
The Matching Problem is in Quasi-NC

Ola Svensson and Jakub Tarnawski

Institute for Advanced Study, 22.01.2018

Perfect matching problem

Given a graph, can we pair up
all vertices using edges?

very tough instance:
graph is non-bipartite!

Perfect matching problem

Given a graph, can we pair up
all vertices using edges?

very tough instance:
graph is non-bipartite!

Perfect matching problem

Given a graph, can we pair up
all vertices using edges?

very tough instance:
graph is non-bipartite!

Perfect matching problem

Benchmark problem in computer science

Algorithms:
I bipartite: Jacobi [XIX century, weighted!]

I general: Edmonds [1965]
I polynomial-time = efficient

I since then, tons of research
and still active

I many models of computation:
monotone circuits, extended formulations,
parallel, streaming/sublinear, ...

Perfect matching problem

Benchmark problem in computer science

Algorithms:
I bipartite: Jacobi [XIX century, weighted!]

I general: Edmonds [1965]
I polynomial-time = efficient

I since then, tons of research
and still active

I many models of computation:
monotone circuits, extended formulations,
parallel, streaming/sublinear, ...

Perfect matching problem

Benchmark problem in computer science

Algorithms:
I bipartite: Jacobi [XIX century, weighted!]

I general: Edmonds [1965]
I polynomial-time = efficient

I since then, tons of research
and still active

I many models of computation:
monotone circuits, extended formulations,
parallel, streaming/sublinear, ...

Parallel complexity
Class NC: problems that parallelize completely

poly n processors

poly log n time

It’s in Randomized NC

Main open question: is matching in NC?

Parallel complexity
Class NC: problems that parallelize completely

poly n processors

poly log n time

It’s in Randomized NC

Main open question: is matching in NC?

Parallel complexity
Class NC: problems that parallelize completely

poly n processors

poly log n time

It’s in Randomized NC

Main open question: is matching in NC?

Parallel complexity

Matching is in Randomized NC [Lovász 1979]:
has randomized algorithm that uses:

I polynomially many processors
I polylog time

Search version in Randomized NC:
I [Karp, Upfal, Wigderson 1986]
I [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

Parallel complexity

Matching is in Randomized NC [Lovász 1979]:
has randomized algorithm that uses:

I polynomially many processors
I polylog time

Search version in Randomized NC:
I [Karp, Upfal, Wigderson 1986]
I [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

Parallel complexity

Matching is in Randomized NC [Lovász 1979]:
has randomized algorithm that uses:

I polynomially many processors
I polylog time

Search version in Randomized NC:
I [Karp, Upfal, Wigderson 1986]
I [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

Parallel complexity

Matching is in Randomized NC [Lovász 1979]:
has randomized algorithm that uses:

I polynomially many processors
I polylog time

Search version in Randomized NC:
I [Karp, Upfal, Wigderson 1986]
I [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?

Is matching in NC?

Yes, for restricted graph classes:
I bipartite regular [Lev, Pippenger, Valiant 1981]
I bipartite convex [Dekel, Sahni 1984]
I incomparability graphs [Kozen, Vazirani, Vazirani 1985]
I bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski

1987]
I claw-free [Chrobak, Naor, Novick 1989]
I K3,3-free (decision version) [Vazirani 1989]
I planar bipartite [Miller, Naor 1989]
I dense [Dahlhaus, Hajnal, Karpinski 1993]
I strongly chordal [Dahlhaus, Karpinski 1998]
I P4-tidy [Parfenoff 1998]
I bipartite small genus [Mahajan, Varadarajan 2000]
I graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf

2006]
I planar (search version) [Anari, Vazirani 2017]

but not known for:
I bipartite

Is matching in NC?
Yes, for restricted graph classes:
I bipartite regular [Lev, Pippenger, Valiant 1981]
I bipartite convex [Dekel, Sahni 1984]
I incomparability graphs [Kozen, Vazirani, Vazirani 1985]
I bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski

1987]
I claw-free [Chrobak, Naor, Novick 1989]
I K3,3-free (decision version) [Vazirani 1989]
I planar bipartite [Miller, Naor 1989]
I dense [Dahlhaus, Hajnal, Karpinski 1993]
I strongly chordal [Dahlhaus, Karpinski 1998]
I P4-tidy [Parfenoff 1998]
I bipartite small genus [Mahajan, Varadarajan 2000]
I graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf

2006]
I planar (search version) [Anari, Vazirani 2017]

but not known for:
I bipartite

Is matching in NC?
Yes, for restricted graph classes:
I bipartite regular [Lev, Pippenger, Valiant 1981]
I bipartite convex [Dekel, Sahni 1984]
I incomparability graphs [Kozen, Vazirani, Vazirani 1985]
I bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski

1987]
I claw-free [Chrobak, Naor, Novick 1989]
I K3,3-free (decision version) [Vazirani 1989]
I planar bipartite [Miller, Naor 1989]
I dense [Dahlhaus, Hajnal, Karpinski 1993]
I strongly chordal [Dahlhaus, Karpinski 1998]
I P4-tidy [Parfenoff 1998]
I bipartite small genus [Mahajan, Varadarajan 2000]
I graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf

2006]
I planar (search version) [Anari, Vazirani 2017]

but not known for:
I bipartite

Theorem Fenner, Gurjar and Thierauf [2015]

Bipartite matching is in quasi-NC
(npoly log n processors, poly log n time, deterministic)

I Approach fails for non-bipartite graphs

much harder than

Theorem Fenner, Gurjar and Thierauf [2015]

Bipartite matching is in quasi-NC
(npoly log n processors, poly log n time, deterministic)

I Approach fails for non-bipartite graphs

much harder than

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
(npoly log n processors, poly log n time, deterministic)

with quasi-polynomial
processors

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
(npoly log n processors, poly log n time, deterministic)

with quasi-polynomial
processors

Outline

1 Basic approach for derandomization

2 Bipartite case [Fenner, Gurjar, Thierauf 2015]

3 Difficulties of general case & our approach

Basic approach for derandomization

(Derandomize one of the randomized algorithms)

Basic approach for derandomization

(Derandomize one of the randomized algorithms)

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight w(e) ∈ {1, 2, . . . , n2} at random

2. Calculate determinant of Tutte matrix where Xe is replaced by 2w(e)

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is
isolating: unique min-weight matching

random sampling (Step 1)

Isolation Lemma:
Pr[w isolating] ≥ 0.9

something deterministic?

Construct isolating w in NC?

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)

3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Easy even with |W∗| ≤ 1

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ poly(n)
3 The number of weight functions are polynomial |W∗| ≤ poly(n)

The oblivious algorithm simply checks all weight functions in parallel

Easy, but best known bound on |W∗| is exponential in n

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ npoly(log n)

3 The number of weight functions are polynomial |W∗| ≤ npoly(log n)

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT’15]: W∗ exists for bipartite graphs

Thm[ST’17]: W∗ exists for general graphs

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ npoly(log n)

3 The number of weight functions are polynomial |W∗| ≤ npoly(log n)

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT’15]: W∗ exists for bipartite graphs

Thm[ST’17]: W∗ exists for general graphs

Oblivious derandomization
Challenge: On input G , construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W∗ of weight
functions that can be computed in NC such that

1 For any n-vertex graph, there is an isolating w ∈ W∗

2 For w ∈ W∗ and edge e, we have w(e) ≤ npoly(log n)

3 The number of weight functions are polynomial |W∗| ≤ npoly(log n)

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT’15]: W∗ exists for bipartite graphs

Thm[ST’17]: W∗ exists for general graphs

“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary
spirit.”
hello - Gordon Gecko

Bipartite case
[Fenner, Gurjar, Thierauf 2015]

“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary
spirit.”
hello - Gordon Gecko

Bipartite case
[Fenner, Gurjar, Thierauf 2015]

“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary
spirit.”
hello - Gordon Gecko

Bipartite case
[Fenner, Gurjar, Thierauf 2015]

“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary
spirit.”
hello - Gordon Gecko

Bipartite case
[Fenner, Gurjar, Thierauf 2015]

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions

I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1

M2
M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2

M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...

All matchings of G

M1
M2
M3

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization

Make progress step-by-step
Construct isolating function iteratively

Let W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4} be a polynomial
set of simple weight functions
I Select w1 ∈ W and letM1 be perfect matchings minimizing w1

I Select w2 ∈ W and letM2 ⊆M1 be PMs inM1 minimizing w2

I Select w3 ∈ W and letM3 ⊆M2 be PMs inM2 minimizing w3

...
How many w1, . . . ,w` ∈ W necessary for |M`| = 1?

Thm [FGT’15]:
For any G , there is w1, . . . ,wlog2(n) ∈ W so that |Mlog2(n)| = 1

⇒

W∗ = {n9(log(n))w1+n9(log(n)−1)w2+· · ·+1·wlog(n) : w1, . . . ,wlog2(n) ∈ W}
gives oblivious quasi-polynomial derandomization

GOAL: For any n-vertex graph G , show that there is

w1, . . . ,wlog n ∈ W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4}

so that |Mlog n| = 1

All matchings of G

M1
M2
M3

We need good progress measure

GOAL: For any n-vertex graph G , show that there is

w1, . . . ,wlog n ∈ W= {wk : wk(ei) = 2i mod k for k = 2, 3, . . . , n4}

so that |Mlog n| = 1

All matchings of G

M1
M2
M3

We need good progress measure

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3

C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3

C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3

C

w(e1) + w(e3)
=

w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Minimum perfect matchings of the same weight

I Consider min-weight perfect matchings
M, M ′ with w(M) = w(M ′)

I symmetric difference
= alternating cycles

I in each cycle C ,
w(M ∩ C) = w(M ′ ∩ C)
(otherwise could get lighter matching)

I define discrepancy of a cycle:
dw (C) := w(e1)− w(e2) + w(e3)− w(e4)

I dw (C) = 0

e4

e2

e1 e3C
w(e1) + w(e3)

=
w(e2) + w(e4)

If (∀C) dw (C) , 0, then w isolating!

Progress: assign , 0 discrepancy to “many” cycles

Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

If ≤ n4 cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

If ≤ n4 cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

If ≤ n4 cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

If ≤ n4 cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Select w1 ∈ W so that all 4-cycles have , 0 discrepancy
All matchings of G

M1

0

3

0

1 1

1 1

M1 = {M,M′}

C1

C2

G1 = (V ,∪M∈M1M)

What can we say about the active subgraph G1 that contains those edges
that are in a min-weight perfect matching?

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

0

3

0

1 1

1 1 dw (C1) = 1 , 0
dw (C2) = 1 , 0

C1

C2

=⇒

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

0

3

0

1 1

1 1

dw (C1) = 1 , 0
dw (C2) = 1 , 0

C1

C2

=⇒

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

0

3

0

1 1

1 1 dw (C1) = 1 , 0
dw (C2) = 1 , 0

C1

C2

=⇒

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

0

3

0

1 1

1 1 dw (C1) = 1 , 0
dw (C2) = 1 , 0

C1

C2

=⇒

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

0

3

0

1 1

1 1 dw (C1) = 1 , 0
dw (C2) = 1 , 0

C1

C2

=⇒

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

PM : perfect matching polytope (convex hull of matchings)

w

Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

F

PM : perfect matching polytope (convex hull of matchings)

w

Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

F

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

F

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

F x

y

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Proof: LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching
polytope):

F x

y

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight:
∑

e w(e)xe =
∑

e w(e)ye

F

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction

F

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction

F x

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction

F x

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction

F x

y

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees

I So we obtain a new point y ∈ F of different weight; contradiction

F x

y

PM : perfect matching polytope (convex hull of matchings)

w
Bipartite PM

x(δ(v)) = 1 for every v ∈ V
xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph
(edge set ∪M∈MM)

has cycle C of , 0 discepancy

C w(green edges) , w(red edges)

I Let x = 1
|M|

∑
M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ∪M∈MM)

I Increasing red edges while decreasing green maintain degrees
I So we obtain a new point y ∈ F of different weight; contradiction

The main ingredients

Old Lemma:
For any collection of n4 cycles, some w ∈ W
assigns all of them , 0 discrepancy

Bipartite key property:
Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy

I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

A graph has at most n4 cycles of length 4

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy

I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

A graph with no ≤ 4-cycles has at most n4 cycles of length ≤ 8

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy

I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

A graph with no ≤ 8-cycles has at most n4 cycles of length ≤ 16

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

All matchings of G

M1

M2

M3

Select w1 ∈ W so that all 4-cycles in G have , 0 discrepancy
I Bipartite key property:G1 = (V ,∪M∈M1M) has no cycles of length ≤ 4

Select w2 ∈ W so that all ≤ 8-cycles in G1 have , 0 discrepancy
I Bipartite key property:G2 = (V ,∪M∈M2M) has no cycles of length ≤ 8

Select w3 ∈ W so that all ≤ 16-cycles in G2 have , 0 discrepancy
I Bipartite key property:G3 = (V ,∪M∈M3M) has no cycles of length ≤ 16

...

Glog n = (V ,∪M∈Mlog n M) have no cycles so |Mlog n| = 1 as required

All matchings of G

M1

M2

M3

Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8

I Associate a signature (a, b, c, d) with each 8-cycle
I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the

seventh vertex
a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4

Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8
I Associate a signature (a, b, c, d) with each 8-cycle

I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4

Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8
I Associate a signature (a, b, c, d) with each 8-cycle

I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4

Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8
I Associate a signature (a, b, c, d) with each 8-cycle

I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4

Final argument
A graph with no ≤ 4-cycles has at most n4 cycles of length 8
I Associate a signature (a, b, c, d) with each 8-cycle

I a is the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

a b

cd

I Two cycles cannot have the same signature as that would imply a
4-cycle:

a b

cd

I So # 8-cycles is at most # signatures which is at most n4

Some perspective

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1
w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1

w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3

F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1
w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1
w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces

Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1
w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Polyhedral perspective

1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages
=

decreasing sequence of faces
Fast decrease due to bipartite matching polytope:

I every face is a subgraph
I Key property: girth doubles in every step

F1

F2

F3

w = w1
w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating

Difficulties of general case & our approach

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

Difficulties of general case & our approach

Bipartite key property: Once we assign a cycle , 0 discrepancy,
it will disappear from the active subgraph

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x ∈ RE :
I xe ≥ 0 for every edge e
I x(δ(v)) = 1 for every vertex v
I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Girth does not make sense as progress measure
and bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}
(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]

F

PM

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x ∈ RE :
I xe ≥ 0 for every edge e
I x(δ(v)) = 1 for every vertex v
I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Girth does not make sense as progress measure
and bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}
(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]

F

PM

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x ∈ RE :
I xe ≥ 0 for every edge e
I x(δ(v)) = 1 for every vertex v
I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Girth does not make sense as progress measure
and bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}
(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]

F

PM

General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on x ∈ RE :
I xe ≥ 0 for every edge e
I x(δ(v)) = 1 for every vertex v
I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Girth does not make sense as progress measure
and bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}
(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]

F

PM

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0

C
want:

dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...

F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...

F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

How bipartite key property fails

S

1

1

1

0
00 0

0 0
C

want:
dw (C) , 0

dw (C) = 2 , 0

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

F (PM but still has all edges...

F (PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}

quite technical path

Main ingredients:
I Laminar family of tight constraints (at most 2n− 1 constraints instead of

exponential)

I Tight cut constraints decompose the instance

⇒ divide-and-conquer approach

quite technical path

Main ingredients:
I Laminar family of tight constraints (at most 2n− 1 constraints instead of

exponential)

I Tight cut constraints decompose the instance

⇒ divide-and-conquer approach

quite technical path

Main ingredients:
I Laminar family of tight constraints (at most 2n− 1 constraints instead of

exponential)

I Tight cut constraints decompose the instance

⇒ divide-and-conquer approach

Laminarity
Every face F is given as:

F = {x ∈ PM : xe = 0 for some edges e,
x(δ(S)) = 1 for some odd sets S}

Great news: “some” can be chosen to be a laminar family!

Laminarity
Every face F is given as:

F = {x ∈ PM : xe = 0 for some edges e,
x(δ(S)) = 1 for some odd sets S}

Great news: “some” can be chosen to be a laminar family!

Laminarity

F2

F1

face ∼ (edge subset, laminar family)

Laminarity

F2

F1

face ∼ (edge subset, laminar family)

Tight odd cuts decomposes instance

exactly one edge crossing

I once we fix a boundary edge...

I ... the instance decomposes into two independent ones

Tight odd cuts decomposes instance

exactly one edge crossing

I once we fix a boundary edge...

I ... the instance decomposes into two independent ones

Tight odd cuts decomposes instance

exactly one edge crossing

I once we fix a boundary edge...

I ... the instance decomposes into two independent ones

Tight odd cuts decomposes instance

exactly one edge crossing

I once we fix a boundary edge...
I ... the instance decomposes into two independent ones

Tight odd cuts decomposes instance

exactly one edge crossing

I once we fix a boundary edge...
I ... the instance decomposes into two independent ones

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching
I so: at most n2 perfect matchings

I some w ∈ W will give them different weights

Divide & conquer
Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

I then every boundary edge determines entire matching
I so: at most n2 perfect matchings
I some w ∈ W will give them different weights

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before, we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case
As before we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Now instance where both sides
of the cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Divide & conquer: chain case

As before we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Now instance where both sides
of the cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Now instance where both sides
of the cut are isolated,
one w ∈ W ′ makes the whole
instance isolated :)

Divide & conquer: chain case
As before we isolate the whole instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where both sides of the
cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Now instance where both sides
of the cut are isolated,
one w ∈ W ′ makes the whole
subinstance isolated

Now instance where both sides
of the cut are isolated,
one w ∈ W ′ makes the whole
instance isolated :)

quite technical path

harder than

Carefully selected progress measure allows us to reduce laminar case to
I Removing cycles similar to bipartite case
I The chain case (divide-and-conquer)

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
hello

with quasi-polynomial #
processors

quite technical path

harder than

Carefully selected progress measure allows us to reduce laminar case to
I Removing cycles similar to bipartite case
I The chain case (divide-and-conquer)

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
hello

with quasi-polynomial #
processors

quite technical path

harder than

Carefully selected progress measure allows us to reduce laminar case to
I Removing cycles similar to bipartite case
I The chain case (divide-and-conquer)

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC
hello

with quasi-polynomial #
processors

Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases (any efficiently
solvable {0, 1} polytope?)
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem
Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!

Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases (any efficiently
solvable {0, 1} polytope?)
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem
Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!

Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases (any efficiently
solvable {0, 1} polytope?)
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem
Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!

Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases (any efficiently
solvable {0, 1} polytope?)
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem
Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!

