

Contents

- Alternating Minimization
- Scaling Problems
- Scaling Algorithms
- Analysis
- Arbitrary Marginals

Alternating Minimization - Setup

Input: function

$$f: \mathcal{X}_1 \times \cdots \times \mathcal{X}_d \to \mathbb{R}$$

Goal: find **global minimum** $(x_1^*, ..., x_d^*)$ i.e.

$$f(\mathbf{x}_1^*, \dots, \mathbf{x}_d^*) \simeq \inf_{\substack{x_i \in \mathcal{X}_i \\ 1 \le i \le d}} f(x_1, \dots, x_d)$$

Minimizing f in each block is simple.

That is, for any $1 \le i \le d$, given $(y_1, ..., y_{i-1}, y_{i+1}, ..., y_d)$ easy to solve

$$\inf_{x_i \in \mathcal{X}_i} f(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_d)$$

Alternating Minimization - Heuristics

Repeatedly solve basic problem on different coordinates. Start with an initial guess $y^{(0)}=(y_1^{(0)},\dots,y_d^{(0)})$ and time bound T

- 1. Given vector $y^{(t)} = \left(y_1^{(t)}, \dots, y_d^{(t)}\right)$, choose a coordinate $1 \le i \le d$
- Find

$$z \simeq \underset{x_i \in \mathcal{X}_i}{\arg\inf} f(y_1^{(t)}, \dots, y_{i-1}^{(t)}, x_i, y_{i+1}^{(t)}, \dots, y_d^{(t)})$$

- 4. Set $y_i^{(t+1)} = z$, keep all other coordinates **unchanged**
- 5. If t < T go back to step 1.

AM - product group actions

Setup: Group $G = G_1 \times G_2 \times \cdots \times G_d$ acting on vector space V (for instance $G_i = SL(n_i), \ V = Ten(n_1, ..., n_d)$). $(A_1, ..., A_d) \cdot X \stackrel{\text{def}}{=} (A_1 \otimes \cdots \otimes A_d)X$

Input: given $X \in V$, function

$$\begin{aligned} f_X \colon G_1 \times \cdots \times G_d &\to \mathbb{R}_{\geq 0} \\ f_X(A_1, \dots, A_d) &= \| (A_1, \dots, A_d) \cdot X \|_2^2 \end{aligned}$$

Goal: find elt of min norm in $\mathcal{O}_G(X)$, i.e., $(A_1^*, ..., A_d^*)$ such that

$$f_X(A_1^*, \dots, A_d^*) \simeq \inf_{\substack{A_i \in G_i \\ 1 \le i \le d}} f_X(A_1, \dots, A_d) \stackrel{\text{def}}{=} cap(X)$$

Null-cone problem: $X \in \mathcal{N}_G(V) \Leftrightarrow \operatorname{cap}(X) = 0$

KN'79 - Duality Theory

Capacity (primal): find elt of min norm in $\mathcal{O}_G(A)$, i.e., $(A_1^*, ..., A_d^*)$ such that

$$f_X(A_1^*, \dots, A_d^*) \simeq \inf_{\substack{A_i \in G_i \\ 1 \le i \le d}} f_X(A_1, \dots, A_d) \stackrel{\text{def}}{=} cap(X)$$

Moment map
$$\mu(X)$$
 at $X \in V$, define $h_X : G \to \mathbb{R}_{\geq 0}$ by
$$h_X(A_1, \dots, A_d) = \left\| \mu \left((A_1, \dots, A_d) \cdot X \right) \right\|_2^2$$

Moment map (dual): find elt in $\mathcal{O}_G(X)$, i.e., $(A_1^*, ..., A_d^*)$ that *minimizes norm* of moment map

$$h_X(A_1^*, \dots, A_d^*) \simeq \inf_{\substack{A_i \in G_i \\ 1 \le i \le d}} h_X(A_1, \dots, A_d) \stackrel{\text{def}}{=} cap_{\mu}(X)$$

[KN'79]
$$cap_{\mu}(X) = 0 \Leftrightarrow cap(X) > 0$$

Non-Negative Matrices & Scaling

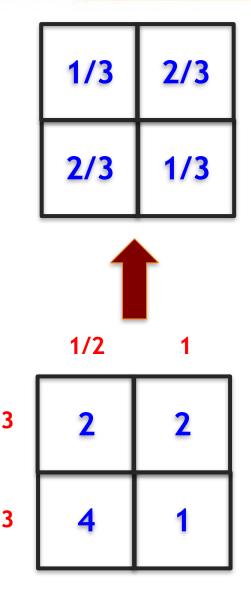
 $X \in \operatorname{Mat}_n(\mathbb{R}_{\geq 0})$ is **doubly stochastic (DS)** if row/column sums of X are equal to 1/n.

Y is **scaling** of X if \exists positive $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$ s.t. $y_{ij} = \alpha_i x_{ij} \beta_j$.

X has DS scaling if \exists scaling Y of X s.t. all row/column sums of Y equal 1/n.

X has approx. DS scaling if $\forall \epsilon > 0$ there is scaling Y_{ϵ} of X s.t. all row/column sums of Y_{ϵ} are in $[1/n - \epsilon, 1/n + \epsilon]$.

2. Can we find it efficiently?



Matrix Scaling as null-cone problem

Group $G = ST(n) \times ST(n)$ acts on $V = Mat_n(\mathbb{C})$ by

$$\begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix} \cdot X \cdot \begin{pmatrix} \beta_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \beta_n \end{pmatrix}$$

Let
$$r_i = \frac{1}{\|X\|^2} \sum_j |x_{ij}|^2$$
 and $c_j = \frac{1}{\|X\|^2} \sum_i |x_{ij}|^2$ be X "row/column sums".

Moment Map (from Ankit's talk):

$$\mu(X) = \left(r_1 - \frac{1}{n}, \dots, r_n - \frac{1}{n}, c_1 - \frac{1}{n}, \dots, c_n - \frac{1}{n}\right)$$

Dual problem:

$$ds(X) = \|\mu(X)\|^2 = \sum_{i} \left(r_i - \frac{1}{n}\right)^2 + \sum_{j} \left(c_j - \frac{1}{n}\right)^2$$

X has approx. DS scaling iff $\forall \epsilon > 0$, \exists scaling Y_{ϵ} s.t. $ds(Y_{\epsilon}) < \epsilon$.

Matrix Scaling - Algorithm S

Problem: $X \in Mat_n(\mathbb{C})$, $\epsilon > 0$, is there ϵ -scaling to DS? If yes, find it.

Algorithm S [Sinkhorn'64]:

Repeat k times:

- 1. Normalize rows of X (make $r_i = 1/n$)
- 2. Normalize columns of X (make $c_i = 1/n$)

If at any point $ds(X) < \epsilon$, output the scaling so far.

Else, output: no scaling.

Questions:

- Are we making progress at all?
- How do we know when to stop? (i.e., choose k)
- Is there an ϵ_0 such that if can scale to ϵ_0 then can scale for any ϵ ?

Quantum Operators - Definition

A quantum operator is any map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ given by $(A_1, ..., A_m)$ s.t.

$$T(X) = \sum_{1 \le i \le m} A_i X A_i^{\dagger}$$

Dual of $\mathbf{T}(\mathbf{X})$ is map $\mathbf{T}^* \colon \mathbf{M}_n(\mathbb{C}) \to \mathbf{M}_n(\mathbb{C})$ given by:

$$T^*(X) = \sum_{1 \le i \le m} A_i^{\dagger} X A_i$$

 $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is doubly stochastic if $T(I) = T^*(I) = I$.

Scaling $T_{L,R}(X)$ of T(X) consists of $L,R \in SL(n)$ s.t.

$$(A_1, \ldots, A_m) \rightarrow (LA_1R, \ldots, LA_mR)$$

Operator Scaling

Moment Map (from Ankit's talk):

$$\mu(T) = (T(I_n) - \alpha I_n, T^*(I_n) - \alpha I_n), \alpha = tr(T(I_n))/n$$

Distance to doubly-stochastic:

$$ds(T) \stackrel{\text{def}}{=} ||T(I_n) - \alpha I_n||_F^2 + ||T^*(I_n) - \alpha I_n||_F^2$$

T(X) has approx. doubly stochastic scaling if

$$\inf_{T_{L,R}} ds(T_{L,R}) = 0$$

Once again, dual problem is the scaling problem!

- 1. When $does(A_1, ..., A_m)$ have approx. doubly stochastic scaling?
- 2. Can we find it efficiently?

Operator Scaling - Algorithm G

Problem: operator $\mathbf{T}=(A_1,\ldots,A_m)$, $\epsilon>0$, can T be ϵ -scaled to double stochastic? If yes, find scaling.

Algorithm G [Gurvits' 04]:

Repeat k times:

- 1. Left normalize: $(A_1, ..., A_m) \leftarrow (RA_1, ..., RA_m)$ s.t. $T(I) = \alpha I$
- 2. Right normalize: $(A_1, ..., A_m) \leftarrow (A_1C, ..., A_mC)$ s.t. $T^*(I) = \alpha I$ If at any point $\mathbf{ds}(\mathbf{T}) < \epsilon$ output scaling.

Else output **no scaling**.

- Which k should we choose?
- Is there an ϵ_0 such that if can scale to ϵ_0 then can scale for any ϵ ?

Tensor Scaling Problem

Let
$$V = Ten(n_1, ..., n_d)$$
 and $G = SL(n_1) \times \cdots \times SL(n_d)$

 $g = (A_1, ..., A_d) \in \mathbf{G}$ acts on $X \in V$ in the natural way:

$$g \cdot X = (A_1, \dots, A_d) \cdot X \stackrel{\text{def}}{=} (A_1 \otimes \dots \otimes A_d)X$$

Goal: given X, find $g^* = (A_1^*, ..., A_d^*)$ such that

$$||g^* \cdot X||_2^2 \simeq cap(X) \stackrel{\text{def}}{=} \inf_{g \in G} ||g \cdot X||_2^2$$

Null-cone Problem: cap(X) = 0

Moment map (dual) Problem?

Quantum Setting (Previous talks)

Tensor $X \in Ten(n_1, ..., n_d)$ is **pure quantum state***, can be written as $\rho = XX^{\dagger} = |\psi\rangle\langle\psi|$.

• PSD matrix, dim $n = n_1 \cdots n_d$, $tr(\rho) = ||X||^2$.

Let ρ_i be **marginal** of ρ with respect to particle i.

• PSD matrix, dim n_i , $tr(\rho_i) = ||X||^2$.

ho d-stochastic (locally maximally entangled) if all $ho_i \propto I_{n_i}$

Quantum distillation: given pure state ρ , is there a scaling of ρ into a d-stochastic state?

Moment map (from Ankit's talk):

$$\mu(X) = \left(\frac{1}{\|X\|^2} \rho_1 - \left(\frac{1}{n_1}\right) I_{n_1}, \cdots, \frac{1}{\|X\|^2} \rho_d - \left(\frac{1}{n_d}\right) I_{n_d}\right)$$

Dual Problem:
$$ds(X) = \|\mu(X)\|^2 \to dds(X) = \inf_{Y \in \mathcal{O}(X)} ds(Y)$$

Tensor Scaling - Algorithm

Problem: $X \in Ten(n_1, ..., n_d)(\mathbb{Z}[i])$, $\epsilon > 0$, is there ϵ -scaling to DS? If yes, find it.

Algorithm Q [BGOWW'18]:

Start with input X and scaling $(I_{n_1}, ..., I_{n_d})$

Repeat k times:

- 1. If $ds(X) < \epsilon$, output the scaling so far.
- 2. Let i be marginal s.t. $\left\| \frac{1}{\|X\|^2} \rho_i \frac{1}{n_i} I_{n_i} \right\|^2 > \frac{\epsilon}{n}$
- 3. Normalize ρ_i (make $\rho_i = I_{n_i}$)

Output: no scaling.

Questions:

- How do we know when to stop? (i.e., choose k)
- Is there an ϵ_0 such that if can scale to ϵ_0 then can scale for any ϵ ?

Analysis - General Approach

Three steps:

- **1.** [Upper bound] in beginning $||X||^2 \le poly(n, 2^b)$
 - Trivial from input data
- **2.** [Progress/step] If $ds(X) > \epsilon$ (i.e., far from solution to dual) then normalization decreases $||X||^2$ by factor $\times \exp(O(\epsilon/n))$ (i.e., makes progress in primal)
 - Quantitative AM-GM (easy)
- 3. [Lower bound] $cap(X) > 0 \Rightarrow cap(X) > 1/n^2$
 - Invariant polynomials generated by nice poly. (hard)

```
\epsilon-scaling problem \rightarrow running time of poly(nb/\epsilon). Solve null-cone prb:
```

Matrix/Operator scaling: $\epsilon = O(1/n)$ is enough [Gur'04] Tensor scaling: $\epsilon = \exp(-n \log n)$ [HM, NM'84, BGOWW'18]

Algorithm S - Analysis [LSW'00*]

Algorithm S [Sinkhorn'64]:

Repeat k times:

- 1. Normalize rows of X (make $r_i = 1/n$)
- 2. Normalize columns of **X** (make $c_i = 1/n$)

If at any point $ds(X) < \epsilon$, output the scaling so far.

Else, output: no scaling.

Analysis [LSW'00*]:

- 1. $||X||^2 \le poly(n, 2^b)$ as X is integer bit comp. b
- 2. $ds(X) > \epsilon \Rightarrow ||X||^2$ shrinks by $exp(O(\epsilon/n))$ after normlyting
- 3. $Per(\widehat{Y}) \ge 1$ for any matrix Y in orbit of $X \Rightarrow ||Y||^2 \ge 1/n^2$

Within $\mathbf{k} = poly(nb/\epsilon)$ iterations we will get our scaling!

If $Per(\hat{X}) > 0 \Leftrightarrow X$ has no Hall blocker, so it is correct.

 $\operatorname{Per}(\widehat{X})$ not needed, as any monomial encoding matching** works.

Algorithm G - Analysis [GGOW'16]

Algorithm G [Gurvits' 04]:

Repeat k times:

- 1. Left normalize: $(A_1, ..., A_m) \leftarrow (RA_1, ..., RA_m)$ s.t. T(I) = I.
- 2. Right normalize: $(A_1, \ldots, A_m) \leftarrow (A_1C, \ldots, A_mC)$ s.t. $T^*(I) = I$. If at any point $\mathbf{ds}(\mathbf{T}) < \epsilon$ output scaling.

Else output **no scaling**.

Analysis [GGOW'16]:

- 1. $||T||^2 \le poly(n, 2^b)$ as A_i is integer bit comp. b
- 2. $ds(T) > \epsilon \Rightarrow ||X||^2$ shrinks by $exp(O(\epsilon/n))$ after normlytin
- 3. $P(T_{L,R}) \ge 1$ for any $T_{L,R}$ in orbit of $T \Rightarrow \|T_{L,R}\|^2 \ge 1/n^2$

Within $\mathbf{k} = poly(nb/\epsilon)$ iterations we will get our scaling!

 Is there an ε₀ such that if can scale to ε₀ then can scale for any ε?

Algorithm Q - Analysis [BGOWW'18]

Problem: $X \in Ten(n_1, ..., n_d)(\mathbb{Z}[i]), \epsilon > 0$, is there ϵ -scaling to DS? $n = n_1 n_2 \cdots n_d$.

Analysis:

- 1. $||X||^2 \le poly(n, 2^b)$ as X is integer bit comp. b
- 2. $ds(X) > \epsilon \Rightarrow ||X||^2$ shrinks by $exp(O(\epsilon/n))$ after normlztn
- 3. $P(Y) = P(X) \ge 1$ for any $Y \in \overline{\mathcal{O}(X)} \Rightarrow ||Y||^2 \ge 1/n^2$

Within $\mathbf{k} = poly(nb/\epsilon)$ iterations we will get our scaling!

Step 3:

Invariant ring $\mathbb{C}[X]^G$ generated by polys of:

- 1. degree $\leq 2^{n^2}$ [Derksen'01]
- 2. Integer coefficients of norm $\leq poly(n)$ [Pro'07, BI'13,BGOWW'18]*

$$P(X) > 0$$
, $deg(P) = m \Rightarrow P(X) \ge 1 \Rightarrow ||X||^m \cdot n^{2m} \ge 1$

Choosing ϵ for Null-cone problem

Problem: $X \in Ten(n_1, ..., n_d)(\mathbb{Z}[i])$, is $X \in \mathcal{N}_G(V)$?

Algorithm Q [BGOWW'18]:

Start with input X and scaling $(I_{n_1}, ..., I_{n_d})$

Repeat k times:

- 1. If $ds(X) < \epsilon$, output the scaling so far.
- 2. Let i be marginal s.t. $\left\| \frac{1}{\|X\|^2} \rho_i \frac{1}{n_i} I_{n_i} \right\|^2 > \frac{\epsilon}{n}$
- 3. Normalize ρ_i (make $\rho_i = I_{n_i}$)

Output: **no scaling.**

Which ϵ should we choose?

- 1. [Mum'65] Instability parameter for tensor "how quickly can we drive tensor to zero"
- 2. [NM'84] Instability lower bounds ds(X) for any X
- 3. Bound on instability (bound soln to LP) implies ds(X) l.b.

Instability and ds(X) lower bound

[HM]:
$$X \in \mathcal{N}_G(V) \Leftrightarrow 1$$
-PSG $\lambda : \mathbb{C}^{\times} \to G$ s.t. $\lim_{t \to 0} \lambda(t) X = 0$

[Mum'65]: how quickly does it go to zero?

$$\lambda(t) \leftarrow \left(B_i^{-1} \operatorname{diag}(t^{a_{i1}}, \cdots, t^{a_{in}})B_i\right)_{i=1}^d,$$
 $B_i \in U(n_i), a_{ij} \in \mathbb{Z}, \sum_{j=1}^n a_{ij} = 0$

- 1. $supp((B_1, \dots, B_d) \cdot X) \stackrel{\text{def}}{=} set of nonzero entries$
- 2. If for every (j_1, \dots, j_d) in support, $\sum a_{ij_i} > 0$ then $\lambda(t)X \to 0$

3. Instability
$$\mathbf{inst}(\lambda, \mathbf{X}) = \min_{(j_1, \dots, j_d) \in supp} \frac{\sum a_{ij_i}}{\sqrt{\sum a_{ij}^2}}$$

$$inst(X) = \max_{\lambda \text{ 1PSG}} inst(\lambda, X)$$

Given 1-PSG $\lambda: \mathbb{C}^{\times} \to G$ s.t. $\lim_{t\to 0} \lambda(t) X = 0$ how to l.b. $\operatorname{inst}(\lambda, X)$

Instability and ds(X) lower bound

1-PSG
$$\lambda$$
 s.t. $\lim_{t\to 0}\lambda(t)\,X=0\Rightarrow$ following LP has soln

$$a_{ij} \in \mathbb{Q}$$
 , $\sum_{j=1}^n a_{ij} = 0 \ orall i \in [d]$,

$$\sum_{i=1}^d a_{ij_i} \geq \mathbf{1} \ orall (j_1, ..., j_d)$$
 in support

Thus, has soln bounded by $\exp(-n \cdot \log(n))$ [Sch'98]

How does inst(X) l.b. ds(X)?

Easy calculation shows that for any (a_{ij})

$$\min_{(j_1,\ldots,j_d)\in supp(X)} \frac{\sum a_{ij_i}}{\sqrt{\sum a_{ij}^2}} \leq \sqrt{ds(X)} = \sqrt{ds\big((U_1,\ldots,U_d)\cdot X\big)}$$

[NM'84]: this holds more general group actions

Thus $ds(X) \ge inst(X)^2 \ge exp(-2n \cdot log(n))$.

Matrix and operator scaling

1-PSG
$$\lambda$$
 s.t. $\lim_{t\to 0} \lambda(t) X = 0 \Rightarrow$ following LP has soln

$$a_{ij} \in \mathbb{Q}$$
 , $\sum_{j=1}^n a_{ij} = \mathbf{0} \ orall i \in [d]$,

$$\sum_{i=1}^d a_{ij_i} \geq \mathbf{1} \ orall (j_1, ..., j_d)$$
 in support

Thus, has soln bounded by $\exp(-n \cdot \log(n))$ [Sch'98]

How can we better lower bound inst(X) in Matrix/Operator Scaling?

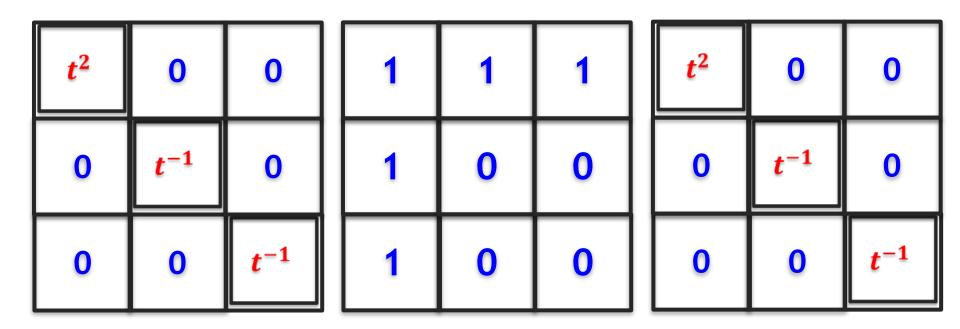
Construct a small solution (a_{ij}) to

$$\min_{(j_1,\ldots,j_d)\in supp(X)} \frac{\sum a_{ij_i}}{\sqrt{\sum a_{ij}^2}}$$

Hint: use Hall blocker to find small solution.

Thus in these cases: $ds(X) \ge inst(X)^2 \ge 1/n^2$.

Example - Matrix scaling



Common Hall blocker (shrunk subspace) in operator scaling yields same bound.

Non-uniform marginals [BFGOWW'18]

Tensor $X \in \mathbb{P}(Ten(n_1, ..., n_d))$ is **pure quantum state**, can be written as $\rho = XX^{\dagger}/X^{\dagger}X = |\psi\rangle\langle\psi|$. Group $G = GL(n_1) \times \cdots \times GL(n_d)$

Quantum marginal problem: given pure state X, target marginals ρ_1, \dots, ρ_d , (unit trace) is there a scaling of X with such marginals?

(Michael's talk): membership in moment/entanglement polytope of X $p_i = spec(\rho_i), p \in \Delta(X)$

Natural attempt: is there another representation where the moment maps for image of $X \in Ten(n_1, ..., n_d)$ is given by $\rho_i^X - p_i$?

Shifting trick (from Michael's talk): $p=(p_1,\dots,p_d)$ spectrum of marginals, $p_i=\ell_i/k$ then $Y\stackrel{\text{def}}{=} X^{\bigotimes k} \bigotimes v_{\ell^*}$ is such that

$$\mu(Y) = k \cdot \mu(X) + \mu(v_{\ell^*}) = k\mu(X) + \ell^* = (\rho_i^X - p_i)_{i=1}^d$$

Reduces arbitrary marginal problem to uniform case!*

Non-uniform Tensor Scaling - Algorithm

Problem: $X \in Ten(n_1, ..., n_d)(\mathbb{Z}[i])$, $\epsilon > 0$, $p_1, ..., p_d$ target spectra. Is there ϵ -scaling to $p_1, ..., p_d$? If yes, find it.

Algorithm Q+ [BFGOWW'18]:

Start with input X and random scaling $g = (A_1, ..., A_d)$ Repeat T times:

- 1. If $ds_p(X) < \epsilon$, output the scaling so far.
- 2. Let i be marginal s.t. $\left\|\frac{1}{\|X\|^2} \rho_i p_{i\uparrow}\right\|^2 > \frac{\epsilon}{n}$
- 3. Normalize ρ_i
 - 1. $ho_i \leftarrow p_{i\uparrow}^{-1/2} R_i$, where $R_i R_i^\dagger =
 ho_i$
 - 2. R_i upper triangular (Borel)

Output: no scaling.

Analysis - General Marginals

Three steps:

- **1.** [Upper bound] in beginning $||g_0 \cdot X||^2 \le poly(n, k, 2^b)$
 - Need g_0 for HWV not to vanish w.h.p. (Michael's talk)
 - Need degree bounds on HWV to show that g_0 is nice
- **2.** [Progress/step] If $ds(Y) > \epsilon$ (i.e., far from solution to dual) then normalization decreases $||Y||^2$ by factor $\times \exp(O(\epsilon/n))$ (i.e., makes progress in primal)
 - Quantitative AM-GM (easy)
 - Scale by Borel to keep HWV invariant under scaling
- 3. [Lower bound] $cap_p(X) > 0 \Rightarrow cap_p(X) > 1/n^2$
 - HWVs are generated by nice poly. (hard)

Thank you!