The Matching Problem is in Quasi-NC

Ola Svensson and Jakub Tarnawski

L

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Institute for Advanced Study, 22.01.2018

Perfect matching problem

Given a graph, can we pair up
all vertices using edges?

Perfect matching problem

Given a graph, can we pair up

all vertices using edges?
very tough instance:
graph is non-bipartite!

o
>

Perfect matching problem

Given a graph, can we pair up

all vertices using edges?
very tough instance:
graph is non-bipartite!

Benchmark problem in computer science

Benchmark problem in computer science ‘

Algorithms:

> bipartite: Jacobi [XIX century, weighted!]
> general: Edmonds [1965]
» polynomial-time = efficient

> since then, tons of research
and still active

> many models of computation:
monotone circuits, extended formulations,
parallel, streaming/sublinear, ...

Benchmark problem in computer science ‘

Algorithms:

> bipartite: Jacobi [XIX century, weighted!]
> general: Edmonds [1965]
» polynomial-time = efficient

> since then, tons of research
and still active

> many models of computation:
monotone circuits, extended formulations,
parallel, streaming/sublinear, ...

Class N/C: problems that parallelize completely

poly n processors
N

poly log n time

Class N/C: problems that parallelize completely

poly n processors
N

poly log n time

Main open question: is matching in NC?

Class N/C: problems that parallelize completely

poly n processors
N

poly log n time

o

Main open question: is matching in NC?

Parallel complexity

o
“» Matching is in RANDOMIZED NC [Lovész 1979]:
has randomized algorithm that uses:

> polynomially many processors
> polylog time

Parallel complexity

o
“» Matching is in RANDOMIZED NC [Lovész 1979]:
has randomized algorithm that uses:
> polynomially many processors
> polylog time
o
“'a Search version in RANDOMIZED N C:

> [Karp, Upfal, Wigderson 1986]
> [Mulmuley, Vazirani, Vazirani 1987]

Parallel complexity

o
“» Matching is in RANDOMIZED NC [Lovész 1979]:
has randomized algorithm that uses:
> polynomially many processors
> polylog time
o
“a Search version in RANDOMIZED NC:

> [Karp, Upfal, Wigderson 1986]
> [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Parallel complexity

o
“» Matching is in RANDOMIZED NC [Lovész 1979]:
has randomized algorithm that uses:
> polynomially many processors
> polylog time
o
“a Search version in RANDOMIZED NC:

> [Karp, Upfal, Wigderson 1986]
> [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

ls matching in N'C?

Yes, for restricted graph classes:

> bipartite regular [Lev, Pippenger, Valiant 1981]

> bipartite convex [Dekel, Sahni 1984]

> incomparability graphs [Kozen, Vazirani, Vazirani 1985]
>

bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski
1987]

claw-free [Chrobak, Naor, Novick 1989]

K3 3-free (decision version) [Vazirani 1989]

planar bipartite [Miller, Naor 1989]

dense [Dahlhaus, Hajnal, Karpinski 1993]

strongly chordal [Dahlhaus, Karpinski 1998]
Py4-tidy [Parfenoff 1998]

bipartite small genus [Mahajan, Varadarajan 2000]

vV VY VY VY VvV VvV VY

graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf
2006]

> planar (search version) [Anari, Vazirani 2017]

Yes, for restricted graph classes:

(9]

bipartite regular [Lev, Pippenger, Valiant 1981]
bipartite convex [Dekel, Sahni 1984]
incomparability graphs [Kozen, Vazirani, Vazirani 1985]

vvyYyy

bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski
1987]

claw-free [Chrobak, Naor, Novick 1989]

K3 3-free (decision version) [Vazirani 1989]

planar bipartite [Miller, Naor 1989]

dense [Dahlhaus, Hajnal, Karpinski 1993]

strongly chordal [Dahlhaus, Karpinski 1998]
Py4-tidy [Parfenoff 1998]

bipartite small genus [Mahajan, Varadarajan 2000]

vV VY VY VY VvV VvV VY

graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf
2006]
> planar (search version) [Anari, Vazirani 2017]

but not known for:

> bipartite

Theorem Fenner, Gurjar and Thierauf [2015]
Bipartite matching is in QUASI-NC

(nPel1°8 M processors, poly log n time, deterministic)

Theorem Fenner, Gurjar and Thierauf [2015]
Bipartite matching is in QUASI-NC

(nPel1°8 M processors, poly log n time, deterministic)

i

> Approach fails for non-bipartite graphs

o— 0 [] []
|>.—.<| much harder than >.—.<
o—0 @

Theorem S. and Tarnawski [2017]
General matching is in QUASI-NC

(nPel1°8 " processors, poly log n time, deterministic)

Theorem S. and Tarnawski [2017]
General matching is in QUASI-NC

(nPel1°8 " processors, poly log n time, deterministic)

with quasi-polynomial
processors

© Basic approach for derandomization
® Bipartite case [Fenner, Gurjar, Thierauf 2015]

©® Difficulties of general case & our approach

Basic approach for derandomization

Basic approach for derandomization

(Derandomize one of the randomized algorithms)

Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm

1. For each edge e select weight w(e) € {1,2,....n?} at random

2. Calculate determinant of Tutte matrix where X. is replaced by 2%(¢)

Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm

1. For each edge e select weight w(e) € {1,2,....n?} at random

2. Calculate determinant of Tutte matrix where X, is replaced by 2%(¢)

Important that w is polynomially bounded

Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm

TN
1. For each edge e select weight w(e) € {1,2,...,n?} at random A

2. Calculate determinant of Tutte matrix where X, is replaced by 2%(¢)

Important that w is polynomially bounded

Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm

TN
1. For each edge e select weight w(e) € {1,2,...,n?} at random A

2. Calculate determinant of Tutte matrix where X, is replaced by 2(¢)

Important that w is polynomially bounded

Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm Q

e
1. For each edge e select weight w(e) € {1,2,...,n?} at random z\é‘“

2. Calculate determinant of Tutte matrix where X, is replaced by 2(¢)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

Algorith
gorithm e

1. For each edge e select weight w(e) € {1,2,...,n%} at random &

2. Calculate determinant of Tutte matrix where X, is replaced by 2(¢)

Important that w is polynomially bounded

[random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] > 0.9

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

Algorith
gorithm <

1. For each edge e select weight w(e) € {1,2,...,n%} at random &

2. Calculate determinant of Tutte matrix where X, is replaced by 2(¢)

Important that w is polynomially bounded

[random sampling (Step 1) something deterministic?}
Isolation Lemma:
Pr[w isolating] > 0.9 Construct isolating w in N'C7

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in A'C

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in A'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*
For w € W* and edge e, we have w(e) < poly(n)

- /

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*
For w € W* and edge e, we have w(e) < poly(n)

The number of weight functions are polynomial [WW*| < poly(n)

\

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*
For w € W* and edge e, we have w(e) < poly(n)

The number of weight functions are polynomial [WW*| < poly(n)

o

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

- Fetr———and-edge—wehave

The number of weight functions are polynomial [WW*| < poly(n)

o

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

- Fetr———and-edge—wehave

The number of weight functions are polynomial [WW*| < poly(n)

o

The oblivious algorithm simply checks all weight functions in parallel

Easy even with [W*| <1

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

/

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < poly(n)

\

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

/

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < poly(n)

\

The oblivious algorithm simply checks all weight functions in parallel

Easy, but best known bound on [WW*| is exponential in n

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < nPo(ogn)

The number of weight functions are polynomial [/*| < npelv(logn)

- /

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

4 N

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < nPo(logn)

The number of weight functions are polynomial [/*| < npelv(logn)

- /

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT'15]: W* exists for bipartite graphs |

Oblivious derandomization

Challenge: On input G, construct an isolating weight function in N'C

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < nPo(ogn)

The number of weight functions are polynomial [/*| < npelv(logn)

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT'15]: W* exists for bipartite graphs

Thm[ST'17]: W* exists for general graphs

Bipartite case

[Fenner, Gurjar, Thierauf 2015]

£ P

B

WALLSTREET

Bipartite case
[Fenner, Gurjar, Thierauf 2015]

“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary

| » “ spirit.”

WALL:STREET

T B

- Gordon Gecko

Bipartite case

[Fenner, Gurjar, Thierauf 2015]

i Tight. Greed
. Greed clarifies” cuts through and
gss€nce of the evolutionary

- Gordon Gecko

WALL:STREET

Bipartite case

[Fenner, Gurjar, Thierauf 2015]

Make progress step-by-step

Construct isolating function iteratively

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

All matchings of G

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

> Select wy € W and let M; be perfect matchings minimizing w;

All matchings of G

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

> Select wy € W and let M; be perfect matchings minimizing w;

> Select w, € VW and let M, C M; be PMs in M; minimizing w»

All matchings of G

My

Construct isolating function iteratively

Let W= {wy : wi(e;) =2" mod k for k =2,3,..., n*} be a polynomial
set of simple weight functions

» Select wy; € W and let M be perfect matchings minimizing w;
» Select wp, € W and let M, C M; be PMs in M7 minimizing w,
» Select wz € VW and let M3 C M, be PMs in M5 minimizing ws

All matchings of G

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

> Select wy € W and let M; be perfect matchings minimizing w;
> Select w, € VW and let M, C M; be PMs in M; minimizing w»
> Select ws € VW and let M3 C M, be PMs in Mj minimizing ws

How many wi, ..., wy, € W necessary for |M,| = 1?

Make progress step-by-step

Construct isolating function iteratively

Let W= {wj : wi(e;) = 2" mod k for k =2,3,...,n*} be a polynomial
set of simple weight functions

> Select wy € W and let M; be perfect matchings minimizing w;
> Select w, € VW and let M, C M; be PMs in M; minimizing w»
> Select ws € VW and let M3 C M, be PMs in Mj minimizing ws

How many wi, ..., wy, € W necessary for |M,| = 1?

Thm [FGT'15]:
For any G, there is wy, ..., Wog,(n) € VW so that [Mgg (| =1

Construct isolating function iteratively

Let W= {wy : wi(e;) =2" mod k for k =2,3,..., n*} be a polynomial
set of simple weight functions

» Select wy € W and let M be perfect matchings minimizing w;
» Select wp, € W and let M, C M; be PMs in M7 minimizing w,
» Select wz € VW and let M3 C M, be PMs in M5 minimizing ws

How many wy,...,wy € W ﬁecessary for |[M,| =17
Thm [FGT'15]:
For any G, there is wy, ..., Wog,(n) € VW so that [Mgg (| =1

¢

W* — {n9(|0g(n)) W1+n9(|0g(n)71) W2+' . +1 Wlog(n) : W17 ey Wlogz(n) - W}
gives oblivious quasi-polynomial derandomization

GOAL: For any n-vertex graph G, show that there is

Wi, ..., Wegn € W= {wi : wi(e;) =2 mod k for k =2,3,...,n*}

)

so that (Mg, =1

All matchings of G

My
Ma

& D

GOAL: For any n-vertex graph G, show that there is

Wi, ..., Wegn € W= {wi : wi(e;) =2 mod k for k =2,3,...,n*}

)

so that (Mg, =1

All matchings of G

My
Ma

& D

We need good progress measure

Minimum perfect matchings of the same weight

> Consider min-weight perfect matchings

M, M’ with w(M) = w(M') ° °
o []
[J []
[J []

Minimum perfect matchings of the same weight

> Consider min-weight perfect matchings
M, M’ with w(M) = w(M")

Minimum perfect matchings of the same weight

> Consider min-weight perfect matchings
M, M’ with w(M) = w(M")

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference °
= alternating cycles |
[]

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference ° °
= alternating cycles | c |

[] []

> in each cycle C,
w(MnC)=w(MnNC)
(otherwise could get lighter matching)

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference .i.

e e
= alternating cycles w(er) + w(es)

€1 | C |8 =
> in each cycle C, o—o w(er) + w(es)
w(MnC)=w(MnNC) €4

(otherwise could get lighter matching)

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference

= alternating cycles elT c Te3 wie) : w(es)
> in each cycle C, o—0 w(e) + w(es)

w(MnC)=w(MnNC) €4

(otherwise could get lighter matching) o—eo

> define discrepancy of a cycle: | |
dw(C) = w(er) — w(er) + w(es) — w(eq) ®

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference

[[
= alternating cycles e | c | e w(er) i w(es)
> in each cycle C, o—0 w(e) + w(es)
w(MnC)=w(MnNC) €
(otherwise could get lighter matching) ° °
> define discrepancy of a cycle: | |
dw(C) = w(er) — w(e2) + w(es) — w(es) o ®

> dy(C) =0

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference °
= alternating cycles e | c
[]

> in each cycle C,
w(MnNC)=w(MnC) €4
(otherwise could get lighter matching)

> define discrepancy of a cycle: | |
dw(C) = w(er) — w(er) + w(es) — w(eq) ®

> dy(C) =0

If (VC) dw(C) # 0, then w isolating! |

Minimum perfect matchings of the same weight

» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")

> symmetric difference .i.
= alternating cycles

> in each cycle C,
w(MnNC)=w(MnC) €4
(otherwise could get lighter matching)

o0
> define discrepancy of a cycle: | |
dw(C) = w(er) — w(e2) + w(es) — w(es) o ®

v

d(C) =0

If (VC) dw(C) # 0, then w isolating!

Progress: assign # 0 discrepancy to “many” cycles

Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

If < n* cycles in the graph: done!

Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

If < n* cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Select wy € W so that all 4-cycles have # 0 discrepancy

All matchings of G

° °
G

° °
G

° °

Select wy € W so that all 4-cycles have # 0 discrepancy

All matchings of G

0
[] [J
1 G 1
[) [J
3
1 G 1
[) [J

Select wy € W so that all 4-cycles have # 0 discrepancy

0
[]
1 G
[]
3
1 G
[J

All matchings of G

My = {M, M’}
° °
° °
° °

Select wy € W so that all 4-cycles have # 0 discrepancy

0
[]

1 G
[]

3

1 G
[J

All matchings of G

My = {M, M’}
° °
))
° °

Select wy € W so that all 4-cycles have # 0 discrepancy

All matchings of G

. My = {M, M}
[] [J o o
1 G 1
[] ([] ([] [J
3
1 G 1
[J [J [J [J

Select wy € W so that all 4-cycles have # 0 discrepancy

0
[]

1 G
[]

3

1 G
[J

All matchings of G

My = {M, M’}
° °
° °
))

Select wy € W so that all 4-cycles have # 0 discrepancy

All matchings of G

0 My = {M, M/} G = (V:UME,Ml M)
[] [J [J [J [] (]
1 G 1
[[J [J [J [] ([
3
1 G 1
[J [J [J [J [J [J
0

What can we say about the active subgraph G; that contains those edges
that are in a min-weight perfect matching?

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

[[
G

® ®
G

[J [

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

0
[) [)

1 G 1
[J o
3
1 G 1
[) [)

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

0

° °
dW(Cl) =1=+0

@ |t de)=1+0
° °

3
1 G 1
° °

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

0
° °
dW(Cl) =1=#0
@ |t de) =120
° > ® :>
1 G 1
))

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

0
° ° ° °
dW(Cl) =1=+0
@ |t de) =120
[> ® :> [[
1 G 1
)) ())

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

NV

PM . perfect matching polytope (convex hull of matchings)

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

~

NV

PM . perfect matching polytope (convex hull of matchings)

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

E, %

NV

PM : perfect matching polytope (convex hull of matchings)

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

Bipartite PM
w
\ x(0(v)) =1 for every v € V

\(xe >0 for every e € E

F

PM : perfect matching polytope (convex hull of matchings)

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

Bipartite PM
w
\ x(0(v)) =1 for every v € V
\(xe >0 for every e € E
F is simply a subgraph

PM : perfect matching polytope (convex hull of matchings)

F

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

Bipartite PM
w
\ x(0(v)) =1 for every v € V

\(xe >0 for every e € E
F is simply a subgraph

F

PM : perfect matching polytope (convex hull of matchings)

> What can we say about the weight of points in F?

Bipartite key property: Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):

Bipartite PM
w
\ x(0(v)) =1 for every v € V
\(xe >0 for every e € E
F is simply a subgraph

PM : perfect matching polytope (convex hull of matchings)

F

> What can we say about the weight of points in F?

Every x, y € F have same weight: > _w(e)x. = > _w(e)ye

F is the convex hull of M = every x,y € F have same weight

N

PM . perfect matching olytope (convex hull of matchings)

Bipartite PM

x(8(v)) =1 for every v € V
Xe > 0 for every e € E

F is simply a subgraph

F is the convex hull of M = every x,y € F have same weight

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

PM . perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

> Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

w(green edges) # w(red edges)

F is the convex hull of M = every x,y € F have same weight

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

PM . perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

> Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

> Let x = \Tlxu > we i be the mean of the face F

w(green edges) # w(red edges)

F is the convex hull of M = every x,y € F have same weight

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

PM . perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

> Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

> Let x = \Tlxu > we i be the mean of the face F

w(green edges) # w(red edges)

> Then Xe > 0 for every e © C (since support of x equals U e aq M)

F is the convex hull of M = every x,y € F have same weight

PM :

v

v

v

v

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

Let x = \Tlxu > we i be the mean of the face F

w(green edges) # w(red edges)

Then Xe > 0 for every e © C (since support of x equals U e aq M)

Increasing red edges while decreasing green maintain degrees

F is the convex hull of M = every x,y € F have same weight

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

PM . perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

Let x = \Tlxu > we i be the mean of the face F

v

w(green edges) # w(red edges)

v

v

Then Xe > 0 for every e © C (since support of x equals U e aq M)

v

Increasing red edges while decreasing green maintain degrees

A\

So we obtain a new point y € F of different weight; contradiction

The main ingredients

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

Bipartite key property:

Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph

Select wy € W so that all 4-cycles in G have # 0 discrepancy

A graph has at most n* cycles of length 4

All matchings of G

Select wy € W so that all 4-cycles in G have # 0 discrepancy

> Bipartite key property:Gi = (V, Uy, M) has no cycles of length < 4

All matchings of G

Select wy € W so that all 4-cycles in G have # 0 discrepancy

> Bipartite key property:Gi = (V,Uperr, M) has no cycles of length < 4

Select w, € W so that all < 8-cycles in G; have # 0 discrepancy

A graph with no < 4-cycles has at most n* cycles of length < 8

All matchings of G

My

Select wy € W so that all 4-cycles in G have # 0 discrepancy

> Bipartite key property:Gi = (V, Uy, M) has no cycles of length < 4

Select wy € W so that all < 8-cycles in G; have # 0 discrepancy

» Bipartite key property: G, = (V, Uy, M) has no cycles of length < 8

All matchings of G

My

Select wy € W so that all 4-cycles in G have # 0 discrepancy

> Bipartite key property:Gi = (V,Uperr, M) has no cycles of length < 4

Select w, € W so that all < 8-cycles in G; have # 0 discrepancy

» Bipartite key property:G, = (V,Upne a1, M) has no cycles of length < 8

Select w3 € W so that all < 16-cycles in G, have # 0 discrepancy

A graph with no < 8-cycles has at most n* cycles of length < 16

All matchings of G

My

[

Select wy € W so that all 4-cycles in G have # 0 discrepancy

> Bipartite key property:Gi = (V, Uy, M) has no cycles of length < 4

Select wy € W so that all < 8-cycles in G; have # 0 discrepancy

» Bipartite key property: G, = (V, Uy, M) has no cycles of length < 8

Select wz € W so that all < 16-cycles in G, have # 0 discrepancy

> Bipartite key property:Gs = (V, Upye i, M) has no cycles of length < 16

All matchings of G

Select wy € W so that all 4-cycles in G have # 0 discrepancy

» Bipartite key property:Gi = (V, Uy, M) has no cycles of length < 4

Select wy € W so that all < 8-cycles in G; have # 0 discrepancy

» Bipartite key property: G, = (V, Uy, M) has no cycles of length < 8

Select ws € W so that all < 16-cycles in G, have # 0 discrepancy

> Bipartite key property:Gs = (V,Upear, M) has no cycles of length < 16

Giogn = (V, UMGM‘WM) have no cycles so Mo »| =1 as required

All matchings of G

My

G

Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

» Associate a signature (a, b, ¢, d) with each 8-cycle

> ais the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

» Associate a signature (a, b, ¢, d) with each 8-cycle

> ais the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

> Two cycles cannot have the same signature as that would imply a
4-cycle:

Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

» Associate a signature (a, b, ¢, d) with each 8-cycle

> ais the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

> Two cycles cannot have the same signature as that would imply a
4-cycle:

Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

» Associate a signature (a, b, ¢, d) with each 8-cycle

> ais the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

> Two cycles cannot have the same signature as that would imply a
4-cycle:

» So # 8-cycles is at most # signatures which is at most n*

Polyhedral perspective

isolating in stages

decreasing sequence of faces

Polyhedral perspective

isolating in stages

Wi
\ decreasing sequence of faces

%

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

A

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Fa

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Wzl
w3
Fa

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

(3]
F 3 w3
P
Fa

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

(3]
F 3 w3
P
Fa

w = <W17 W, W3>

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

(3]
F 3 w3
P
Fa

w = <W17 W, W3>

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

(3]
F 3 w3
P
Fa

w = <W17 W, W3>

w is isolating

Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Fast decrease due to bipartite matching polytope:
(2]
A W21
Fa

> every face is a subgraph

> Key property: girth doubles in every step

w = <W17 W, W3>

F3 w3
P

Fa

w is isolating

Difficulties of general case & our approach

Difficulties of general case & our approach

Bipartite key pr +Once we assign iscrepancy,
it will disappear from ive subgr

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x € RE:
> x>0 for every edge e
» x(6(v)) =1 for every vertex v (6(S) = edges crossing 5)

\i'x(é(s)) > 1 for every odd set S of vertices

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x € RE:
> x>0 for every edge e
» x(6(v)) =1 for every vertex v (6(S) = edges crossing 5)

\i'x(é(S)) > 1 for every odd set S of vertices

So every face F is given as:

F={xePM:x.=0 for some edges e,
x(8(S)) =1 for some odd sets S}

F

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x € RE:
> x>0 for every edge e
» x(6(v)) =1 for every vertex v (6(S) = edges crossing 5)

\i'x(é(s)) > 1 for every odd set S of vertices

So every face F is given as:
F={xePM:x.=0 for some edges e,
x(8(S)) =1 for some odd sets S}

> In bipartite case:
F={x€ePM: x. =0 for some edges e}
(F given by the active subgraph)

F

> Now, faces are exponentially harder

> Need 29(") inequalities [Rothvoss 2013]

Edmonds [1965] Perfect matching polytope description on x € RE:

> x>0 for every edge e

» x(d(v)) = 1 for every vertex v (9(5) = edges crossing 5)

"

Girth does not make sense as progress measure
and bipartite key property fails!

X(0(5)JJ) — L TOT SOIMEe 0au Sets S

> In bipartite case: F
F={x€ePM: x. =0 for some edges e}

(F given by the active subgraph)
» Now, faces are exponentially harder \(
PM

> Need 2°(") inequalities [Rothvoss 2013]

How bipartite key property fails

PM: convex hull of all four matchings:

S le—el S
([) @ e @ (]
./ \. [J o O

N

y c

PM: convex hull of all four matchings:

S el N
([) @ e @ (]
./ \. [J o O

—_

™N

A\

0 ®) 0
0 0
/ C \ dy(C)=2#0
[) ®
1
PM: convex hull of all four matchings:
o o o O @ O (]
° o, | o——o | Ne o’ ° °
o ® O ® O o o]

—_

N

\

0 (]) 0
0 0
/ C \ dy(C)=2#0
[) ®
1
PM: convex hull of all four matchings:
o o o O @ O (]
P o, | o—e | e o’ ° °
o ® O ® O o o]
F: convex hull of matchings of weight 1:
[] o o o o @
N, 7/
P o, | o—e | ())

—_

\

N
Z |

(@)
/
Q.
b
o
Il
N
H
o

[a—y

PM: convex hull of all four matchings:

o o o O @ O (]
P o, | o—e | e o’ ° °
o ® O ® O o o]
F: convex hull of matchings of weight 1:
o o o o @
P o, | o—e | e g
o ® O ® o

F ¢ PM but still has all edges... &

—_

\

) 0 0
C \ dy(C) =2 %0
®
1
PM: convex hull of all four matchings:
o o o O @ O (]
P o, | o—e | e o’ ° °
o ® O ® O o o]
F: convex hull of matchings of weight 1:
[] o o o o @
P o, | o—e | e g
o ® O ® o

F ¢ PM but still has all edges... &
F={xe PM:x(§5)) =1}

—_

A\

)) 0 0
/ C \ dy(C)=2#0
o
1
PM: convex hull of all four matchings:
e o o O @ O [J

° o, | o——o | Ne o’ ° °
() ® © o O e © [J

F: convex hull of matchings of weight 1:
(] e o o O @

P o, | o—o e "
() ® © o O [J

F ¢ PM but still has all edges... &
F={xe PM:x(§5)) =1}

quite technical path

quite technical path

Main ingredients:

» Laminar family of tight constraints (at most 2n — 1 constraints instead of

exponential)
» Tight cut constraints decompose the instance

= divide-and-conquer approach

Every face F is given as:
F={xePM:x.=0 for some edges e,
x(6(S)) =1 for some odd sets S}

Every face F is given as:

F={xePM:x.=0 for some edges e,
x(0(S)) =1 for some odd sets S}

Great news: “some” can be chosen to be a laminar family!

Laminarity

face ~ (edge subset, laminar family)

face ~ (edge subset, laminar family)

Tight odd cuts decomposes instance

exactly one edge crossing

| -

> once we fix a boundary edge...

Tight odd cuts decomposes instance

exactly one edge crossing

|

> once we fix a boundary edge...

Tight odd cuts decomposes instance

exactly one edge crossing
X //

> once we fix a boundary edge...

Tight odd cuts decomposes instance

)

> once we fix a boundary edge...

> ... the instance decomposes into two independent ones

Tight odd cuts decomposes instance

)

> once we fix a boundary edge...

> ... the instance decomposes into two independent ones

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

7

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

~/

> then every boundary edge determines entire matching

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—/

> then every boundary edge determines entire matching

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—7

> then every boundary edge determines entire matching

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

7

> then every boundary edge determines entire matching

» so: at most n’ perfect matchings

Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—/

> then every boundary edge determines entire matching
» so: at most n’ perfect matchings

> some w € W will give them different weights

Divide & conquer: chain case

Divide & conquer: chain case

Divide & conquer: chain case

Divide & conquer: chain case

Divide & conquer: chain case

n? choices

n? choices

Instance where both sides of the
cut are isolated,

one w €)V makes the whole
subinstance isolated

Divide & conquer: chain case

n? choices
Now instance where both sides
of the cut are isolated,

one w € W makes the whole
subinstance isolated

n? choices

Instance where both sides of the
cut are isolated,

one w €)V makes the whole
subinstance isolated

Divide & conquer: chain case

Now instance where both sides
of the cut are isolated,

one w € W' makes the whole
instance isolated :)

n? choices

Now instance where both sides
of the cut are isolated,

one w € W' makes the whole
subinstance isolated

n? choices

Instance where both sides of the
cut are isolated,

one w € W makes the whole
subinstance isolated

Divide & conquer: chain case

As before we isolate the whole instance in O(log n) phases

Now instance where both sides
of the cut are isolated,

one w € W makes the whole
instance isolated :)

n? choices

Now instance where both sides
of the cut are isolated,

one w € W' makes the whole
subinstance isolated

n? choices

Instance where both sides of the
cut are isolated,

one w € W makes the whole
subinstance isolated

quite technical path

’\/\/\/\M/\)
<—A <
! o—s! lharder than P

quite technical path

<—A <
! o l harder than P

Carefully selected progress measure allows us to reduce laminar case to
> Removing cycles similar to bipartite case

> The chain case (divide-and-conquer)

quite technical path

<—A <
! o l harder than P

Carefully selected progress measure allows us to reduce laminar case to
> Removing cycles similar to bipartite case

> The chain case (divide-and-conquer)
Theorem S. and Tarnawski [2017]

General matching is in QUASI-NC

with quasi-polynomial #
processors

Future work

» go down to NVC

» even for bipartite graphs
v for planar graphs: [Anari, Vazirani 2017]

Future work

» go down to NVC

» even for bipartite graphs
v for planar graphs: [Anari, Vazirani 2017]

> derandomize Isolation Lemma in other cases (any efficiently
solvable {0,1} polytope?)
v/ matroid intersection: [Gurjar, Thierauf 2017]
v totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Future work

» go down to NVC

» even for bipartite graphs
v for planar graphs: [Anari, Vazirani 2017]

> derandomize Isolation Lemma in other cases (any efficiently
solvable {0,1} polytope?)
v/ matroid intersection: [Gurjar, Thierauf 2017]
v totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

® Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

() (J . .
» randomized complexity: even RANDOMIZED NC

o (] » deterministic complexity: is it in P?

Future work

» go down to NVC

» even for bipartite graphs
v for planar graphs: [Anari, Vazirani 2017]

> derandomize Isolation Lemma in other cases (any efficiently
solvable {0,1} polytope?)
v/ matroid intersection: [Gurjar, Thierauf 2017]
v totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

P ® Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?
() @
» randomized complexity: even RANDOMIZED NC
o (] » deterministic complexity: is it in P?

Thank you!

