## Higher-order Fourier Analysis over Finite Fields, and Applications

Pooya Hatami

## Coding Theory:

Task: Reliably transmit a message through an unreliable channel.


## Coding Theory:

Task: Reliably transmit a message through an unreliable channel.


## Coding Theory:

Task: Reliably transmit a message through an unreliable channel.


Good code:
(i) Large minimum distance $\delta$ while having large rate $\frac{k}{N}$.

## Coding Theory:

Task: Reliably transmit a message through an unreliable channel.


Good code:
(i) Large minimum distance $\delta$ while having large rate $\frac{k}{N}$.
(ii) Efficiently testable and decodable.

## Hadamard Codes:



$$
m \in \mathbb{F}_{2}^{k} \longrightarrow c_{m} \in \mathbb{F}_{2}^{2^{k}}
$$

$c_{m}$ : evaluation vector of $m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{k} x_{k} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$

## Reed Muller codes:



Degree $\leq d$ polynomials in $\mathbf{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$

## Reed Muller codes:



## Problem 1.

How many degree $\leq d$ polynomials in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ are there in $B_{\delta}(f)$ ?

## Polynomial Decompositions:

Degree 4 polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.

## Polynomial Decompositions:

Degree 4 polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$. Is

$$
P(x)=Q_{1}(x) Q_{2}(x)+Q_{3}(x) Q_{4}(x)
$$

for some degree $\leq 3$ polynomials $Q_{1}, \ldots, Q_{4}$ ?

## Polynomial Decompositions:

Degree 4 polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$. Is

$$
P(x)=Q_{1}(x) Q_{2}(x)+Q_{3}(x) Q_{4}(x)
$$

for some degree $\leq 3$ polynomials $Q_{1}, \ldots, Q_{4}$ ?

## Problem 2.

Given a degree $d$ polynomial $P$ and a prescribed decomposition. Find such a decomposition of $P$ or say it is not possible.

## Polynomial Decompositions:

Degree 4 polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$. Is

$$
P(x)=Q_{1}(x) Q_{2}(x)+Q_{3}(x) Q_{4}(x)
$$

for some degree $\leq 3$ polynomials $Q_{1}, \ldots, Q_{4}$ ?

## Problem 2.

Given a degree $d$ polynomial $P$ and a prescribed decomposition, Efficiently find such a decomposition of $P$ or say it is not possible.

## Algebraic Property Testing:

Is $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ a degree $d$ polynomial?


## Algebraic Property Testing:

Is $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ a degree $d$ polynomial?

[AKKLR'05] Query $f$ only on constant number of inputs.

1. Always accept if $\operatorname{deg}(f) \leq d$.
2. Reject w.h.p. if $\delta_{d}(f)>\epsilon$.

## Algebraic Property Testing:

Is $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ a degree $d$ polynomial?

[AKKLR'05] Query $f$ only on constant number of inputs.

1. Always accept if $\operatorname{deg}(f) \leq d$.
2. Reject w.h.p. if $\delta_{d}(f)>\epsilon$.

## Problem 3.

Which "algebraic" properties are testable?

# Higher-order Fourier analysis over finite fields, which is an extension of Fourier analysis. 

[Bergelson, Green, Kaufman, Gowers, Lovett, Meshulam, Samorodnitsky, Tao, Viola, Wolf ...]

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with linear phases.


$$
\mathrm{f}(\mathrm{x})=\sum_{\sigma \in \mathbb{F}_{p}^{n}} \widehat{f}(\sigma) \cdot \omega^{\sum \sigma_{i} x_{i}}
$$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with linear phases.


$$
\mathrm{f}(\mathrm{x})=\sum_{\sigma:|\widehat{f}(\sigma)| \geq \epsilon} \widehat{f}(\sigma) \cdot \omega^{\sum \sigma_{i} x_{i}}+f_{p s d}
$$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond$ Not orthogonal, no unique expansion.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d} ?$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond$ Not orthogonal, no unique expansion.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d} ?$
[Bergelson, Green, Tao, Ziegler] establish such decomposition theorems via inverse theorems for certain norms called Gowers norms.

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond$ Not orthogonal, no unique expansion.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d} ?$

Theorem[Trevisan-Tulsiani-Vadhan, Gowers]
For any collection $\mathcal{G}$ of functions $g: X \rightarrow \mathbb{D}$ the following holds.
Every function $f$ can be written as

$$
f=F\left(g_{1}, \ldots, g_{c}\right)+f_{p s d}
$$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond$ Not orthogonal, no unique expansion.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d} ?$

Theorem[Trevisan-Tulsiani-Vadhan, Gowers] For any collection $\mathcal{G}$ of functions $g: \mathbb{F}_{p}^{n} \rightarrow \mathbb{D}$ the following holds.

Every function $f$ can be written as

$$
f=\sum_{\sigma \in \mathbb{F}_{p}^{n}} \widehat{F}(\sigma) \omega^{\sum_{i} \sigma_{i} g_{i}}+f_{p s d}
$$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond f=\sum_{i=1}^{C} \lambda_{j} \omega^{P_{i}(x)}+f_{p s d}$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond f=\sum_{i=1}^{C} \lambda_{j} \omega^{P_{i}(x)}+f_{p s d}$
$\diamond$ Need to understand the joint distribution of a collection of degree $d$ polynomials.

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d}$

Problem: $P_{1}, \ldots, P_{C} \in \mathcal{P}_{\leq d}\left(\mathbb{F}_{p}^{n}\right) . X, Y \in \mathbb{F}_{p}^{n}$ uniform. Characterize the distribution of

$$
\left(\begin{array}{lll}
P_{1}(X) & \ldots & P_{10}(X) \\
P_{1}(X+Y) & \ldots & P_{10}(X+Y) \\
\vdots & & \\
P_{1}(X+4 Y) & \ldots & P_{10}(X+4 Y)
\end{array}\right)
$$

## Higher-order Fourier Analysis over $\mathbb{F}_{p}^{n}$

Study $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{R}$ by looking at how it correlates with higher degree polynomial phases, $\omega^{P\left(x_{1}, \ldots, x_{n}\right)}$.
$\diamond f=\sum_{i=1}^{C} \lambda_{i} \omega^{P_{i}(x)}+f_{p s d}$

Problem: $P_{1}, \ldots, P_{C} \in \mathcal{P}_{\leq d}\left(\mathbb{F}_{p}^{n}\right) . X, Y \in \mathbb{F}_{p}^{n}$ uniform. Characterize the distribution of

$$
\left(\begin{array}{lll}
P_{1}(X) & \ldots & P_{10}(X) \\
P_{1}(X+Y) & \ldots & P_{10}(X+Y) \\
\vdots & & \\
P_{1}(X+4 Y) & \ldots & P_{10}(X+4 Y)
\end{array}\right)
$$

[HHL '15 (general case), BFHHL'13 (affine linear forms)]
[KL'08 and GT'09]: Distribution of $\left(P_{1}(X), \ldots, P_{C}(X)\right)$.

## Problem 1. [KLP '10, BL '15]

Number of degree $d$ polynomials in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ in hamming ball of radius $\delta_{e}-\epsilon$ is $2^{O\left(n^{d-e}\right)}$.

## Problem 1. [KLP '10, BL '15]

Number of degree $d$ polynomials in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ in hamming ball of radius $\delta_{e}-\epsilon$ is $2^{O\left(n^{d-\theta}\right)}$.

## Problem 2. [BHL '15]

Polynomial time algorithm for finding prescribed polynomial decompositions.

## Problem 1. [KLP '10, BL '15]

Number of degree $d$ polynomials in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ in hamming ball of radius $\delta_{e}-\epsilon$ is $2^{\left(n^{d-\theta}\right)}$.

## Problem 2. [BHL '15]

Polynomial time algorithm for finding prescribed polynomial decompositions.

## Problem 3. [BFL '12, BFHHL '13]

Characterization of testable algebraic (i.e. affine invariant) properties.

## Problem 1. [KLP '10, BL '15]

Number of degree $d$ polynomials in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ in hamming ball of radius $\delta_{e}-\epsilon$ is $2^{O\left(n^{d-e}\right)}$.

## Problem 2. [BHL '15]

Polynomial time algorithm for finding prescribed polynomial decompositions.

## Problem 3. [BFL '12, BFHHL '13]

Characterization of testable algebraic (i.e. affine invariant) properties.

Problem 4. Is there a constant query tester that given $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ distinguishes between the following?

- $f$ is $\geq \epsilon$-correlated to some cubic, or
- $f$ is $\leq \delta(\epsilon)$-correlated to all cubics,
where $0<\delta(\epsilon) \leq \epsilon$.


## Problem 1. [KLP '10, BL '15]

Number of degree $d$ polynomials in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ in hamming ball of radius $\delta_{e}-\epsilon$ is $2^{O\left(n^{d-e}\right)}$.

## Problem 2. [BHL '15]

Polynomial time algorithm for finding prescribed polynomial decompositions.

## Problem 3. [BFL '12, BFHHL '13]

Characterization of testable algebraic (i.e. affine invariant) properties.

Open Problem. Is there a constant query tester that given $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ distinguishes between the following?

- $f$ is $\geq \epsilon$-correlated to some cubic, or
- $f$ is $\leq \delta(\epsilon)$-correlated to all cubics,
where $0<\delta(\epsilon) \leq \epsilon$.


## Theorem. [BHT]

There is a poly $(n)$-time deterministic algorithm that given a polynomial $P$, and $\Gamma: \mathbb{F}_{p}^{\ell} \rightarrow \mathbb{F}_{p}$, and $d_{1}, \ldots, d_{\ell} \geq 1$, either

- outputs $P_{1}, \ldots, P_{r}$ of degrees $d_{1}, \ldots, d_{\ell}$, s.t. $P=\Gamma\left(P_{1}, \ldots, P_{d}\right)$, or
- correctly outputs NOT POSSIBLE.

Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

$\triangleright$ Recurse on $\left.P\right|_{x_{j}=0 \text {. }}$

- If NOT POSSIBLE, then output NOT POSSIBLE.
- Otherwise we find $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left.P\right|_{x_{j}=0}=P_{1}^{\prime} P_{2}^{\prime}$.


## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

$\triangleright$ Recurse on $\left.P\right|_{x_{j}=0}$.

- If NOT POSSIBLE, then output NOT POSSIBLE.
- Otherwise we find $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left.P\right|_{x_{j}=0}=P_{1}^{\prime} P_{2}^{\prime}$.

$$
\Lambda\left(Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}\right)=P_{1}^{\prime} P_{2}^{\prime}
$$

## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

$\triangleright$ Recurse on $\left.P\right|_{x_{j}=0}$.

- If NOT POSSIBLE, then output NOT POSSIBLE.
- Otherwise we find $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left.P\right|_{x_{j}=0}=P_{1}^{\prime} P_{2}^{\prime}$.
$\Lambda\left(Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}\right)=G_{1}\left(Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}, R_{1}, \ldots, R_{C}\right) \cdot G_{2}\left(Q_{1}^{\prime}, \ldots, Q_{r}^{\prime}, R_{1}, \ldots, R_{C}\right)$


## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

$\triangleright$ Recurse on $\left.P\right|_{x_{j}=0}$.

- If NOT POSSIBLE, then output NOT POSSIBLE.
- Otherwise we find $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left.P\right|_{x_{j}=0}=P_{1}^{\prime} P_{2}^{\prime}$.

$$
\Lambda\left(a_{1}, \ldots, a_{r}\right)=G_{1}\left(a_{1}, \ldots, a_{r}, 0, \ldots, 0\right) \cdot G_{2}\left(a_{1}, \ldots, a_{r}, 0, \ldots, 0\right)
$$

## Proof illustration: Find $P_{1}, P_{2}$ of degree $\leq d-1$ such that

$$
P=P_{1} \cdot P_{2}
$$

$\triangleright$ Algorithmic Regularity Lemma for Polynomials [BHT]:

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)
$$

$\triangleright \exists x_{j}$ s.t. for all $i, \operatorname{deg}\left(Q_{i}\right)=\operatorname{deg}\left(\left.Q_{i}\right|_{x_{j}=0}\right)$.

$$
\left.P\right|_{x_{j}=0}=\Lambda\left(\left.Q_{1}\right|_{x_{j}=0}, \ldots,\left.Q_{r}\right|_{x_{j}=0}\right)
$$

$\triangleright$ Recurse on $\left.P\right|_{x_{j}=0 \text {. }}$

- If NOT POSSIBLE, then output NOT POSSIBLE.
- Otherwise we find $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left.P\right|_{x_{j}=0}=P_{1}^{\prime} P_{2}^{\prime}$.

$$
P=\Lambda\left(Q_{1}, \ldots, Q_{r}\right)=G_{1}\left(Q_{1}, \ldots, Q_{r}, 0, \ldots, 0\right) \cdot G_{2}\left(Q_{1}, \ldots, Q_{r}, 0, \ldots, 0\right)
$$

