The Matching Problem is in Quasi-NC

Ola Svensson and Jakub Tarnawski

Institute for Advanced Study, 22.01.2018

Given a graph, can we pair up all vertices using edges?

Given a graph, can we pair up all vertices using edges?

Given a graph, can we pair up all vertices using edges?

Perfect matching problem

Benchmark problem in computer science

Perfect matching problem

Benchmark problem in computer science

Algorithms:

- bipartite: Jacobi [XIX century, weighted!]
- general: Edmonds [1965]
 - polynomial-time = efficient
- since then, tons of research and still active
- many models of computation: monotone circuits, extended formulations, parallel, streaming/sublinear, ...

Perfect matching problem

Benchmark problem in computer science

Algorithms:

- bipartite: Jacobi [XIX century, weighted!]
- general: Edmonds [1965]
 - polynomial-time = efficient
- since then, tons of research and still active
- many models of computation: monotone circuits, extended formulations, parallel, streaming/sublinear, ...

Class \mathcal{NC} : problems that parallelize completely

poly *n* processors

Class \mathcal{NC} : problems that parallelize completely

poly *n* processors

Main open question: is matching in \mathcal{NC} ?

Class \mathcal{NC} : problems that parallelize completely

poly *n* processors

🛓 It's in Randomized \mathcal{NC}

Main open question: is matching in \mathcal{NC} ?

Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]:

has randomized algorithm that uses:

- polynomially many processors
- polylog time

Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]:

has randomized algorithm that uses:

- polynomially many processors
- polylog time

Search version in RANDOMIZED \mathcal{NC} :

- [Karp, Upfal, Wigderson 1986]
- [Mulmuley, Vazirani, Vazirani 1987]

Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]:

has randomized algorithm that uses:

- polynomially many processors
- polylog time

Search version in RANDOMIZED \mathcal{NC} :

- [Karp, Upfal, Wigderson 1986]
- [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]:

has randomized algorithm that uses:

- polynomially many processors
- polylog time

Search version in RANDOMIZED \mathcal{NC} :

- [Karp, Upfal, Wigderson 1986]
- [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

Is matching in \mathcal{NC} ?

Is matching in \mathcal{NC} ?

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- K_{3,3}-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P₄-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

Is matching in \mathcal{NC} ?

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- K_{3,3}-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P₄-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

but not known for:

bipartite

TheoremFenner, Gurjar and Thierauf [2015]Bipartite matching is in QUASI- \mathcal{NC}
($n^{\mathrm{poly}\log n}$ processors, poly log n time, deterministic)

TheoremFenner, Gurjar and Thierauf [2015]Bipartite matching is in QUASI- \mathcal{NC}

 $(n^{\text{poly} \log n} \text{ processors, poly} \log n \text{ time, deterministic})$

Approach fails for non-bipartite graphs

much harder than

S. and Tarnawski [2017]

General matching is in <code>QUASI- \mathcal{NC} </code>

 $(n^{\text{poly} \log n} \text{ processors, poly} \log n \text{ time, deterministic})$

 $(n^{\text{poly} \log n} \text{ processors, poly} \log n \text{ time, deterministic})$

with quasi-polynomial # processors

1 Basic approach for derandomization

2 Bipartite case [Fenner, Gurjar, Thierauf 2015]

3 Difficulties of general case & our approach

Basic approach for derandomization

Basic approach for derandomization

(Derandomize one of the randomized algorithms)

Algorithm

- 1. For each edge e select weight $w(e) \in \{1, 2, \dots, n^2\}$ at random
- 2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Algorithm

- 1. For each edge e select weight $w(e) \in \{1, 2, \dots, n^2\}$ at random
- 2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \dots, n^2\}$ at random

2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \dots, n^2\}$ at random

2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \dots, n^2\}$ at random

2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function *w* is **isolating**: unique min-weight matching

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

1 For any *n*-vertex graph, there is an isolating $w \in W^*$

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in W^*$ and edge e, we have $w(e) \leq poly(n)$
Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
- **3** The number of weight functions are polynomial $|W^*| \leq poly(n)$

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
- **3** The number of weight functions are polynomial $|W^*| \leq poly(n)$

The oblivious algorithm simply checks all weight functions in parallel

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \operatorname{poly}(n)$.
- **3** The number of weight functions are polynomial $|W^*| \leq poly(n)$

The oblivious algorithm simply checks all weight functions in parallel

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \operatorname{poly}(n)$.
- **3** The number of weight functions are polynomial $|W^*| \leq poly(n)$

The oblivious algorithm simply checks all weight functions in parallel

Easy even with $|\mathcal{W}^*| \leq 1$

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
- **3** The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
- **3** The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$ -

The oblivious algorithm simply checks all weight functions in parallel

Easy, but best known bound on $|\mathcal{W}^*|$ is exponential in *n*

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

- **1** For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$
- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \mathbf{n}^{\operatorname{poly}(\log n)}$
- 3 The number of weight functions are polynomial $|\mathcal{W}^*| \leq n^{\mathsf{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

1 For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$

- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \mathbf{n}^{\operatorname{poly}(\log n)}$
- 3 The number of weight functions are polynomial $|\mathcal{W}^*| \leq n^{\mathsf{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT'15]: W^* exists for bipartite graphs

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input *n*, construct a family W^* of weight functions that can be computed in \mathcal{NC} such that

1 For any *n*-vertex graph, there is an isolating $w \in \mathcal{W}^*$

- **2** For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \mathbf{n}^{\operatorname{poly}(\log n)}$
- **3** The number of weight functions are polynomial $|\mathcal{W}^*| \leq n^{\text{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT'15]: W^* exists for bipartite graphs

Thm[ST'17]: \mathcal{W}^* exists for general graphs

Bipartite case [Fenner, Gurjar, Thierauf 2015]

Bipartite case [Fenner, Gurjar, Thierauf 2015]

"Greed is good. Greed is right. Greed works. Greed clarifies, cuts through and captures the essence of the evolutionary spirit."

- Gordon Gecko

Bipartite case

Bipartite case

[Fenner, Gurjar, Thierauf 2015]

Make progress step-by-step

Construct isolating function iteratively

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

Let $\mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

▶ Select $w_1 \in W$ and let M_1 be perfect matchings minimizing w_1

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

- ▶ Select $w_1 \in \mathcal{W}$ and let \mathcal{M}_1 be perfect matchings minimizing w_1
- ▶ Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

- ▶ Select $w_1 \in \mathcal{W}$ and let \mathcal{M}_1 be perfect matchings minimizing w_1
- ▶ Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2
- ▶ Select $w_3 \in W$ and let $M_3 \subseteq M_2$ be PMs in M_2 minimizing w_3

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

- ▶ Select $w_1 \in \mathcal{W}$ and let \mathcal{M}_1 be perfect matchings minimizing w_1
- ▶ Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2
- ▶ Select $w_3 \in W$ and let $M_3 \subseteq M_2$ be PMs in M_2 minimizing w_3

How many $w_1,\ldots,w_\ell\in\mathcal{W}$ necessary for $|\mathcal{M}_\ell|=1$?

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

- ▶ Select $w_1 \in W$ and let M_1 be perfect matchings minimizing w_1
- ▶ Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2
- ▶ Select $w_3 \in W$ and let $M_3 \subseteq M_2$ be PMs in M_2 minimizing w_3

How many $w_1, \ldots, w_\ell \in \mathcal{W}$ necessary for $|\mathcal{M}_\ell| = 1$?

Thm [FGT'15]: For any G, there is $w_1, \ldots, w_{\log_2(n)} \in W$ so that $|\mathcal{M}_{\log_2(n)}| = 1$

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ be a polynomial set of simple weight functions

- ▶ Select $w_1 \in W$ and let M_1 be perfect matchings minimizing w_1
- ▶ Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2
- ▶ Select $w_3 \in W$ and let $M_3 \subseteq M_2$ be PMs in M_2 minimizing w_3

How many $w_1,\ldots,w_\ell\in\mathcal{W}$ necessary for $|\mathcal{M}_\ell|=1$?

GOAL: For any *n*-vertex graph G, show that there is

 $w_1, \dots, w_{\log n} \in \mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \dots, n^4\}$ so that $|\mathcal{M}_{\log n}| = 1$

GOAL: For any *n*-vertex graph *G*, show that there is

 $w_1,\ldots,w_{\log n}\in\mathcal{W}=\{w_k:w_k(e_i)=2^i\mod k\text{ for }k=2,3,\ldots,n^4\}$ so that $|\mathcal{M}_{\log n}|=1$

We need good progress measure

Consider min-weight perfect matchings M, M' with w(M) = w(M')

Consider min-weight perfect matchings M, M' with w(M) = w(M')

Consider min-weight perfect matchings M, M' with w(M) = w(M')

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- in each cycle C,
 w(M ∩ C) = w(M' ∩ C)
 (otherwise could get lighter matching)

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- in each cycle C,
 w(M ∩ C) = w(M' ∩ C)
 (otherwise could get lighter matching)

• $w(e_1) + w(e_3) = w(e_2) + w(e_4)$

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- ► in each cycle C, $w(M \cap C) = w(M' \cap C)$ (otherwise could get lighter matching)
- define **discrepancy** of a cycle: $d_w(C) := w(\mathbf{e}_1) - w(\mathbf{e}_2) + w(\mathbf{e}_3) - w(\mathbf{e}_4)$

 $\begin{array}{c|c} & w(e_1) + w(e_3) \\ \hline \\ e_3 & = \\ & w(e_2) + w(e_4) \end{array}$

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- ► in each cycle C, $w(M \cap C) = w(M' \cap C)$ (otherwise could get lighter matching)
- define **discrepancy** of a cycle: $d_w(C) := w(\mathbf{e}_1) - w(\mathbf{e}_2) + w(\mathbf{e}_3) - w(\mathbf{e}_4)$
- $d_w(C) = 0$

 $\begin{array}{c|c} & w(e_1) + w(e_3) \\ \hline \\ e_3 & = \\ & w(e_2) + w(e_4) \end{array}$

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- ► in each cycle C, $w(M \cap C) = w(M' \cap C)$ (otherwise could get lighter matching)
- define **discrepancy** of a cycle: $d_w(C) := w(\mathbf{e}_1) - w(\mathbf{e}_2) + w(\mathbf{e}_3) - w(\mathbf{e}_4)$

• $d_w(C) = 0$

If $(\forall C) d_w(C) \neq 0$, then w isolating!

 $\begin{array}{c|c} & w(e_1) + w(e_3) \\ \hline \\ c & e_3 & = \\ & w(e_2) + w(e_4) \end{array}$

- Consider min-weight perfect matchings M, M' with w(M) = w(M')
- symmetric difference
 alternating cycles
- ► in each cycle C, $w(M \cap C) = w(M' \cap C)$ (otherwise could get lighter matching)
- define **discrepancy** of a cycle: $d_w(C) := w(\mathbf{e}_1) - w(\mathbf{e}_2) + w(\mathbf{e}_3) - w(\mathbf{e}_4)$

• $d_w(C) = 0$

If $(\forall C) d_w(C) \neq 0$, then w isolating!

Progress: assign $\neq 0$ discrepancy to "many" cycles

 e_1 C e_4

 $\begin{array}{c|c} & w(e_1) + w(e_3) \\ \hline \\ e_3 & = \\ & w(e_2) + w(e_4) \end{array}$

Removing cycles

A graph may have exponentially many cycles \Rightarrow seems hard to find w so that all of them have non-zero discrepancy

A graph may have exponentially many cycles \Rightarrow seems hard to find w so that all of them have non-zero discrepancy

Don't be greedy!

Old Lemma: For any collection of n^4 cycles, some $w \in W$ assigns all of them $\neq 0$ discrepancy
A graph may have exponentially many cycles \Rightarrow seems hard to find w so that all of them have non-zero discrepancy

Don't be greedy!

Old Lemma: For any collection of n^4 cycles, some $w \in W$ assigns all of them $\neq 0$ discrepancy

If $\leq n^4$ cycles in the graph: done!

A graph may have exponentially many cycles \Rightarrow seems hard to find w so that all of them have non-zero discrepancy

Don't be greedy!

Old Lemma: For any collection of n^4 cycles, some $w \in W$ assigns all of them $\neq 0$ discrepancy

If $\leq n^4$ cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

What can we say about the active subgraph G_1 that contains those edges that are in a min-weight perfect matching?

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Bipartite PM	
$x(\delta(v)) = 1$	for every $v \in V$
$x_e \geq 0$	for every $e \in E$

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Bipartite PM	
$x(\delta(v)) = 1$	for every $v \in V$
$x_e \ge 0$	for every $e \in E$
F is simply a subgraph	

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Consider the convex hull of *M* (face *F* of the bipartite matching polytope):

Bipartite PM	
$x(\delta(v))=1$	for every $v \in V$
$x_e \ge 0$	for every $e \in E$
F is simply a subgraph	

What can we say about the weight of points in F?

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

Consider the convex hull of *M* (face *F* of the bipartite matching polytope):

Bipartite PM	
$egin{aligned} x(\delta(v)) &= 1 \ x_e &> 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
<i>F</i> is simply a subgraph	

What can we say about the weight of points in F?

Every $x, y \in F$ have same weight: $\sum_{e} w(e)x_e = \sum_{e} w(e)y_e$

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

 $(edge set \cup_{M \in \mathcal{M}} M)$

Suppose active subgraph has cycle C of $\neq 0$ discepancy

w(green edges) $\neq w$ (red edges)

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

 $(edge set \cup_{M \in M} M)$

Suppose active subgraph has cycle C of $\neq 0$ discepancy

 $w(\text{green edges}) \neq w(\text{red edges})$

• Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \mathbf{1}_M$ be the mean of the face *F*

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

 $(edge set \cup_{M \in \mathcal{M}} M)$

Suppose active subgraph has cycle C of $\neq 0$ discepancy

 $w(\text{green edges}) \neq w(\text{red edges})$

- Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \mathbf{1}_M$ be the mean of the face *F*
- ▶ Then $x_e > 0$ for every $e \in C$ (since support of × equals $\cup_{M \in M} M$)

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

 $(edge set \cup_{M \in \mathcal{M}} M)$

Suppose active subgraph has cycle C of $\neq 0$ discepancy

 $w(\text{green edges}) \neq w(\text{red edges})$

- Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \mathbf{1}_M$ be the mean of the face *F*
- ► Then $x_e > 0$ for every $e \in C$ (since support of × equals $\cup_{M \in M} M$)
- Increasing red edges while decreasing green maintain degrees

Bipartite PM	
$egin{aligned} & x(\delta(v)) = 1 \ & x_e \geq 0 \end{aligned}$	for every $v \in V$ for every $e \in E$
F is simply a subgraph	

 $(edge set \cup_{M \in \mathcal{M}} M)$

Suppose active subgraph has cycle C of $\neq 0$ discepancy

 $w(\text{green edges}) \neq w(\text{red edges})$

- Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \mathbf{1}_M$ be the mean of the face *F*
- ▶ Then $x_e > 0$ for every $e \in C$ (since support of × equals $\cup_{M \in M} M$)
- Increasing red edges while decreasing green maintain degrees
- So we obtain a new point $y \in F$ of different weight; contradiction

The main ingredients

Old Lemma:

For any collection of n^4 cycles, some $w \in W$ assigns all of them $\neq 0$ discrepancy

Bipartite key property:

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph

A graph has at most n^4 cycles of length 4

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8 -cycles in G_1 have $\neq 0$ discrepancy

A graph with no \leq 4-cycles has at most n^4 cycles of length \leq 8

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8 -cycles in G_1 have $\neq 0$ discrepancy

▶ Bipartite key property: $G_2 = (V, \cup_{M \in M_2} M)$ has no cycles of length ≤ 8

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8 -cycles in G_1 have $\neq 0$ discrepancy

▶ Bipartite key property: $G_2 = (V, \cup_{M \in M_2} M)$ has no cycles of length ≤ 8

Select $w_3 \in \mathcal{W}$ so that all ≤ 16 -cycles in G_2 have $\neq 0$ discrepancy

A graph with no \leq 8-cycles has at most n^4 cycles of length \leq 16

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all \leq 8-cycles in G_1 have \neq 0 discrepancy

▶ Bipartite key property: $G_2 = (V, \cup_{M \in M_2} M)$ has no cycles of length ≤ 8

Select $w_3 \in \mathcal{W}$ so that all ≤ 16 -cycles in G_2 have $\neq 0$ discrepancy

▶ Bipartite key property: $G_3 = (V, \cup_{M \in M_3} M)$ has no cycles of length ≤ 16

▶ Bipartite key property: $G_1 = (V, \cup_{M \in M_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8 -cycles in G_1 have $\neq 0$ discrepancy

▶ Bipartite key property: $G_2 = (V, \cup_{M \in M_2} M)$ has no cycles of length ≤ 8

Select $w_3 \in \mathcal{W}$ so that all ≤ 16 -cycles in G_2 have $\neq 0$ discrepancy

▶ Bipartite key property: $G_3 = (V, \cup_{M \in M_3} M)$ has no cycles of length ≤ 16

 $G_{\log n} = (V, \cup_{M \in \mathcal{M}_{\log n}} M)$ have no cycles so $|\mathcal{M}_{\log n}| = 1$ as required

A graph with no \leq 4-cycles has at most n^4 cycles of length 8

A graph with no \leq 4-cycles has at most n^4 cycles of length 8

- ▶ Associate a signature (*a*, *b*, *c*, *d*) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex

A graph with no \leq 4-cycles has at most n^4 cycles of length 8

- ▶ Associate a signature (*a*, *b*, *c*, *d*) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex

Two cycles cannot have the same signature as that would imply a 4-cycle:

A graph with no \leq 4-cycles has at most n^4 cycles of length 8

- ▶ Associate a signature (*a*, *b*, *c*, *d*) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex

Two cycles cannot have the same signature as that would imply a 4-cycle:

A graph with no \leq 4-cycles has at most n^4 cycles of length 8

- ▶ Associate a signature (*a*, *b*, *c*, *d*) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex

Two cycles cannot have the same signature as that would imply a 4-cycle:

So # 8-cycles is at most # signatures which is at most n^4

Some perspective

Difficulties of general case & our approach

Difficulties of general case & our approach

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^{E}$:

• $x_e \ge 0$ for every edge e

•
$$x(\delta(v)) = 1$$
 for every vertex v

$$\bigvee x(\delta(S)) \geq 1$$
 for every odd set S of vertices

 $(\delta(S) = \text{edges crossing } S)$

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^{E}$:

- $x_e \ge 0$ for every edge *e*
- $x(\delta(v)) = 1$ for every vertex v

 $(\delta(S) = \text{edges crossing } S)$

 $(\delta(S)) \ge 1$ for every odd set S of vertices

So every face *F* is given as:

 $F = \{x \in \mathsf{PM} : x_e = 0$ for some edges e,

 $x(\delta(S)) = 1$ for some odd sets S

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^{E}$:

- $x_e \ge 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v

 $\bigvee x(\delta(S)) \ge 1$ for every odd set *S* of vertices

So every face *F* is given as:

 $F = \{x \in \mathsf{PM} : x_e = 0$ for some edges e,

 $x(\delta(S)) = 1$ for some odd sets S

- ► In bipartite case: $F = \{x \in PM : x_e = 0 \text{ for some edges } e\}$ (*F* given by the active subgraph)
- Now, faces are exponentially harder
- Need 2^{Ω(n)} inequalities [Rothvoss 2013]

 $(\delta(S) = \text{edges crossing } S)$

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^{E}$:

- $x_e \ge 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v

 $(\delta(S) = \text{edges crossing } S)$

Girth does not make sense as progress measure and bipartite key property fails!

x(o(S)) = 1 for some odd sets S

- ► In bipartite case: $F = \{x \in PM : x_e = 0 \text{ for some edges } e\}$ (*F* given by the active subgraph)
- Now, faces are exponentially harder
- Need 2^{Ω(n)} inequalities [Rothvoss 2013]

PM: convex hull of all four matchings:

PM: convex hull of all four matchings:

PM: convex hull of all four matchings:

Main ingredients:

- Laminar family of tight constraints (at most 2n 1 constraints instead of exponential)
- Tight cut constraints decompose the instance
 - \Rightarrow divide-and-conquer approach

Every face *F* is given as:

 ${\it F}=\{x\in {\sf PM}: x_e=0 {
m for some edges } e, \ x(\delta(S))=1 {
m for some odd sets } S\}$

Every face *F* is given as:

 $F = \{x \in \mathsf{PM} : x_e = 0 \quad \text{for some edges } e, \\ x(\delta(S)) = 1 \quad \text{for some odd sets } S\}$

Great news: "some" can be chosen to be a laminar family!

face \sim (edge subset, laminar family)

face \sim (edge subset, laminar family)

exactly one edge crossing

once we fix a boundary edge...

exactly one edge crossing

once we fix a boundary edge...

exactly one edge crossing

once we fix a boundary edge...

- once we fix a boundary edge...
- ... the instance decomposes into two **independent** ones

- once we fix a boundary edge...
- ... the instance decomposes into two **independent** ones

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

then every boundary edge determines entire matching

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

then every boundary edge determines entire matching

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

then every boundary edge determines entire matching

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every boundary edge determines entire matching
- **•** so: at most n^2 perfect matchings

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every boundary edge determines entire matching
- **•** so: at most n^2 perfect matchings
- ▶ some $w \in W$ will give them different weights

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated

Now instance where both sides of the cut are isolated, one $w \in W'$ makes the whole instance isolated :)

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated

 n^2 choices n^2 choices

As before we isolate the whole instance in $O(\log n)$ phases

Now instance where both sides of the cut are isolated, one $w \in W'$ makes the whole instance isolated :)

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated

 n^2 choices n² choices

Carefully selected progress measure allows us to reduce laminar case to

- Removing cycles similar to bipartite case
- The chain case (divide-and-conquer)

Carefully selected progress measure allows us to reduce laminar case to

- Removing cycles similar to bipartite case
- The chain case (divide-and-conquer)

Theorem

S. and Tarnawski [2017]

General matching is in <code>QUASI- \mathcal{NC} </code>

with quasi-polynomial # processors

- \blacktriangleright go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]

- \blacktriangleright go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases (any efficiently solvable {0,1} polytope?)
 - ✓ matroid intersection: [Gurjar, Thierauf 2017]
 - ✓ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

- go down to \mathcal{NC}
 - even for bipartite graphs
 - 🗸 for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases (any efficiently solvable {0,1} polytope?)
 - ✓ matroid intersection: [Gurjar, Thierauf 2017]
 - ✓ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

- Given: graph with some edges red, number k. Is there a perfect matching with exactly k red edges?
 - \blacktriangleright randomized complexity: even RANDOMIZED \mathcal{NC}
 - deterministic complexity: is it in \mathcal{P} ?

- go down to \mathcal{NC}
 - even for bipartite graphs
 - 🗸 for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases (any efficiently solvable {0,1} polytope?)
 - ✓ matroid intersection: [Gurjar, Thierauf 2017]
 - ✓ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

- Given: graph with some edges red, number k. Is there a perfect matching with exactly k red edges?
 - \blacktriangleright randomized complexity: even RANDOMIZED \mathcal{NC}
 - deterministic complexity: is it in P?

Thank you!