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The random matrix model

The unitary group with the Haar measure;
Eigenvalues on the unit circle; e iθ1 , · · · , e iθn .
Weyl’s integration formula: the joint density of the eigenangles
(θ1, · · · , θn) ∈ [0, 2π]n is:

1
(2π)nn!

∏
j<k

|e iθj − e iθk |2.
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Determinantal structure

If un is distributed according to Haar measure, then one can define, for
1 ≤ p ≤ n, the p-point correlation function ρ(n)

p of the eigenangles, as
follows: for any bounded, measurable function φ from Rp to R,

E

 ∑
1≤j1 6=···6=jp≤n

φ(θ
(n)
j1
, . . . , θ

(n)
jp

)


=

∫
[0,2π)p

ρ(n)
p (t1, . . . , tp)φ(t1, . . . , tp)dt1 . . . dtp.

If the kernel K (n) is defined by

K (n)(t) :=
sin(nt/2)

2π sin(t/2)

then the p-point correlation function is be given by

ρ(n)
p (t1, ..., tn) = det

(
K (n)(tj − tk)

)p
j,k=1 .
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Proposition

Let En denote the set of eigenvalues taken in (−π, π] and multiplied by n/2π. Let
Define for y 6= y

′

K (∞)(y , y
′
) =

sin[π(y
′ − y)]

π(y ′ − y)

and
K (∞)(y , y) = 1.

Then there exists a point process E∞ such that for all r ∈ {1, . . . , n}, and for all
measurable and bounded functions F with compact support from Rr to R:

E

 ∑
x1 6=···6=xr∈En

F (x1, . . . , xr )

 −→
n→∞

∫
Rr

F (y1, . . . , yr )ρ
(∞)
r (y1, . . . , yr )dy1 . . . dyr ,

where
ρ(∞)
r (y1, . . . , yr ) = det((K (∞)(yj , yk))1≤j,k≤r ).
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Moreover the point process En converges to E∞ in the following sense: for all
Borel measurable bounded functions f with compact support from R to R,∑

x∈En

f (x) −→
n→∞

∑
x∈E∞

f (x),

where the convergence above holds in law.
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Dyson (1962)

Pair Correlation
For suitable test functions f ,

lim
n→∞

1
n

∫
U(n)

∑
j 6=k

f (θ̃j − θ̃k)dX =

∫ ∞
−∞

f (v)

(
1−

(
sinπv
πv

)2
)
dv
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Distribution of zeros

The Riemann zeta function: for Re(s) > 1,

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(
1− p−s

)−1
;

It can be analytically continued:

ξ(s) = π−s/2s(s − 1)Γ(s/2)ζ(s) = ξ(1− s).

Riemann hypothesis: write a zero ρn as:

ρn = 1/2 + iγn, γn > 0.
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Montgomery

Conjecture

Write γ̃n =
γn
2π

log(γn/2π); then

lim
N→∞

1
N

∑
j 6=k≤N

f (γ̃j − γ̃k) =

∫ ∞
−∞

f (v)

(
1−

(
sinπv
πv

)2
)
dv
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Why the unitary group?

The sine kernel has some universal feature; so is there really something about
zeta?
Spectral interpretation: the conjectures are proved in the function field case
by Katz and Sarnak;
There are more striking connections to RMT through the approach by
Keating and Snaith.
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Moments of the zeta function

It was conjectured by number theorists that the following should hold: for
Re(λ > −1/2),

1
T

∫ T

0
|ζ(1/2 + it)|2λdt ∼ a(λ)g(λ)(logT )λ

2/2,

with

a(λ) =
∏
p

(1− p−1)λ
2
∞∑

m=0

(
Γ(m + λ)

m!Γ(λ)

)
p−m,

and g a rational function with g(1) = 1, g(2) = 2, g(3) = 42
9! and g(4) = 24024

16! .
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A random model for the value distribution of
ζ(1/2 + it)

A remarkable random variable: for u ∈ U(n),

Pn(z) = det(zI − u)

and ∫
U(n)

|Pn(1)|2λdµ ∼ G 2(1 + λ)

G (1 + 2λ)
nλ

2
,

where G is the Barnes function defined by G (z + 1) = Γ(z)G (z) and G (1) = 1.
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The missing factor

It is not hard to see that:

G 2(1 + k)

G (1 + 2k)
=

k−1∏
j=1

j!

(j + k)!
.

For k = 1, 2, 3, 4, this g(k).

Conjecture

g(λ) =
G 2(1 + λ)

G (1 + 2λ)
.
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A remarkable finite n computation

Keating and Snaith proved that for s, t complex numbers with Re(t) > −1,

E[|Pn(1)|t exp(is argPn(1))] =
n∏

k=1

Γ(k)Γ(k + t)

Γ(k + (t + s)/2)Γ(k + (t − s)/2)
.

From this they were able to show that as n→∞

logPn(1)√
1/2 log n

→ NC, in law .

This is to be compared with Selberg’s CLT:

log ζ(1/2 + iUT )√
1/2 log logT

→ NC in law

where
NC = N (0, 1) + iN ′(0, 1).
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Questions

This approach allows a dictionary where one tries to solve in the RMT world
hard problems in NT;
Problem by Katz and Sarnak: how to associate in a natural way to a given
ensemble of random matrices an infinite dimensional operator with the good
eigenvalues?
Can one construct a limiting random analytic function from the characteristic
polynomials?
Take a typical problem about the value distribution of the zeta function, say
Ramachandra’s conjecture. Can one develop methods which would lead to
theorems?
Examples of problems which are proved in NT and whose RMT analogue
would be meaningful.
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Goals

Give a meaning to strong convergence;
Prove convergence of eigenvalues and eigenvectors;
Set the framework for the construction of the operator;
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Consider

ξn(z) =
Pn(e2izπ/n)

Pn(1)
.

Theorem (Chhaibi, Najnudel, N)

In the space of continuous functions from C to C, endowed with the topology of
uniform convergence on compact sets, the random entire function ξn converges in
law to a limiting entire function ξ∞. The zeros of ξ∞ are all real and form a
determinantal sine-kernel point process, i.e. for all r ≥ 1, the r -point correlation
function ρr corresponding to this point process is given, for all x1, . . . , xr ∈ R, by

ρ(∞)
r (x1, . . . , xr ) = det

(
sin[π(xj − xk)]

π(xj − xk)

)
1≤j,k≤r

.
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Virtual Permutations (Kerov, Olshanski, Vershik)

Proposition

For n ∈ N, let t(n) ∈ {1, . . . , n}. Then any permutation σn can be uniquely
written as

σn = τn,t(n)τn−1,t(n−1) · · · τ1,1
where τk,j = 1 if j = k and otherwise is the transposition (j , k).

If for each k ≥ 1, P[t(k) = j ] = 1/k for 1 ≤ j ≤ k , and the t(k) are
independent, then σn is Haar distributed.
A virtual permutation is a sequence {(σn), n ≥ 1} such that
σn+1 = τn+1,t(n+1)σn.
One goes from σn+1 to σn by deleting n + 1 from the cycle structure of σn+1.
With (t(n))n≥1, independent and chosen as above, each σn is Haar
distributed.
Then there exists a projective limit of the Haar measure on the space of
virtual permutations and it is w.r.to this measure that a.s. convergence can
be established.
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Complex Reflections

We endow Cn with the scalar product: 〈x , y〉 =
∑n

k=1 xk ȳk .
A reflection is a unitary transformation such that r such that it is the identity
or the rank of Id − r is 1.
Every reflection can be represented as:

r(x) = x − (1− α)
〈x , a〉
〈a, a〉

a,

where a is some vector and α is an element of the unit circle.
Given two distinct unit vectors e and m , there exists a unique complex
reflection r such that r(e) = m and it is given by

r(x) = x − 〈x ,m − e〉
1− 〈e,m〉

(m − e).
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Constructing virtual isometries (un)n≥1

The sequence (un)n≥1 can be constructed in the following way:
1 One considers a sequence (xn)x≥1 of independent random vectors, xn being

uniform on the unit sphere of Cn.
2 Almost surely, for all n ≥ 1, xn is different from the last basis vector en of Cn,

which implies that there exists a unique complex reflection rn ∈ U(n) such
that rn(en) = xn and In − rn has rank one.

3 We define (un)n≥1 by induction as follows: u1 = x1 and for all n ≥ 2,

un = rn

(
un−1 0
0 1

)
.
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Random virtual isometries

Theorem [Bourgade-Najnudel-N]

Let (xn)n≥1 be a sequence of random vectors, xn ∈ Cn and ||x || = 1. Let (un)n≥1
be the virtual isometry satisfying un(en) = xn. Then for each n, the random matrix
un follows the Haar measure on U(n) iff the vectors (xn) are independent and
uniformly distributed on the corresponding spheres (i.e. xn uniformly distributed
on the unit sphere of Cn).
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Projective limit of the Haar measure

Let U be the sigma-algebra generated on U∞ by the sets

{(un), uk ∈ Bk}, k ≥ 1 and Bk ∈ B(U(k)).

There exists a unique probability measure µ∞ on this space such that its image
under projection on U(n) is the Haar measure on U(n).
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The characteristic polynomial

Theorem [Bourgade-Najnudel-N]

Let (un)n≥1 be the virtual isometry satisfying un(en) = xn and note vn = xn − en.
Let (f

(n)
k )1≤k≤n be an o.n. basis of Cn consisting of eigenvectors of un and let

(λ
(n)
k )1≤k≤n be the corresponding sequence of eigenvalues. Recall

Pn = det(z − un). Let us also decompose xn+1 as follows:

xn+1 =
n∑

k=1

µ
(n)
k f

(n)
k + νnen+1.

Then for all n such that xn+1 6= en+1, one has νn 6= 1 and

Pn+1(z) =
Pn(z)

ν̄n − 1

[
(z − νn)(ν̄n − 1)− (z − 1)

n∑
k=1

|µ(n)
k |

2 λ
(n)
k

z − λ(n)
k

]
.



Outline and Problems
Towards the construction of the operator

More on the characteristic polynomia
Ramachandra’s conjecture

The space of virtual isometries
Spectral Decomposition
Estimates and a.s. convergence
Sketch of the operator

Idea of the proof

Let xn = un(en) and let rn denote the unique reflection on Cn mapping en to
xn. Therefore, we have un+1 = rn+1 ◦ (un ⊕ 1).
Write rn+1 = In+1 + 1

ν̄n−1vn+1v̄
t
n+1.

Then note that

Pn+1(z) = (z−1)Pn(z) det
(
In+1 −

(
1

ν̄n − 1
(zIn+1 − un ⊕ 1)−1 vn+1v̄

t
n+1 (un ⊕ 1)

))
Use det(1 + A) = 1 + Tr(A) for a matrix of rank 1.
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Theorem (Maple-Najnudel-N)

Almost surely the eigenvalues of un+1 are the unique roots of the rational equation

n∑
j=1

|µ(n)
j |

2 λ
(n)
j

λ
(n)
j − z

+
|1− νn|2

1− z
= 1− νn

on the unit circle. Furthermore, they interlace between 1 and the eigenvalues of un

0 < θ
(n+1)
1 < θ

(n)
1 < θ

(n+1)
2 < · · · < θ(n)

n < θ
(n+1)
n+1 < 2π.

and the eigenvectors satisfy the relation

(h
(n+1)
k )

1
2 f

(n+1)
k =

n∑
j=1

µ
(n)
j

λ
(n)
j − λ

(n+1)
k

f
(n)
j +

νn − 1

1− λ(n+1)
k

en+1,

h
(n+1)
k =

n∑
j=1

|µ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

+
|νn − 1|2

|1− λ(n+1)
k |2

is the unique positive real which makes f (n+1)
k a unit vector.
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Idea of Proof

Let f be an eigenvector of un+1 with corresponding eigenvalue z . Then we
write

f =
n∑

j=1

aj f
(n)
j + ben+1

where a1, ..., an, b are (as yet unknown) complex numbers, not all zero. Our
goal is to write these coefficients in terms of xn+1 and the eigenvalues of un.
We write zf = un+1f and use un+1 = rn+1 ◦ (un ⊕ 1).
This leads to the system Qf = 0 where

Q = In+1 + wv t ,

and

w =


µ

(n)
1

λ
(n)
1 −z
...
µ(n)
n

λ
(n)
n −z
νn−1
1−z

 ; and v t =
(
λ

(n)
1

µ
(n)
1

νn−1 , · · · λ
(n)
n

µ
(n)
n

νn−1 , 1
)
.
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The one can show that
v tw = −1,

and this gives the recurrence relations.
The interlacing property is obtained after a careful study of the rational
function Φ : S1 → C ∪ {∞} by

Φ(z) =
n∑

j=1

λ
(n)
j |µ

(n)
j |2

λ
(n)
j − z

+
|νn − 1|2

1− z
− (1− νn).
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Some fundamental a priori estimates

Let us fix ε > 0, and let us define the following events:

E0 = {θ(1)
0 6= 0} ∩ {∀n ≥ 1, νn 6= 0} ∩ {∀n ≥ 1, 1 ≤ k ≤ n, µ

(n)
k 6= 0}

E1 = {∃n0 ≥ 1,∀n ≥ n0, |νn| ≤ n−
1
2 +ε}

E2 = {∃n0 ≥ 1,∀n ≥ n0, 1 ≤ k ≤ n, |µ(n)
k | ≤ n−

1
2 +ε}

E3 = {∃n0 ≥ 1,∀n ≥ n0, k ≥ 1, n−
5
3−ε ≤ θ(n)

k+1 − θ
(n)
k ≤ n−1+ε}.

We then let E := E0 ∩ E1 ∩ E2 ∩ E3. Then E is a set of full measure.
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Convergence of eigenangles

Theorem (Bourgade, Najnudel, N/ Maples, Najnudel, N)

There is a sine-kernel point process (yk)k∈Z such that almost surely,

n

2π
θ

(n)
k = yk + O((1 + k2)n−

1
3 +ε),

for all n ≥ 1, |k | ≤ n1/4 and ε > 0, where the implied constant may depend on
(um)m≥1 and ε, but not on n and k .
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Some filtrations

Lemma (Maples, Najnudel, N)

For n ≥ 1, we define the σ-algebra An = σ{λ(m)
j | 1 ≤ m ≤ n, 1 ≤ j ≤ m} and its

limit A = ∨∞n=1An. For all n ≥ 1, the σ-algebra An is equal, up to completion, to
the σ-algebra generated by u1 the variables |µ(m)

j | and νm for 1 ≤ m ≤ n − 1 and
1 ≤ j ≤ m.

Lemma (Maples, Najnudel, N)

For 1 ≤ j ≤ n, we define the phase φ(n)
j by µ(n)

j = φ
(n)
j |µ

(n)
j |, and the σ-algebras

Bn = A ∨ σ{φ(m)
j | 1 ≤ m ≤ n − 1, 1 ≤ j ≤ m} and B = ∨∞n=1Bn. Then the

σ-algebra Bn is equal, up to completion, to the σ-algebra generated by A and the
eigenvectors f (m)

j for 1 ≤ j ≤ m and 1 ≤ m ≤ n.
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A.s. weak convergence of eigenvectors

We introduce the following eigenvectors, for n ≥ k :

g
(n)
k := D

(n)
k f

(n)
k ,

where D
(n)
k ∈ C is the random variable

D
(n)
k =

n−1∏
s=k

(h
(s+1)
k )

1
2
λ

(s)
k − λ

(s+1)
k

µ
(s)
k

.

Theorem (Maples, Najnudel, N)

For each k ≥ 1 and ` ≥ 1, the sequence {〈g (n)
k , e`〉}n≥k∨` is a martingale with

respect to the filtration (Bn)n≥k∨`, and the conditional expectation of |〈g (n)
k , e`〉|2,

given A, is almost surely bounded when n varies.
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A.s. weak convergence of eigenvectors

Because this martingale is bounded in L2, we have the following immediate
corollary.

Corollary (Maples, Najnudel, N)

Almost surely, for all k ∈ Z and ` ≥ 1, the scalar product 〈g (n)
k , e`〉 converges to a

limit gk,` when n goes to infinity.

For each k ∈ Z, the infinite sequence gk := (gk,`)`≥1 ∈ C∞ can be considered
as the weak limit of the eigenvector g (n)

k of un, when n goes to infinity.



Outline and Problems
Towards the construction of the operator

More on the characteristic polynomia
Ramachandra’s conjecture

The space of virtual isometries
Spectral Decomposition
Estimates and a.s. convergence
Sketch of the operator

A.s. weak convergence of eigenvectors

Theorem (Maples, Najnudel, N)

Let (un)n≥1 be a virtual rotation, following the Haar measure. For k ∈ Z and
n ≥ 1, let v (n)

k be a unit eigenvector corresponding to the kth smallest nonnegative
eigenangle of un for k ≥ 1, and the (1− k)th largest strictly negative eigenangle
of un for k ≤ 0. Then for all k ∈ Z, there almost surely exist some complex
numbers (ψ

(n)
k )n≥1 of modulus 1, and a sequence (tk,`)`≥1, such that for all ` ≥ 1,

√
n 〈ψ(n)

k v
(n)
k , e`〉 −→

n→∞
tk,`.

Almost surely, for all k ∈ Z, the sequence (tk,`)`≥1 depends, up to a multiplicative
factor of modulus one, only on the virtual rotation (un)n≥1. Moreover, if (ψk)k∈Z
is a sequence of iid, uniform variables on U, independent of (tk,`)`≥1, then
(ψktk,`)k∈Z,`≥1 is an iid family of standard complex gaussian variables
(E[|ψktk,`|2] = 1).
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A flow of operators on a random space

For each α ∈ R, let (αn)n≥1 be a sequence such that αn is equivalent to αn
when n goes to infinity. For n ≥ 1, k ∈ Z, we have

uαn
n f

(n)
k = e iθ

(n)
k αn f

(n)
k .

Now, e iθ
(n)
k αn tends to e2iπαyk and after normalization, the coordinates of f (n)

k

tend to the corresponding coordinates of the sequence (tk,`)`≥1. It is then
natural to expect that, in a sense which needs to be made precise, uαn

n tends
to some operator U, acting on some infinite sequences, such that

U((tk,`)`≥1) = e2iπαyk (tk,`)`≥1.
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Definition of the random space

Definition
The space E is the random vector subspace of C∞, generated by the sequences
(tk,`)`≥1, or equivalently, (gk,`)`≥1, for k ∈ Z. For α ∈ R, the operator Uα is the
unique linear application from E to E such that for all k ∈ Z,

Uα((tk,`)`≥1) = e2iπαyk (tk,`)`≥1,

or equivalently,
Uα((gk,`)`≥1) = e2iπαyk (gk,`)`≥1.

The notation Uα is motivated by the immediate fact that (Uα)α∈R is a flow
of operators on E , i.e. U0 = IE and Uα+β = UαUβ for all α, β ∈ R.



Outline and Problems
Towards the construction of the operator

More on the characteristic polynomia
Ramachandra’s conjecture

The space of virtual isometries
Spectral Decomposition
Estimates and a.s. convergence
Sketch of the operator

Theorem (Maples, Najnudel, N)

Almost surely, for any sequence (s`)`≥1 in E and for all integers m ≥ 1,

[uαn
n ((s`)1≤`≤n)]m −→n→∞

[Uα((s`)`≥1)]m ,

where [ · ]m denotes the mth coordinate of a vector or a sequence.
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Theorem
Let ε > 0. Almost surely, for all k ∈ Z, we have the following.

1 The euclidian norm ‖gk [n]‖ is equivalent to a strictly positive random
variable times

√
n, when n goes to infinity.

2 ‖gk [n]− g
(n)
k ‖ = Oε(n

1
3 +ε).

3 For any T > 0 and δ ∈ (0, 1/6),

sup
α∈[−T ,T ]

sup
αn∈[n(α−n−δ),n(α+n−δ)]

‖uαn
n gk [n]− e2πiαykgk [n]‖ = O(n

1
2−δ).
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Theorem
Almost surely, for all k ∈ Z, ` ≥ 1, α, γ ∈ R, and for all sequences (αn)n≥1 and
(γn)n≥1 such that αn/n = α + o(n−δ) and γn/n = γ + o(n−δ) for some
δ ∈ [0, 1/6),

〈uαn
n (gk [n])− e2πiαykgk [n], uγnn (e`)〉 = o(n−δ),

when n goes to infinity. Moreover, for δ ∈ (0, 1/6), we get the uniform estimate:

sup
αn∈[n(α−n−δ),n(α+n−δ)]

γn∈[n(γ−n−δ),n(γ+n−δ)]

〈uαn
n (gk [n])− e2πiαykgk [n], uγnn (e`)〉 = O(n−δ).
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We can naturally define an inner product 〈·, ·〉 on E , by saying that the
vectors (tk,`)`≥1, k ∈ Z have norm 1 and are pairwise orthogonal. Note that
this construction does not depend on the phase of (tk,`)`≥1 for k ∈ Z, so it is
almost surely well-defined. From this point on, we assume that the phases are
chosen in such a way that (tk,`)`≥1,k∈Z are iid, complex gaussian. Then, the
scalar product on E can almost surely be written as a function of the
coordinates of the sequences:

Proposition

Let (w`)`≥1 and (w ′`)`≥1 be two vectors in E . Then

〈w ,w ′〉 = lim
n→∞

1
n

n∑
`=1

w`w ′` = lim
s→1,s<1

(1− s)
∞∑
`=1

s`−1w`w ′`.
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For δ > 0, let Eδ be given by combinations (λk) such that∑
k∈Z

(1 + |k |1+δ)|λk |2 <∞.

Indeed, under this assumption, for all ` ≥ 1, by Cauchy-Schwarz

∑
k∈Z
|λktk,`| ≤

(∑
k∈Z

(1 + |k |1+δ)|λk |2
)1/2(∑

k∈Z

|tk,`|2

1 + |k|1+δ

)1/2

. (1)

The first factor is finite from the definition of Eδ and the second factor is
almost surely finite, since

E

[∑
k∈Z

|tk,`|2

1 + |k |1+δ

]
=
∑
k∈Z

1
1 + |k |1+δ

<∞.
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Proposition

Let w and w ′ be two sequences in Eδ, such that

w` =
∑
k∈Z

λktk,`, w
′
` =

∑
k∈Z

λ′ktk,`,

where ∑
k∈Z

(1 + |k |1+δ)(|λk |2 + |λ′k |2) <∞ (2)

Then, for
〈w ,w ′〉 :=

∑
k∈Z

λkλ′k ,

the conclusion of the previous Proposition holds.
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Proposition (Chhaibi, Najnudel, N)

Almost surely:
y

(n)
k ≡ n

2π
θ

(n)
k = k + O (log(2 + |k |))

This comes from the fact (plus all information about the characteristic
polynomial) that if k ∈ Z, and if ε > 0 is small enough so that there are no
eigenangles of Un in [0, ε] and (θ

(n)
k , θ

(n)
k + ε], then:

k = y
(n)
k − 1

π
Im
(
log
(
Zn(e i(θ

(n)
k +ε))

)
− log

(
Zn(e iε)

))
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Theorem (Chhaibi, Najnudel, N)

Almost surely and uniformly on compact subsets of C, we have the convergence:

ξn (z)
n→∞−→ ξ∞(z) := e iπz

∏
k∈Z

(
1− z

yk

)
Here, the infinite product is not absolutely convergent. It has to be understood as
the limit of the following product, obtained by regrouping the factors two by two:(

1− z

y0

)∏
k≥1

[(
1− z

yk

)(
1− z

y−k

)]
,

which is absolutely convergent.
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Proposition (Chhaibi, Najnudel, N)

Almost surely, ξ∞ is of order 1. More precisely, the exists a.s. a random C > 0,
such that for all z ∈ C.

|ξ∞(z)| ≤ eC |z| log(2+|z|).

On the other hand, there exists a.s. a random c > 0 such that for all x ∈ R,

|ξ∞(ix)| ≥ cec|x|.
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From Central to local limit theorems

Theorem
Let (Xk)k≥1 be symmetric i.i.d. random variables which are non-lattice. Assume
that there exists a sequence (bn)n≥1 such that bn →∞ and as n→∞

X1 + · · ·+ Xn

bn
→ µ in law

where µ is a probability distribution whose c.f. is given by exp(−|t|p) for some
0 < p ≤ 2. Then for every Borel bounded set B whose boundary has Lebesgue
measure 0 we have

lim
n→∞

bnP(X1 + · · ·Xn ∈ B) = cpλ(B)

where λ is the Lebesgue measure and cp = 1
2π

∫
exp(−|t|p)dt.
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Modφ Convergence

Let µ be a probability measure on Rd with c.f. φ. Let Xn be random vector with
values in Rd with c.f. ϕn. We say that there is mod-φ convergence if there exists
An ∈ GLd(R) such that:

(H1) φ is integrable;
(H2) Denoting Σn = A−1

n , we have Σn → 0 and the vectors Yn = ΣnXn

converge in law to µ.
(H3) For all k ≥ 0, we have

sup
n≥1

∫
|t|≥a
|ϕn(Σ∗nt)|1|Σ∗n t|≤kdt → 0 as a→∞.
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Theorem (Delbaen, Kowalski, N)

Suppose that mod-φ convergence holds for (Xn). Then for all continuous functions
with compact support, we have:

det(An)E[f (Xn)]→ dµ

dλ
(0)

∫
fdλ.

Consequently for all relatively compact Borel set B with boundary of Lebesgue
measure 0,

det(An)P(Xn ∈ B)→ dµ

dλ
(0)λ(B).
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Link with mod-Gaussian Convergence

Proposition

If (H1) holds and if there exists a continuous function ψ : Rd → C such that

ϕn(t) = ψ(t)φ(A∗nt)(1 + o(1))

uniformly for |Σ∗nt| ≤ k for k > 0, then we have mod-φ convergence.
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Useful Lemma

Lemma

Suppose f : Rd → R is a continuous function with compact support. Then for
each η > 0 we can find two integrable functions g1, g2 such that
(i) ĝ1 and ĝ2 have compact support;
(ii) g2 ≤ f ≤ g1,
(iii)

∫
Rd (g1 − g2)(t)dt ≤ η.
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Sketch of the proof of the Theorem

We can assume that f is continuous, integrable with f̂ having compact support.
We write

E[f (Xn)] =

∫
Rd

f (x)dµn(x) =
1

(2π)d

∫
Rd

ϕn(t)f̂ (−t)dt.

Change of variables:

E[f (Xn)] = (2π)−d | detΣn|
∫
|Σ∗n s|≤k

ϕn(Σ∗ns)f̂ (−Σ∗ns)dt.

The integrand converges piecewise to ϕ(s)f̂ (0).
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The Winding Number of the Complex Brownian
Motion

Let (Wt)t≥0 be a complex BM starting at 1. Let (θt)t≥0 be the argument of W ,
starting at 0 and defined by continuity. Spitzer theorem asserts that

2θt
log t

→ C

where the convergence is in law and where C stands for a random variable with

the Cauchy distribution with density
1
π

dx

1 + x2 .
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Theorem
We have the following local limit theorem for the winding number:

log t
2

P(θt ∈ (a, b))→ b − a

π
.

This is a situation where we are in the stronger mod-Cauchy convergence situation
with an explicitly computable limiting function involving Bessel functions.
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Random Matrices

Theorem
For B a suitable Borel set of C,

P(Pn ∈ B) ∼ 1
π log n

λ(B).
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Conjecture for the Riemann zeta function

Conjecture
For any suitable Borel subset of C, we have:

lim
T→∞

1/2 log logT
T

λ{t ∈ [0,T ] | log ζ(1/2 + it) ∈ B} =
λ(B)

2π
.

This conjecture is true if for instance one can show that for all k > 0, there exists
Ck > 0 such that∣∣∣∣∣ 1T

∫ T

0
exp (it. log ζ(1/2 + iu)) du

∣∣∣∣∣ ≤ Ck

1 + |t|4(log logT )2

for all T ≥ 1 and |t| ≤ k .
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Theorem [Kowalski-N]

The set of central values of the L-functions attached to non-trivial primitive
Dirichlet characters of Fp[X ], where p ranges over primes, is dense in C.

For L-functions of hyper elliptic curves we have:

Theorem [Kowalski-N]

Let Hg (Fq) be the set of square free, monic, polynomials of degree 2g + 1 in
Fq[X ]. Fix a non-empty open interval (α, β) ⊂ (0,∞). For all g large enough we
have

lim inf
q→∞

1
|Hg (Fq)|

∣∣∣∣∣
{
f ∈ Hg (Fq),

L(Cf , 1/2)√
πg/2

∈ (α, β)

}∣∣∣∣∣ >> 1√
log g

.
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