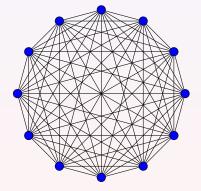
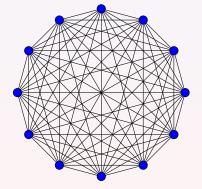
High dimensional expanders

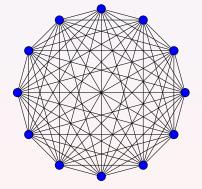
Ori Parzanchevski

IAS, Oct 1, 2013

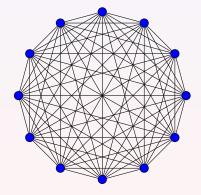




Great properties: fast communication, high mixing rate, hard to disconnect.

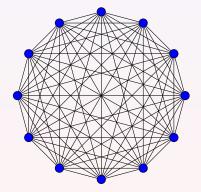


Great properties: fast communication, high mixing rate, hard to disconnect.



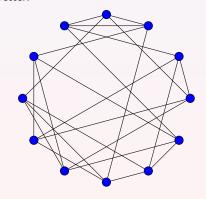
Great properties: fast communication, high mixing rate, hard to disconnect.





Great properties: fast communication, high mixing rate, hard to disconnect.

Better:



Similar properties, but now only 2 edges per vertex!

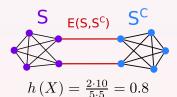
G = (V, E) - a k-regular graph on n vertices.

$$G = (V, E)$$
 - a k-regular graph on n vertices.

• Cheeger constant:
$$h(G) = \min_{S \subset V} \frac{|E(S, S^c)| n}{|S| |S^c|}$$

G = (V, E) - a k-regular graph on n vertices.

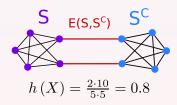
- Cheeger constant: $h(G) = \min_{S \subset V} \frac{|E(S, S^c)| n}{|S| |S^c|}$
- h(G) is small when G has "bottlenecks":



$$h\left(X\right) = \frac{6\cdot 10}{3\cdot 7} \approx 2.86$$

G = (V, E) - a k-regular graph on n vertices.

- Cheeger constant: $h(G) = \min_{S \subset V} \frac{|E(S, S^c)| n}{|S| |S^c|}$
- h(G) is small when G has "bottlenecks":



$$h\left(X\right) = \frac{6 \cdot 10}{3 \cdot 7} \approx 2.86$$

• Hard to analyze h(G).

• The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) - \sum_{w \sim v} f(w)$

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- consts $\subseteq \ker \Delta$ trivially.

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts $\subseteq \ker \Delta$ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

- The graph Laplacian on \mathbb{R}^{V} is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts $\subseteq \ker \Delta$ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• The spectral gap is the minimal non-trivial eigenvalue:

$$\lambda(G) = \min \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts $\subseteq \ker \Delta$ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• The spectral gap is the minimal non-trivial eigenvalue:

$$\lambda(G) = \min \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• $\lambda(G) = 0$ iff G is disconnected.

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts \subseteq ker Δ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• The spectral gap is the minimal non-trivial eigenvalue:

$$\lambda(G) = \min \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• $\lambda\left(G\right)=0$ iff G is disconnected. Is $\lambda\left(G\right)\gg0$ when G is "very connected"?

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts $\subseteq \ker \Delta$ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• The spectral gap is the minimal non-trivial eigenvalue:

$$\lambda(G) = \min \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• $\lambda\left(G\right)=0$ iff G is disconnected. Is $\lambda\left(G\right)\gg0$ when G is "very connected"?

Theorem (Discrete Cheeger inequalities $^{\mathrm{Tanner,\,Dodziuk}}_{\mathrm{Alon-Milman}},~'84/5$)

$$\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$$

- The graph Laplacian on \mathbb{R}^V is $(\Delta f)(v) = k \cdot f(v) \sum_{w \sim v} f(w)$
- ullet consts \subseteq ker Δ trivially. The non-trivial spectrum of Δ is

$$\operatorname{Spec}\left(\Delta\big|_{\operatorname{const}^{\perp}}\right) = \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• The spectral gap is the minimal non-trivial eigenvalue:

$$\lambda(G) = \min \operatorname{Spec}\left(\Delta\big|_{\operatorname{sum-zero}}\right)$$

• $\lambda\left(G\right)=0$ iff G is disconnected. Is $\lambda\left(G\right)\gg0$ when G is "very connected"?

Theorem (Discrete Cheeger inequalities $^{\mathrm{Tanner,\,Dodziuk}}_{\mathrm{Alon-Milman}},~'84/5$)

$$\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$$

Corollary: for k-regular graphs, h > c > 0 iff $\lambda > c' > 0$ (expanders).

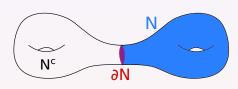
Compare with geometry:

Compare with geometry:

$$h(M) = \inf_{N \subseteq M} \frac{\operatorname{vol} \partial N \cdot \operatorname{vol} M}{\operatorname{vol} N \cdot \operatorname{vol} N^c}$$

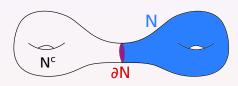
Compare with geometry:

$$h(M) = \inf_{N \subseteq M} \frac{\operatorname{vol} \partial N \cdot \operatorname{vol} M}{\operatorname{vol} N \cdot \operatorname{vol} N^c}$$



Compare with geometry:

$$h(M) = \inf_{N \subseteq M} \frac{\operatorname{vol} \partial N \cdot \operatorname{vol} M}{\operatorname{vol} N \cdot \operatorname{vol} N^c}$$



Theorem (Maz'ya '62, Cheeger '70, Buser '82)

$$\frac{h^{2}\left(M\right)}{16} \leq \lambda\left(M\right) \leq C\left(h\left(M\right) + h^{2}\left(M\right)\right)$$

 $\lambda=$ minimal nontrivial eigenvalue of the Laplace-Beltrami operator on $\mathcal{C}^{\infty}\left(M
ight)$

C = some constant (depends on the Ricci curvature of M).

Compare with geometry:

$$h(M) = \inf_{N \subseteq M} \frac{\operatorname{vol} \partial N \cdot \operatorname{vol} M}{\operatorname{vol} N \cdot \operatorname{vol} N^c}$$



Theorem (Maz'ya '62, Cheeger '70, Buser '82)

$$\frac{h^{2}(M)}{16} \leq \lambda(M) \leq C(h(M) + h^{2}(M))$$

 $\lambda =$ minimal nontrivial eigenvalue of the Laplace-Beltrami operator on $C^{\infty}(M)$ C = some constant (depends on the Ricci curvature of M).

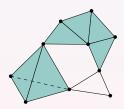
So: for manifolds with globally bounded curvature, h > c > 0 iff $\lambda > c' > 0$.

Simplicial complexes

• A simplicial complex X on a set V is a collection of subsets of V (cells / simplexes / faces / hyperedges).

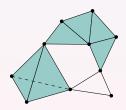
Simplicial complexes

A simplicial complex X on a set V is a collection of subsets of V (cells / simplexes
 / faces / hyperedges).



Simplicial complexes

A simplicial complex X on a set V is a collection of subsets of V (cells / simplexes
 / faces / hyperedges).



• One assumption: $\tau \subset \sigma \in X \Rightarrow \tau \in X$

There are now several notions of expansions for complexes. Not all relations between them are clear.

1 Spectral gap λ (Eckmann '44, Garland '73)

- Spectral gap λ (Eckmann '44, Garland '73)
- 2 Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)

- **1** Spectral gap λ (Eckmann '44, Garland '73)
- ② Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)
- Geometric/Topological Overlap Property (Gromov '10)

- **1** Spectral gap λ (Eckmann '44, Garland '73)
- 2 Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)
- 3 Geometric/Topological Overlap Property (Gromov '10)

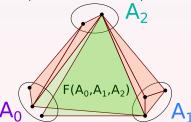
$$\bullet h(X) = \min_{V = \coprod_{i=0}^{d} A_i} \frac{|F(A_0, \dots, A_d)| |V|}{|A_0| \cdot \dots \cdot |A_d|}$$
 where $F(A_0, \dots, A_d)$ is the set of cells with one vertex in each A_i

There are now several notions of expansions for complexes. Not all relations between them are clear.

- Spectral gap λ (Eckmann '44, Garland '73)
- Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)
- 3 Geometric/Topological Overlap Property (Gromov '10)

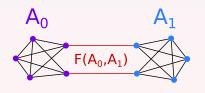
$$\bullet h(X) = \min_{V = \coprod_{i=0}^{d} A_i} \frac{|F(A_0, \dots, A_d)| |V|}{|A_0| \cdot \dots \cdot |A_d|} \qquad \left(\text{where } F(A_0, \dots, A_d) \atop \text{is the set of cells with one vertex in each } A_i \right)$$

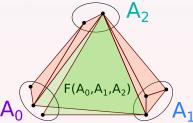
 $F(A_0,A_1)$



There are now several notions of expansions for complexes. Not all relations between them are clear.

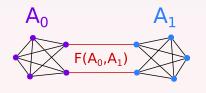
- Spectral gap λ (Eckmann '44, Garland '73)
- Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)
- Geometric/Topological Overlap Property (Gromov '10)

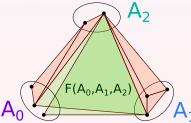




5 Pseudorandomness: estimate $|F(A_0, ..., A_d)|$ for any A_i .

- Spectral gap λ (Eckmann '44, Garland '73)
- Coboundary expansion (Linial-Meshulam '06, Dotterrer-Kahle '12, Gromov '10)
- Geometric/Topological Overlap Property (Gromov '10)





- Pseudorandomness: estimate $|F(A_0, ..., A_d)|$ for any A_i .
- Random walks

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}\left(X\right)=\left\{ f:X_{\pm}^{j}\rightarrow\mathbb{R}\left|f\left(\overline{\sigma}\right)=-f\left(\sigma\right)\right.\right.\ \forall\sigma\right\} .$$

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}\left(X\right) = \left\{f: X_{\pm}^{j} \to \mathbb{R} \left| f\left(\overline{\sigma}\right) = -f\left(\sigma\right) \right. \right. \ \forall \sigma \right\}.$$

So Ω^1 : currents/flows

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}\left(X\right) = \left\{f: X_{\pm}^{j} \to \mathbb{R} \left| f\left(\overline{\sigma}\right) = -f\left(\sigma\right) \right. \right. \ \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}\left(X\right)=\left\{ f:X_{\pm}^{j}\rightarrow\mathbb{R}\left|f\left(\overline{\sigma}\right)=-f\left(\sigma\right)\right.\right.\ \forall\sigma\right\} .$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\varnothing\}} \cong \mathbb{R}$.

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}\left(X\right) = \left\{f: X_{\pm}^{j} \to \mathbb{R} \left| f\left(\overline{\sigma}\right) = -f\left(\sigma\right) \right. \ \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}(X) = \left\{ f: X_{\pm}^{j} \to \mathbb{R} \,\middle|\, f(\overline{\sigma}) = -f(\sigma) \quad \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

$$f \in \Omega^{0} = \mathbb{R}^{V}$$
 : $(\delta f) \begin{pmatrix} u \\ \bullet \end{pmatrix} = f(u) - f(v)$

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}(X) = \left\{ f: X_{\pm}^{j} \to \mathbb{R} \,\middle|\, f(\overline{\sigma}) = -f(\sigma) \quad \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

$$f \in \Omega^{0} = \mathbb{R}^{V}$$
 : $(\delta f) \left(\stackrel{u}{\bullet} \longrightarrow \stackrel{V}{\bullet} \right) = f(u) - f(v)$
 $f \in \Omega^{1}$: $(\delta f) \left(\stackrel{w}{\bigcup_{u} \bigvee_{v}} \right) = f(uv) + f(vw) + f(wu)$

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}(X) = \left\{ f: X_{\pm}^{j} \to \mathbb{R} \,\middle|\, f(\overline{\sigma}) = -f(\sigma) \quad \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

$$f \in \Omega^{0} = \mathbb{R}^{V}$$
 : $(\delta f) \left(\stackrel{u}{\bullet} \longrightarrow \stackrel{V}{\bullet} \right) = f(u) - f(v)$
 $f \in \Omega^{1}$: $(\delta f) \left(\stackrel{w}{\bigcup_{v}} \right) = f(uv) + f(vw) + f(wu)$
 $etc...$

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}(X) = \left\{ f: X_{\pm}^{j} \to \mathbb{R} \,\middle|\, f(\overline{\sigma}) = -f(\sigma) \quad \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

• There are maps $\delta: \Omega^{j-1} \to \Omega^j$ (differentials)

$$f \in \Omega^{0} = \mathbb{R}^{V}$$
 : $(\delta f) \left(\stackrel{u}{\bullet} \longrightarrow \stackrel{V}{\bullet} \right) = f(u) - f(v)$
 $f \in \Omega^{1}$: $(\delta f) \left(\stackrel{w}{\bigcup_{v}} \right) = f(uv) + f(vw) + f(wu)$
 $etc...$

• This is a chain complex: $\delta \delta = 0$.

• $\Omega^{j}(X)$ - j-forms: anti-symmetric functions on oriented j-cells

$$\Omega^{j}(X) = \left\{ f: X_{\pm}^{j} \to \mathbb{R} \,\middle|\, f(\overline{\sigma}) = -f(\sigma) \quad \forall \sigma \right\}.$$

So Ω^1 : currents/flows, $\Omega^0 = \mathbb{R}^V$, and $\Omega^{-1} = \mathbb{R}^{\{\emptyset\}} \cong \mathbb{R}$.

$$f \in \Omega^{0} = \mathbb{R}^{V}$$
 : $(\delta f) \left(\stackrel{u}{\bullet} \longrightarrow \stackrel{v}{\bullet} \right) = f(u) - f(v)$
 $f \in \Omega^{1}$: $(\delta f) \left(\stackrel{w}{\bigcup_{v}} \right) = f(uv) + f(vw) + f(wu)$
 $etc \dots$

- This is a chain complex: $\delta \delta = 0$.
- $H^j = \frac{\ker \delta : \Omega^j \to \Omega^{j+1}}{\operatorname{im} \delta : \Omega^{j-1} \to \Omega^j}$ is the j^{th} cohomology of X (over $\mathbb R$) (Poincaré '95).

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f,g\rangle=\sum_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$),

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

• Exercise: for d = 1 this is the standard graph Laplacian.

Eckmann '44: Endow
$$\Omega^{j}$$
 with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.

Eckmann '44: Endow
$$\Omega^{j}$$
 with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- Exercise: for d = 1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

Eckmann '44: Endow
$$\Omega^{j}$$
 with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in X^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- Exercise: for d = 1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} (\delta : \Omega^{d-2} \to \Omega^{d-1})$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\lambda(X) = \min \operatorname{Spec}\left(\Delta |_{(\operatorname{im} \delta: \Omega^{d-2} \to \Omega^{d-1})^{\perp}}\right)$$

Eckmann '44: Endow
$$\Omega^j$$
 with an inner product (say, $\langle f,g\rangle = \sum_{\sigma\in\mathcal{X}^j} f(\sigma)g(\sigma)$), and define the Laplacian $\Delta = \delta^*\delta: \Omega^{d-1} \to \Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) \end{array}$$

Eckmann '44: Endow
$$\Omega^j$$
 with an inner product (say, $\langle f,g\rangle = \sum\limits_{\sigma\in X^j} f(\sigma)g(\sigma)$), and define the Laplacian $\Delta = \delta^*\delta: \Omega^{d-1} \to \Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

Eckmann '44: Endow Ω^j with an inner product (say, $\langle f,g\rangle = \sum\limits_{\sigma\in X^j} f(\sigma)g(\sigma)$), and define the Laplacian $\Delta = \delta^*\delta: \Omega^{d-1} \to \Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

ullet $Z_{d-1}= {\sf ker}\left(\delta^*:\Omega^{d-1} o\Omega^{d-2}
ight)$ are the (d-1)-cycles

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f, g \rangle = \sum_{\sigma \in X^{j}} f(\sigma) g(\sigma)$), and define the Laplacian $\Delta = \delta^{*} \delta : \Omega^{d-1} \to \Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} (\delta : \Omega^{d-2} \to \Omega^{d-1})$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

• $Z_{d-1} = \ker \left(\delta^* : \Omega^{d-1} \to \Omega^{d-2} \right)$ are the (d-1)-cycles (0-cycles: functions of sum zero, 1-cycles: Kirchhoff forms / flows, . . .)

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- Exercise: for d = 1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} (\delta : \Omega^{d-2} \to \Omega^{d-1})$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

- $Z_{d-1} = \ker \left(\delta^* : \Omega^{d-1} \to \Omega^{d-2} \right)$ are the (d-1)-cycles (0-cycles: functions of sum zero, 1-cycles: Kirchhoff forms / flows, . . .)
- $\lambda(X) = 0 \Leftrightarrow H^{d-1}(X; \mathbb{R}) \neq 0 \Leftrightarrow H_{d-1}(X; \mathbb{R}) \neq 0$ (Discrete Hodge theory).

Eckmann '44: Endow Ω^j with an inner product (say, $\langle f,g\rangle = \sum\limits_{\sigma\in\mathcal{X}^j} f(\sigma)g(\sigma)$), and define the Laplacian $\Delta = \delta^*\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- ullet Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} (\delta : \Omega^{d-2} \to \Omega^{d-1})$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

- $Z_{d-1} = \ker \left(\delta^* : \Omega^{d-1} \to \Omega^{d-2} \right)$ are the (d-1)-cycles (0-cycles: functions of sum zero, 1-cycles: Kirchhoff forms / flows, . . .)
- $\lambda(X) = 0 \Leftrightarrow H^{d-1}(X; \mathbb{R}) \neq 0 \Leftrightarrow H_{d-1}(X; \mathbb{R}) \neq 0$ (Discrete Hodge theory).
- $\lambda \gg 0$: "very trivial homology".

Eckmann '44: Endow Ω^{j} with an inner product (say, $\langle f,g\rangle=\sum\limits_{\sigma\in\mathcal{X}^{j}}f\left(\sigma\right)g\left(\sigma\right)$), and define the Laplacian $\Delta=\delta^{*}\delta:\Omega^{d-1}\to\Omega^{d-1}$.

- Exercise: for d=1 this is the standard graph Laplacian.
- Δ has a trivial kernel $\operatorname{im} \left(\delta : \Omega^{d-2} \to \Omega^{d-1} \right)$.
- The spectral gap of X is the minimal nontrivial eigenvalue of Δ :

$$\begin{array}{lll} \lambda\left(X\right) & = & \min \operatorname{Spec}\left(\Delta\big|_{\left(\operatorname{im}\delta:\Omega^{d-2}\to\Omega^{d-1}\right)^{\perp}}\right) \\ \\ & = & \min \operatorname{Spec}\left(\Delta\big|_{\ker\left(\delta^{*}:\Omega^{d-1}\to\Omega^{d-2}\right)}\right) = \min \operatorname{Spec}\Delta\big|_{Z_{d-1}} \end{array}$$

- $Z_{d-1} = \ker \left(\delta^* : \Omega^{d-1} \to \Omega^{d-2} \right)$ are the (d-1)-cycles (0-cycles: functions of sum zero, 1-cycles: Kirchhoff forms / flows, . . .)
- $\lambda(X) = 0 \Leftrightarrow H^{d-1}(X; \mathbb{R}) \neq 0 \Leftrightarrow H_{d-1}(X; \mathbb{R}) \neq 0$ (Discrete Hodge theory).
- $\lambda \gg 0$: "very trivial homology". Implies expansion?

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod A_i \\ V = \coprod A_i}} \frac{|V| \, |F\left(A_0, \ldots, A_d\right)|}{|A_0| \cdot \ldots \cdot |A_d|}$$

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod A_i \\ V = \coprod A_i}} \frac{|V| \left|F\left(A_0, \ldots, A_d\right)\right|}{|A_0| \cdot \ldots \cdot |A_d|}$$

Recall: in graphs $\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$.

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod \\ i=0}} \frac{|V| \left| F\left(A_0, \ldots, A_d\right) \right|}{|A_0| \cdot \ldots \cdot |A_d|}$$

Recall: in graphs $\frac{h^2(G)}{8k} \leq \lambda(G) \leq h(G)$.

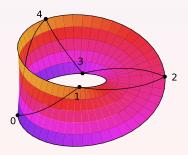
We want to find bounds: $C_1 \cdot h(X)^{m_1} \le \lambda(X) \le C_2 \cdot h(X)^{m_2}$.

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod \\ i = 0}} \frac{|V| \left| F\left(A_0, \ldots, A_d\right) \right|}{|A_0| \cdot \ldots \cdot |A_d|}$$

Recall: in graphs $\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$.

We want to find bounds: $C_1 \cdot h(X)^{m_1} \leq \lambda(X) \leq C_2 \cdot h(X)^{m_2}$.

Problem:



$$X \sim S^1 \Rightarrow H^1(X; \mathbb{R}) \cong \mathbb{Z}$$

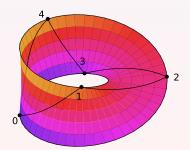
 $\Rightarrow \lambda(X) = 0$

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod \\ i = 0}} \frac{|V| \left| F\left(A_0, \ldots, A_d\right) \right|}{|A_0| \cdot \ldots \cdot |A_d|}$$

Recall: in graphs $\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$.

We want to find bounds: $C_1 \cdot h(X)^{m_1} \le \lambda(X) \le C_2 \cdot h(X)^{m_2}$.

Problem:



$$X \sim S^1 \Rightarrow H^1(X; \mathbb{R}) \cong \mathbb{Z}$$

 $\Rightarrow \lambda(X) = 0$

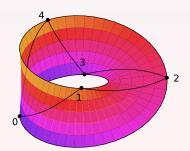
but
$$h(X) = \frac{5}{4}$$

$$\lambda\left(X\right) = \min \mathsf{Spec}\left(\Delta\big|_{Z_{d-1}}\right), \qquad h\left(X\right) = \min_{\substack{V = \coprod \\ i = 0}} \frac{|V| \left| F\left(A_0, \ldots, A_d\right) \right|}{|A_0| \cdot \ldots \cdot |A_d|}$$

Recall: in graphs $\frac{h^2(G)}{8k} \le \lambda(G) \le h(G)$.

We want to find bounds: $C_1 \cdot h(X)^{m_1} \le \lambda(X) \le C_2 \cdot h(X)^{m_2}$.

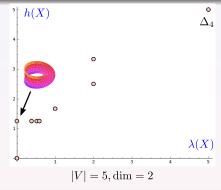
Problem:

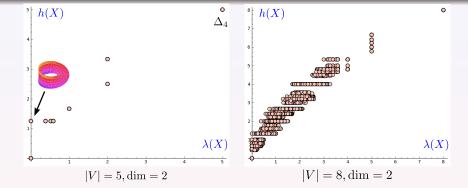


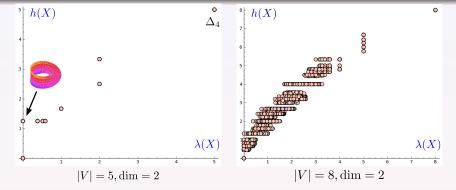
$$X \sim S^1 \Rightarrow H^1(X; \mathbb{R}) \cong \mathbb{Z}$$

 $\Rightarrow \lambda(X) = 0$

but
$$h(X) = \frac{5}{4}$$
 :(

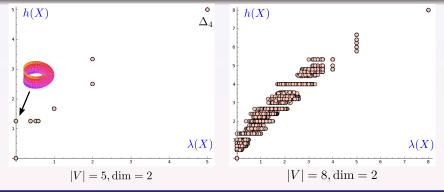






Theorem (P-Rosenthal-Tessler)

If X is a d-complex with a complete skeleton, then $\lambda(X) \leq h(X)$.



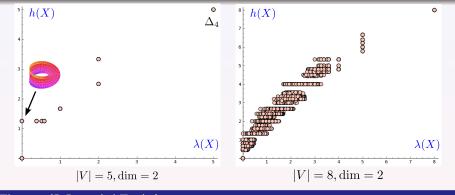
Theorem (P-Rosenthal-Tessler)

If X is a d-complex with a complete skeleton, then $\lambda(X) \leq h(X)$.

Moreover, if $\operatorname{\mathsf{Spec}} \Delta \big|_{\mathsf{Z}_{\mathsf{J}}} \subseteq [k-\varepsilon,k+\varepsilon]$, then

$$\left| |F(A_0,\ldots,A_d)| - \frac{k|A_0|\cdot\ldots\cdot|A_d|}{n} \right| \leq \varepsilon (|A_0|\cdot\ldots\cdot|A_d|)^{\frac{d}{d+1}}$$

for **any** disjoint A_0, \ldots, A_d .



Theorem (P-Rosenthal-Tessler)

If X is a d-complex with a complete skeleton, then $\lambda(X) \leq h(X)$.

Moreover, if $\operatorname{Spec} \Delta \big|_{Z_J}$ $\subseteq [k-\varepsilon,k+\varepsilon]$, then

$$\left| |F(A_0,\ldots,A_d)| - \frac{k|A_0|\cdot\ldots\cdot|A_d|}{n} \right| \leq \varepsilon (|A_0|\cdot\ldots\cdot|A_d|)^{\frac{d}{d+1}}$$

for **any** disjoint A_0, \ldots, A_d .

(Generalizes the "Expander Mixing Lemma" of Friedman-Pippenger '87, Alon-Chung '88,)
Beigel-Margulis-Spielman '93

Ramanujan complexes

ullet Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

Ramanujan complexes

ullet Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

G is a Ramanujan graph if $\lambda(G) \ge k - 2\sqrt{k-1}$.

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$,

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$, $T_k = \mathcal{B}(PGL_2(F))$, the Bruhat-Tits building associated with $PGL_2(F)$, where $F = \mathbb{Q}_p$ or $F = \mathbb{F}_{p^e}((t))$.
 - Quotients of $T_k = \mathcal{B}\left(\operatorname{PGL}_2(F)\right)$ by arithmetic lattices are Ramanujan.

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$, $T_k = \mathcal{B}(PGL_2(F))$, the Bruhat-Tits building associated with $PGL_2(F)$, where $F = \mathbb{Q}_p$ or $F = \mathbb{F}_{p^e}((t))$.
 - Quotients of $T_k = \mathcal{B}(\operatorname{PGL}_2(F))$ by arithmetic lattices are Ramanujan.
- Cartwright-Solé-Żuk '03, Li '04, Lubotzky-Samuels-Vishne '05: define Ramanujan complexes as the analogue quotients of $\mathcal{B}\left(\operatorname{PGL}_d(F)\right)$ ((d-1)-complexes).

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$, $T_k = \mathcal{B}(PGL_2(F))$, the Bruhat-Tits building associated with $PGL_2(F)$, where $F = \mathbb{Q}_p$ or $F = \mathbb{F}_{p^e}((t))$.
 - Quotients of $T_k = \mathcal{B}(\operatorname{PGL}_2(F))$ by arithmetic lattices are Ramanujan.
- Cartwright-Solé-Żuk '03, Li '04, Lubotzky-Samuels-Vishne '05: define Ramanujan complexes as the analogue quotients of $\mathcal{B}\left(\operatorname{PGL}_d(F)\right)$ ((d-1)-complexes).
- Golubev-P:

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$, $T_k = \mathcal{B}(PGL_2(F))$, the Bruhat-Tits building associated with $PGL_2(F)$, where $F = \mathbb{Q}_p$ or $F = \mathbb{F}_{p^e}((t))$.
 - Quotients of $T_k = \mathcal{B}(\operatorname{PGL}_2(F))$ by arithmetic lattices are Ramanujan.
- Cartwright-Solé-Żuk '03, Li '04, Lubotzky-Samuels-Vishne '05: define Ramanujan complexes as the analogue quotients of $\mathcal{B}\left(\operatorname{PGL}_d(F)\right)$ ((d-1)-complexes).
- Golubev-P: For a Ramanujan triangle complex X

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k=p^e+1$, $T_k=\mathcal{B}\left(\operatorname{PGL}_2(F)\right)$, the Bruhat-Tits building associated with $\operatorname{PGL}_2(F)$, where $F=\mathbb{Q}_p$ or $F=\mathbb{F}_{p^e}\left((t)\right)$.
 - Quotients of $T_k = \mathcal{B}(\operatorname{PGL}_2(F))$ by arithmetic lattices are Ramanujan.
- Cartwright-Solé-Żuk '03, Li '04, Lubotzky-Samuels-Vishne '05: define Ramanujan complexes as the analogue quotients of $\mathcal{B}\left(\operatorname{PGL}_d(F)\right)$ ((d-1)-complexes).
- Golubev-P: For a Ramanujan triangle complex X, the nontrivial spectrum consists of $n(q^2+q-1)+1$ eigenvalues in the strip $\lceil (q+1)-2\sqrt{q},(q+1)+2\sqrt{q} \rceil$

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf_{n\to\infty}\lambda\left(G_{n}\right)\leq k-2\sqrt{k-1}$$

- Lubotzky-Philips-Sarnak '88, Margulis '88, Morgenstern '94:
 - For $k = p^e + 1$, $T_k = \mathcal{B}(PGL_2(F))$, the Bruhat-Tits building associated with $PGL_2(F)$, where $F = \mathbb{Q}_p$ or $F = \mathbb{F}_{p^e}((t))$.
 - Quotients of $T_k = \mathcal{B}\left(\operatorname{PGL}_2\left(F\right)\right)$ by arithmetic lattices are Ramanujan.
- Cartwright-Solé-Żuk '03, Li '04, Lubotzky-Samuels-Vishne '05: define Ramanujan complexes as the analogue quotients of $\mathcal{B}\left(\operatorname{PGL}_d(F)\right)$ ((d-1)-complexes).
- Golubev-P: For a Ramanujan triangle complex X, the nontrivial spectrum consists of $n\left(q^2+q-1\right)+1$ eigenvalues in the strip $\left[\left(q+1\right)-2\sqrt{q},\left(q+1\right)+2\sqrt{q}\right]$ but also n-1 "residual eigenvalues" in $\left[2\left(q+1\right)-2\sqrt{q},2\left(q+1\right)+2\sqrt{q}\right]$ …

$$\liminf \lambda \left(\mathsf{G}_{n}\right) \leq k-2\sqrt{k-1}$$

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

• Kesten '59: Spec $\Delta_{L^2(T_k)} = [k - 2\sqrt{k-1}, k + 2\sqrt{k-1}].$

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

- Kesten '59: Spec $\Delta_{L^2(T_k)} = [k 2\sqrt{k-1}, k + 2\sqrt{k-1}].$
- Alon-Boppana/Serre/Ginzburg/Grigorchuk-Żuk ('84-'99):

$$G_n \to G$$
 \Rightarrow $\liminf \lambda(G_n) \leq \lambda_{L^2(G)}$

• Alon-Boppana: For an infinite family of k-regular graphs G_n ,

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

- Kesten '59: Spec $\Delta_{L^2(T_k)} = [k 2\sqrt{k-1}, k + 2\sqrt{k-1}].$
- Alon-Boppana/Serre/Ginzburg/Grigorchuk-Żuk ('84-'99):

$$G_n \to G$$
 \Rightarrow $\liminf \lambda(G_n) \leq \lambda_{L^2(G)}$

• $G_n \to G$ if there exist $v \in G$, $v_n \in G_n$, $r_n \to \infty$ such that the r_n -ball around v_n is isometric to the r_n -ball around v.

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

- Kesten '59: Spec $\Delta_{L^2(T_k)} = [k 2\sqrt{k-1}, k + 2\sqrt{k-1}].$
- Alon-Boppana/Serre/Ginzburg/Grigorchuk-Żuk ('84-'99):

$$G_n \to G$$
 \Rightarrow $\liminf \lambda(G_n) \leq \lambda_{L^2(G)}$

- $G_n \to G$ if there exist $v \in G$, $v_n \in G_n$, $r_n \to \infty$ such that the r_n -ball around v_n is isometric to the r_n -ball around v.
- \bullet $G_n = \underbrace{\bullet \cdots \bullet \cdots \bullet}_{n}$

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

- Kesten '59: Spec $\Delta_{L^2(T_k)} = [k 2\sqrt{k-1}, k + 2\sqrt{k-1}].$
- Alon-Boppana/Serre/Ginzburg/Grigorchuk-Żuk ('84-'99):

$$G_n \to G$$
 \Rightarrow $\liminf \lambda(G_n) \leq \lambda_{L^2(G)}$

- $G_n \to G$ if there exist $v \in G$, $v_n \in G_n$, $r_n \to \infty$ such that the r_n -ball around v_n is isometric to the r_n -ball around v.
- ullet $G_n = ullet$ Here $G_n o \mathbb{N}$

$$\liminf \lambda \left(G_{n}\right) \leq k-2\sqrt{k-1}$$

- Kesten '59: Spec $\Delta_{L^2(T_k)} = [k 2\sqrt{k-1}, k + 2\sqrt{k-1}].$
- Alon-Boppana/Serre/Ginzburg/Grigorchuk-Żuk ('84-'99):

$$G_n \to G$$
 \Rightarrow $\liminf \lambda(G_n) \le \lambda_{L^2(G)}$

- $G_n \to G$ if there exist $v \in G$, $v_n \in G_n$, $r_n \to \infty$ such that the r_n -ball around v_n is isometric to the r_n -ball around v.
- ullet $G_n = ullet$ Here $G_n o \mathbb{N}$, but also $G_n o \mathbb{Z}$.

Theorem (P-Rosenthal)

Let $X_n \to X$.

Theorem (P-Rosenthal)

Theorem (P-Rosenthal)

Theorem (P-Rosenthal)

- 2 Zero is a non-isolated point in $\operatorname{Spec}\Delta_X\big|_{Z_{d-1}}$

Theorem (P-Rosenthal)

- 2 Zero is a non-isolated point in Spec $\Delta_X|_{Z_{d-1}}$
- ullet The skeletons $\left\{X_n^{(d-1)}
 ight\}$ form a family of (d-1)-expanders

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in $\operatorname{Spec} \Delta_X|_{Z_{d-1}}$
- ullet The skeletons $\left\{X_n^{(d-1)}
 ight\}$ form a family of (d-1)-expanders

then $\liminf \lambda (X_n) \leq \lambda (X)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in $\operatorname{Spec} \Delta_X \Big|_{Z_{d-1}}$
- The skeletons $\left\{X_n^{(d-1)}\right\}$ form a family of (d-1)-expanders

then $\liminf \lambda (X_n) \leq \lambda (X)$.

However:

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in $\operatorname{Spec} \Delta_X|_{Z_{d-1}}$
- lacktriangle The skeletons $\left\{X_n^{(d-1)}
 ight\}$ form a family of (d-1)-expanders

then $\liminf \lambda (X_n) \leq \lambda (X)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in Spec $\Delta_X|_{Z_{d-1}}$
- lacksquare The skeletons $\left\{X_n^{(d-1)}
 ight\}$ form a family of (d-1)-expanders

then $\lim\inf \lambda\left(X_{n}\right)\leq\lambda\left(X\right)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in $\operatorname{Spec} \Delta_X|_{Z_{d-1}}$
- The skeletons $\left\{X_n^{(d-1)}\right\}$ form a family of (d-1)-expanders

then $\lim\inf \lambda\left(X_{n}\right)\leq\lambda\left(X\right)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in Spec $\Delta_X|_{Z_{d-1}}$
- The skeletons $\left\{X_n^{(d-1)}\right\}$ form a family of (d-1)-expanders

then $\liminf \lambda(X_n) \leq \lambda(X)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in Spec $\Delta_X|_{Z_{d-1}}$
- lacktriangledown The skeletons $\left\{X_n^{(d-1)}
 ight\}$ form a family of (d-1)-expanders

then $\liminf \lambda(X_n) \leq \lambda(X)$.

Theorem (P-Rosenthal)

Let $X_n \to X$. If one of the following holds:

- 2 Zero is a non-isolated point in Spec $\Delta_X|_{Z_{d-1}}$
- The skeletons $\{X_n^{(d-1)}\}$ form a family of (d-1)-expanders

then $\liminf \lambda(X_n) \leq \lambda(X)$.

$$\lim \lambda(X_n) = 3 - 2\sqrt{2}$$
, whereas $\text{Spec } \Delta(X)|_{Z_1} = \{0\} \cup [3 - 2\sqrt{2}, 3 + 2\sqrt{2}]$.

Thank You!