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Good code:
(i) Large minimum distance δ while having large rate k

N .
(ii) Efficiently testable and decodable.



Hadamard Codes:
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m ∈ Fk
2 −→ cm ∈ F2k

2

cm: evaluation vector of m1x1 + m2x2 + · · ·+ mkxk ∈ F2[x1, ..., xk ]



Reed Muller codes:

Degree ≤ d polynomials in F2[x1, ..., xk]
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Problem 1.
How many degree ≤ d polynomials in F2[x1, ..., xn] are there in Bδ(f )?
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Polynomial Decompositions:

Degree 4 polynomial P ∈ F2[x1, ..., xn]. Is

P(x) = Q1(x)Q2(x) + Q3(x)Q4(x),

for some degree ≤ 3 polynomials Q1, ...,Q4?

Problem 2.
Given a degree d polynomial P and a prescribed decomposition,
Efficiently find such a decomposition of P or say it is not possible.



Algebraic Property Testing:

Is f : Fn
2 → F2 a degree d polynomial?

f
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[AKKLR’05] Query f only on constant number of inputs.
1. Always accept if deg(f ) ≤ d .
2. Reject w.h.p. if δd (f ) > ε.
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Which “algebraic” properties are testable?
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Higher-order Fourier analysis over finite fields,
which is an extension of Fourier analysis.

[Bergelson, Green, Kaufman, Gowers, Lovett, Meshulam, Samorodnitsky, Tao, Viola, Wolf . . . ]
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polynomial phases, ωP(x1,...,xn).

� Not orthogonal, no unique expansion.

� f =
∑C

i=1 λiω
Pi (x) + fpsd?

[Bergelson, Green, Tao, Ziegler] establish such decomposition
theorems via inverse theorems for certain norms called Gowers norms.
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Study f : Fn
p → R by looking at how it correlates with higher degree

polynomial phases, ωP(x1,...,xn).

� f =
∑C

i=1 λiω
Pi (x) + fpsd

� Need to understand the joint distribution of a collection of degree d
polynomials.
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[HHL ‘15 (general case), BFHHL’13 (affine linear forms)]

[KL’08 and GT’09]: Distribution of (P1(X ), ...,PC(X )).
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Problem 1. [KLP ’10, BL ’15]
Number of degree d polynomials in Fp[x1, ..., xn] in hamming ball
of radius δe − ε is 2O(nd−e).

Problem 2. [BHL ’15]
Polynomial time algorithm for finding prescribed polynomial decompositions.

Problem 3. [BFL ’12, BFHHL ’13]
Characterization of testable algebraic (i.e. affine invariant) properties.

Open Problem. Is there a constant query tester that given f : Fn
2 → F2

distinguishes between the following?
I f is ≥ ε-correlated to some cubic, or
I f is ≤ δ(ε)-correlated to all cubics,

where 0 < δ(ε) ≤ ε.



Theorem. [BHT]

There is a poly(n)-time deterministic algorithm that given a polynomial
P, and Γ : F`p → Fp, and d1, ...,d` ≥ 1, either

I outputs P1, ...,Pr of degrees d1, ...,d`, s.t. P = Γ(P1, ...,Pd ), or
I correctly outputs NOT POSSIBLE.



Proof illustration: Find P1,P2 of degree ≤ d − 1 such that

P = P1 · P2

. Algorithmic Regularity Lemma for Polynomials [BHT]:

P = Λ(Q1, ...,Qr )

. ∃xj s.t. for all i , deg(Qi) = deg(Qi |xj=0).

P|xj=0 = Λ(Q1|xj=0, ...,Qr |xj=0)

. Recurse on P|xj=0.
I If NOT POSSIBLE, then output NOT POSSIBLE.
I Otherwise we find P ′

1,P
′
2 such that P|xj=0 = P ′

1P ′
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Proof illustration: Find P1,P2 of degree ≤ d − 1 such that

P = P1 · P2

. Algorithmic Regularity Lemma for Polynomials [BHT]:

P = Λ(Q1, ...,Qr )

. ∃xj s.t. for all i , deg(Qi) = deg(Qi |xj=0).
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Proof illustration: Find P1,P2 of degree ≤ d − 1 such that

P = P1 · P2

. Algorithmic Regularity Lemma for Polynomials [BHT]:

P = Λ(Q1, ...,Qr )

. ∃xj s.t. for all i , deg(Qi) = deg(Qi |xj=0).
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Proof illustration: Find P1,P2 of degree ≤ d − 1 such that

P = P1 · P2

. Algorithmic Regularity Lemma for Polynomials [BHT]:

P = Λ(Q1, ...,Qr )

. ∃xj s.t. for all i , deg(Qi) = deg(Qi |xj=0).

P|xj=0 = Λ(Q1|xj=0, ...,Qr |xj=0)

. Recurse on P|xj=0.
I If NOT POSSIBLE, then output NOT POSSIBLE.
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1,P
′
2 such that P|xj=0 = P ′

1P ′
2.

P = Λ(Q1, ...,Qr ) = G1(Q1, ...,Qr ,0, . . . ,0) ·G2(Q1, ...,Qr ,0, . . . ,0)
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