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Yes, for restricted graph classes:

> bipartite regular [Lev, Pippenger, Valiant 1981]

> bipartite convex [Dekel, Sahni 1984]

> incomparability graphs [Kozen, Vazirani, Vazirani 1985]
>

bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski
1987]

claw-free [Chrobak, Naor, Novick 1989]

K3 3-free (decision version) [Vazirani 1989]

planar bipartite [Miller, Naor 1989]

dense [Dahlhaus, Hajnal, Karpinski 1993]

strongly chordal [Dahlhaus, Karpinski 1998]
Py4-tidy [Parfenoff 1998]

bipartite small genus [Mahajan, Varadarajan 2000]
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> Approach fails for non-bipartite graphs
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with  quasi-polynomial
# processors




© Basic approach for derandomization
® Bipartite case [Fenner, Gurjar, Thierauf 2015]

©® Difficulties of general case & our approach
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Step 2 guaranteed to work if weight function w is
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Challenge: On input G, construct an isolating weight function in N'C

Oblivious challenge: On input n, construct a family WW* of weight
functions that can be computed in N'C such that

For any n-vertex graph, there is an isolating w € W*

For w € W* and edge e, we have w(e) < nPo(ogn)

The number of weight functions are polynomial [/*| < npelv(logn)

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT'15]: W* exists for bipartite graphs

Thm[ST'17]: W* exists for general graphs
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“Greed is good. Greed is right. Greed
works. Greed clarifies, cuts through and
captures the essence of the evolutionary

| » “ spirit.”
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- Gordon Gecko
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Construct isolating function iteratively

Let W= {wy : wi(e;) =2" mod k for k =2,3,..., n*} be a polynomial
set of simple weight functions

» Select wy € W and let M be perfect matchings minimizing w;
» Select wp, € W and let M, C M; be PMs in M7 minimizing w,
» Select wz € VW and let M3 C M, be PMs in M5 minimizing ws

How many wy,...,wy € W ﬁecessary for |[M,| =17
Thm [FGT'15]:
For any G, there is wy, ..., Wog,(n) € VW so that [Mgg (| =1

¢

W* — {n9(|0g(n)) W1+n9(|0g(n)71) W2+' . +1 Wlog(n) : W17 ey Wlogz(n) - W}
gives oblivious quasi-polynomial derandomization
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We need good progress measure
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» Consider min-weight perfect matchings —e
M, M’ with w(M) = w(M")
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= alternating cycles

> in each cycle C,
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(otherwise could get lighter matching)
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v

d(C) =0

If (VC) dw(C) # 0, then w isolating!

Progress: assign # 0 discrepancy to “many” cycles




Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy



Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy




Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

If < n* cycles in the graph: done!



Removing cycles

A graph may have exponentially many cycles = seems hard to find w so
that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

If < n* cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles
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Select wy € W so that all 4-cycles have # 0 discrepancy

All matchings of G

0 My = {M, M/} G = (V:UME,Ml M)
[ ] [ J [ J [ J [ ] (]
1 G 1
[ [ J [ J [ J [ ] ([
3
1 G 1
[ J [ J [ J [ J [ J [ J
0

What can we say about the active subgraph G; that contains those edges
that are in a min-weight perfect matching?
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Proof: Let M be the set of perfect matchings minimizing w

» Consider the convex hull of M (face F of the bipartite matching
polytope):
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\ x(0(v)) =1 for every v € V
\( xe >0 for every e € E
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PM : perfect matching polytope (convex hull of matchings)
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> What can we say about the weight of points in F?
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F is the convex hull of M = every x,y € F have same weight

Bipartite PM

x(6(v)) =1 for every v € V
Xe >0 for every e € E

F is simply a subgraph

PM . perfect matching olytope (convex hull of matchings)

(edge set Upje pq M)

Suppose active subgraph has cycle C of # 0 discepancy

/\
\/

Let x = \Tlxu > we i be the mean of the face F

v

w(green edges) # w(red edges)

v

v

Then Xe > 0 for every e © C (since support of x equals U e aq M)

v

Increasing red edges while decreasing green maintain degrees

A\

So we obtain a new point y € F of different weight; contradiction



The main ingredients

Old Lemma:

For any collection of n* cycles, some w € W
assigns all of them # 0 discrepancy

Bipartite key property:

Once we assign a cycle # 0 discrepancy,
it will disappear from the active subgraph
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A graph has at most n* cycles of length 4

All matchings of G
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Select wy € W so that all 4-cycles in G have # 0 discrepancy

» Bipartite key property:Gi = (V, Uy, M) has no cycles of length < 4

Select wy € W so that all < 8-cycles in G; have # 0 discrepancy

» Bipartite key property: G, = (V, Uy, M) has no cycles of length < 8

Select ws € W so that all < 16-cycles in G, have # 0 discrepancy

> Bipartite key property:Gs = (V,Upear, M) has no cycles of length < 16

Giogn = (V, UMGM‘WM) have no cycles so Mo »| =1 as required

All matchings of G

My

G
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Final argument

A graph with no < 4-cycles has at most n* cycles of length 8

» Associate a signature (a, b, ¢, d) with each 8-cycle

> ais the first vertex, b is the third vertex, c is the fifth vertex, d is the
seventh vertex

> Two cycles cannot have the same signature as that would imply a
4-cycle:

» So # 8-cycles is at most # signatures which is at most n*
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Polyhedral perspective

isolating in stages
F1

Wi
\ decreasing sequence of faces

Fast decrease due to bipartite matching polytope:
(2]
A W21
Fa

> every face is a subgraph

> Key property: girth doubles in every step

w = <W17 W, W3>

F3 w3
P

Fa

w is isolating
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Edmonds [1965] Perfect matching polytope description on x € RE:

> x>0 for every edge e

» x(d(v)) = 1 for every vertex v (9(5) = edges crossing 5)

"

Girth does not make sense as progress measure
and bipartite key property fails!

X(0(5)JJ) — L TOT SOIMEe 0au Sets S

> In bipartite case: F
F={x€ePM: x. =0 for some edges e}

(F given by the active subgraph)
» Now, faces are exponentially harder \(
PM

> Need 2°(") inequalities [Rothvoss 2013]



How bipartite key property fails
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F ¢ PM but still has all edges... &
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quite technical path

Main ingredients:

» Laminar family of tight constraints (at most 2n — 1 constraints instead of

exponential)
» Tight cut constraints decompose the instance

= divide-and-conquer approach



Every face F is given as:
F={xePM:x.=0 for some edges e,
x(6(S)) =1 for some odd sets S}




Every face F is given as:

F={xePM:x.=0 for some edges e,
x(0(S)) =1 for some odd sets S}

Great news: “some” can be chosen to be a laminar family!
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> once we fix a boundary edge...

> ... the instance decomposes into two independent ones



Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

7




Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

~/

> then every boundary edge determines entire matching



Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—/

> then every boundary edge determines entire matching



Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—7

> then every boundary edge determines entire matching



Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

7

> then every boundary edge determines entire matching

» so: at most n’ perfect matchings



Divide & conquer

Between friends: cycles that do not cross tight odd sets behave like in
the bipartite case and can thus be removed

Simplest case: only one tight odd set

—/

> then every boundary edge determines entire matching
» so: at most n’ perfect matchings

> some w € W will give them different weights
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Divide & conquer: chain case

As before we isolate the whole instance in O(log n) phases

Now instance where both sides
of the cut are isolated,

one w € W makes the whole
instance isolated :)

n? choices

Now instance where both sides
of the cut are isolated,

one w € W' makes the whole
subinstance isolated

n? choices

Instance where both sides of the
cut are isolated,

one w € W makes the whole
subinstance isolated
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quite technical path

<—A <
! o l harder than P

Carefully selected progress measure allows us to reduce laminar case to
> Removing cycles similar to bipartite case

> The chain case (divide-and-conquer)
Theorem S. and Tarnawski [2017]

General matching is in QUASI-NC

with quasi-polynomial #
processors
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Future work

» go down to NVC

» even for bipartite graphs
v for planar graphs: [Anari, Vazirani 2017]

> derandomize Isolation Lemma in other cases (any efficiently
solvable {0,1} polytope?)
v/ matroid intersection: [Gurjar, Thierauf 2017]
v totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

P ® Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?
() @
» randomized complexity: even RANDOMIZED NC
o (] » deterministic complexity: is it in P?

Thank you!



