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Is matching in NC?

Yes, for restricted graph classes:
I bipartite regular [Lev, Pippenger, Valiant 1981]
I bipartite convex [Dekel, Sahni 1984]
I incomparability graphs [Kozen, Vazirani, Vazirani 1985]
I bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski

1987]
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I strongly chordal [Dahlhaus, Karpinski 1998]
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I bipartite small genus [Mahajan, Varadarajan 2000]
I graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf

2006]
I planar (search version) [Anari, Vazirani 2017]
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Outline

1 Basic approach for derandomization

2 Bipartite case [Fenner, Gurjar, Thierauf 2015]

3 Difficulties of general case & our approach
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Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
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something deterministic?
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3 The number of weight functions are polynomial |W∗| ≤ poly(n)
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Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1
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I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3
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All matchings of G
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M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1

M2
M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2

M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization



Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization



GOAL: For any n-vertex graph G , show that there is

w1, . . . ,wlog n ∈ W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4}

so that |Mlog n| = 1

All matchings of G

M1
M2
M3

We need good progress measure



GOAL: For any n-vertex graph G , show that there is

w1, . . . ,wlog n ∈ W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4}

so that |Mlog n| = 1

All matchings of G

M1
M2
M3

We need good progress measure



Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3

C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles
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Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

If ≤ n4 cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles
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What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?
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Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye
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xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction
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Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

Bipartite key property:
Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph
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Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8

I Associate a signature (a, b, c, d) with each 8-cycle
I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the

seventh vertex
a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4
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General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x ∈ RE :
I xe ≥ 0 for every edge e
I x(δ(v)) = 1 for every vertex v
I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Girth does not make sense as progress measure
and bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}
(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]
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I Tight cut constraints decompose the instance
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Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights
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Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases
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n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated
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quite technical path

harder than

Carefully selected progress measure allows us to reduce laminar case to
I Removing cycles similar to bipartite case
I The chain case (divide-and-conquer)

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
hello

with quasi-polynomial #
processors
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Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases (any efficiently
solvable {0, 1} polytope?)
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem
Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!
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