
log(I + X ) + EC−1

0 (I + X ) + 2αV0(C1/2
0 (I + X )C1/2

0 )
]
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Perturbation theory on C (II)

Let VX (X ) = V0(C1/2
0 (I + X )C1/2

0 ), we can now proceed to a Taylor
series expansion

VE(X) =
1

2q

(
∞∑

k=2

(−1)k
[
EC−1

0 −
1
k

]
Xk

+2α

1
2

∑
i,j,k,l

Xi,jXk,l
∂2VX

∂Xi,j∂Xk,l

∣∣∣∣∣
X=0

+O(X3)


As the constant and linear terms vanish, the first contribution (quadratic
term) leads directly to the propagator D in order to use Wick’s theorem

In the large N limit, it is known from [’t Hooft, 1974] that the only
diagrams which survive are planar

⇒ If we truncate the loop expansion to a certain level k , we can compute
our estimator to order qk .
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Systematic approach by diagrammatic expansion

For the first order correction term in q, there is only one planar diagram
given by

〈
XTrM(3)X3

〉

Explicit expression for this contribution (in the diagonal basis)

Ĉi,i = (C0)i,i + (C1/2
0 )i,i

〈
XTrM3X3

〉
i,i

(C1/2
0 )i,i +O(q2)
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First order correction

Applications:
For the Wigner prior:

Ĉi,i = (C0)i,i + q

[
(C0)i,i

3α(C0)2
i,i − 2α(C0)i,i + 1

]

×
(

1−
1
N

∑
k

[
α(C0)i,i (C0)j,j − α(C0)i,i ((C0)i,i − 1)− 1

α ((C0)i,i ((C0)i,i − 1) + (C0)k,k ((C0)k,k − 1) + (C0)i,i (C0)k,k ) + 1

])

For the Wishart prior:

Ĉi,i = (C00)i,i + q
(C00)i,i

N
α(C00)i,i + 1− α

2α(C00)i,i + 1− α
∑

k

1
α(C00)i,i + α(C00)k,k + 1− α
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Second order correction

First order correction via Feynman diagrammatic expansion leads to
explicit expressions...

But the second order correction leads to ten different planar diagrams
and far more tedious computations!

Contribution for
〈

XTrM(3)X 3M(4)X 4
〉
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Second order correction (cont.)

Contribution for
〈

XTrM(3)X 3M(3)X 3M(3)X 3
〉

Contribution for
〈

XTrM(5)X 5
〉
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Out-of-sample risk for the one-loop solution

Test of the out-of-sample risk on simulated data for the one-loop
approximation with an arbitrary q.

Wigner with N = 500, σ = 0.3
and q = 0.5
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Wishart with N = 500, q0 = 0.5
and q = 0.5
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Eigenvalues saddle-point: the HCIZ integral problem

Alternative method: perform a saddle-point on eigenvalues to find the exact
value of Copt . Suppose that C = OΛOT , our problem is of the form

P(C|E) ∝
∫

dλ1 . . . dλN exp

log I(E, Λ)− N

 1
2q

N∑
i=1

[log(λi ) + 2αV0(λi )]−
1
N

N∑
i<j

log |λi − λj |


with I(E,Λ) the well-known Harish-Chandra-Itzykson-Zuber integral

I(E,Λ) =

∫
DO exp

{
− N

2q
TrOT EOΛ−1

}

⇒ Main difficulty: the evaluation of the Orthogonal version of the HCIZ
integral in the large N limit: I ∼ exp−N2F (E,Λ).

Some formulas are known for the large N limit of HCIZ but we haven’t
found a way to use them in our problem.

In order to make computation, we have to make a brutal hypothesis!
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Special case: E = eI

Denote by λi , i ∈ {1, ...,N} (resp. ei , i ∈ {1, ...,N}) the i-th eigenvalue of
C (resp. of E), we suppose that

E = e × I

that is to say λi = F (ei ), where F is a function that depends of the prior.
In this case

P(C|E) ∝
∫

dλ1 . . . dλN exp

−N

 1
2q

N∑
i=1

[log(λi ) +
e
λi

+ 2αV0(λi )]−
1
N

N∑
i<j

log |λi − λj |


Following the work of [BIPZ, 1978], this problem can be solved by using
the Stieltjes transform. In the Orthogonal case, when z r V ′(z) is a
polynomial, we have

G(z) = V ′E (z)±
√

V ′E (z)2 − 2P(z).

with z r P(z) a polynomial with unknown coefficients.
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One-cut assumption

We consider VE(C) a convex function such the density of the
eigenvalues of C under the posterior distribution is given by an unique
compact support⇒ one-cut assumption

Under this one-cut assumption, the Stieltjes transform of C under the
posterior distribution is now

G(z) = V ′E (z)±Q(z)
√

z2 − 2az + b2.

with z r Q(z) still a polynomial in z. To find a, b and the coefficients of Q,
we have:

– if zr V ′(z) is a polynomial of order k, then zr Q(z) is a polynomial of order
k − 1;

– C is a positive definite matrix: G(z) is regular in 0;
– G(z) is the solution of the Riemann-Hilbert problem. In particular, for
|z| → ∞,

G(z) ∼
1
z

+ o(1/z2)

and G(z) is analytical outside its branch cut.
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Application to the Wishart case

In the Wishart case

VE (z) =
1

2q

[
log(z) +

e
z

+ α(z − (1− q0) log(z))
]
.

and

G(z) = V ′E (z)±Q(z)
√

z2 − 2az + b2 = V ′E (z)± cz + d
z2

√
z2 − 2az + b2.

We find, with γ = e/(2q),

when z → 0

d =
γ

b

a =
b2

γ

[
β

2q
+ cb

]

when z →∞
c =

α

2q

α2b4 + αβb3 − e(α− 1 + q)b − e2 = 0.
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Link with our Bayes estimator

We can retrieve our Bayes estimator from the Stieltjes transform: in the
large z limit,

G(z) ∼ 1
z

+
〈C〉P(C|E)

z2 +O
(

1
z3

)
Application: for the Wishart prior:

〈C〉P(C|E) =
1

2q

[
e
(a

b
− 1
)
− α

2
(b2 − a2)

]
⇒ Generalize the previous approach as it is exact at all orders :

– Perturbation theory b = b0 + qb1 + q2b2 +O(q3)
– At first order, we find

〈C〉P(C|E) = b0 + q
b0(αb0 + β0)

(2αb0 + β0)2
+O(q2)

with β0 = 1− α and b0 the solution of our Saddle-point equation for the
Wishart prior with q → 0 such that α finite

αb0 + β0b0 − e = 0

→ Same result than the Feynman diagrammatic expansion presented before
for E ∝ I
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A Monte-Carlo based method

We propose a numerical method to evaluate 〈C〉P(C|E) using only a given
prior matrix C and the empirical covariance matrix E.

Due to our rotational invariance hypothesis, we want to find E such that it
minimizes the quadratic distance with C without modifying the
eigenvectors

By eigendecomposition E = UΛU−1

Our optimization problem is

min
Λk,k

∑
i,j

(Ci,j − Ui,k Λk,k Uj,k )2 .

The solution is

Λ̂k,k =
∑

i,j

Ui,k Ci,jUj,k

To get our Bayes estimator, we have

〈C〉P(C|E) = 〈Λ̂〉
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Test of Monte-Carlo method on Inverse-Wishart
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Optimality: Wigner Prior

Comparison of the optimality of our solution against the Monte-Carlo
estimator (10000 points).

Wigner with N = 100, σ = 0.2
and q = 0.5
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Optimality: Wishart Prior

Comparison of the optimality of our solution against the Monte-Carlo
estimator (10000 points).

Wishart with N = 100, q0 = 0.3
and q = 0.3
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A fully numerical procedure

Measure the sample covariance matrix on
your data.

Choose a parametric form for the ‘true’
distribution of eigenvalue for which you can
compute the Resolvent G(z).

Fit the parameters to the SCM using
Marčenko and Pastur

zGE(z) = ZGC(Z )

with
Z =

z
1 + q(zGE(z)− 1)

.

Using the Monte Carlo procedure, compute
the optimal shrinkage function.

Λ̂k,k =
∑

i,j

Ui,k Ci,jUj,k
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Numerics on our power-law prior
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Summary & Conclusions

The out-of-sample risk quadratic optimization problem can be rewritten
in a Bayesian framework

RMT allows us to characterize several prior on the true covariance
matrix C.

The computation of the Bayes estimator is reduced to the computation of
an orthogonal version of a matrix model with an external field.

One-loop perturbation theory gives satisfactory results for simple priors.

We also present a simple numerical procedure that can be used for any
prior.
Open problems:

– What kind of performance can we obtain on real data with those solutions?
– Can we find a formulation of the large N limit of HCIZ that will allow us to

solve the eigenvalue saddle point?
– Extensions:

non-Gaussian data (e.g. Student Multivariate).
non-rotationnaly invariant prior (e.g. Market mode: permutation invariance)
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