Random matrix theory motivated by number theory

Ashkan Nikeghbali
University of Zurich

References

- K. Maples, J. Najnudel, A.N., Limit operators for circular ensembles.
- P. Bourgade, J. Najnudel, A.N., A unitary extension of virtual permutations.
- R. Chhaibi, J. Najnudel, A.N., A limiting random analytic function related to the CUE.
- F. Delbaen, E. Kowalski, A.N., mod- ϕ convergence.

The random matrix model

- The unitary group with the Haar measure;
- Eigenvalues on the unit circle; $e^{i \theta_{1}}, \cdots, e^{i \theta_{n}}$.
- Weyl's integration formula: the joint density of the eigenangles $\left(\theta_{1}, \cdots, \theta_{n}\right) \in[0,2 \pi]^{n}$ is:

$$
\frac{1}{(2 \pi)^{n} n!} \prod_{j<k}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{2} .
$$

Determinantal structure

- If u_{n} is distributed according to Haar measure, then one can define, for $1 \leq p \leq n$, the p-point correlation function $\rho_{\rho}^{(n)}$ of the eigenangles, as follows: for any bounded, measurable function ϕ from \mathbb{R}^{p} to \mathbb{R},

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{1 \leq j_{\mathbf{1}} \neq \cdots \neq j_{p} \leq n} \phi\left(\theta_{j_{\mathbf{1}}}^{(n)}, \ldots, \theta_{j_{p}}^{(n)}\right)\right] \\
& =\int_{[0,2 \pi)^{p}} \rho_{p}^{(n)}\left(t_{1}, \ldots, t_{p}\right) \phi\left(t_{1}, \ldots, t_{p}\right) d t_{1} \ldots d t_{p}
\end{aligned}
$$

- If the kernel $K^{(n)}$ is defined by

$$
K^{(n)}(t):=\frac{\sin (n t / 2)}{2 \pi \sin (t / 2)}
$$

then the p-point correlation function is be given by

$$
\rho_{\rho}^{(n)}\left(t_{1}, \ldots, t_{n}\right)=\operatorname{det}\left(K^{(n)}\left(t_{j}-t_{k}\right)\right)_{j, k=1}^{p} .
$$

Proposition

Let E_{n} denote the set of eigenvalues taken in $(-\pi, \pi]$ and multiplied by $n / 2 \pi$. Let Define for $y \neq y^{\prime}$

$$
K^{(\infty)}\left(y, y^{\prime}\right)=\frac{\sin \left[\pi\left(y^{\prime}-y\right)\right]}{\pi\left(y^{\prime}-y\right)}
$$

and

$$
K^{(\infty)}(y, y)=1
$$

Then there exists a point process E_{∞} such that for all $r \in\{1, \ldots, n\}$, and for all measurable and bounded functions F with compact support from \mathbb{R}^{r} to \mathbb{R} :
$\mathbb{E}\left(\sum_{x_{1} \neq \cdots \neq x_{r} \in E_{n}} F\left(x_{1}, \ldots, x_{r}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{r}} F\left(y_{1}, \ldots, y_{r}\right) \rho_{r}^{(\infty)}\left(y_{1}, \ldots, y_{r}\right) d y_{1} \ldots d y_{r}$, where

$$
\rho_{r}^{(\infty)}\left(y_{1}, \ldots, y_{r}\right)=\operatorname{det}\left(\left(K^{(\infty)}\left(y_{j}, y_{k}\right)\right)_{1 \leq j, k \leq r}\right) .
$$

Moreover the point process E_{n} converges to E_{∞} in the following sense: for all Borel measurable bounded functions f with compact support from \mathbb{R} to \mathbb{R},

$$
\sum_{x \in E_{n}} f(x) \underset{n \rightarrow \infty}{\longrightarrow} \sum_{x \in E_{\infty}} f(x),
$$

where the convergence above holds in law.

The Montgomery conjecture
The Keating-Snaith conjecture Problems

Dyson (1962)

Pair Correlation

For suitable test functions f,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \int_{U(n)} \sum_{j \neq k} f\left(\tilde{\theta}_{j}-\tilde{\theta}_{k}\right) d X=\int_{-\infty}^{\infty} f(v)\left(1-\left(\frac{\sin \pi v}{\pi v}\right)^{2}\right) d v
$$

Distribution of zeros

The Riemann zeta function: for $\mathfrak{R e}(s)>1$,

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

It can be analytically continued:

$$
\xi(s)=\pi^{-s / 2} s(s-1) \Gamma(s / 2) \zeta(s)=\xi(1-s) .
$$

Riemann hypothesis: write a zero ρ_{n} as:

$$
\rho_{n}=1 / 2+i \gamma_{n}, \quad \gamma_{n}>0 .
$$

The Montgomery conjecture
The Keating-Snaith conjecture
Problems

Montgomery

Conjecture

Write $\tilde{\gamma}_{n}=\frac{\gamma_{n}}{2 \pi} \log \left(\gamma_{n} / 2 \pi\right)$; then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j \neq k \leq N} f\left(\tilde{\gamma}_{j}-\tilde{\gamma}_{k}\right)=\int_{-\infty}^{\infty} f(v)\left(1-\left(\frac{\sin \pi v}{\pi v}\right)^{2}\right) d v
$$

Why the unitary group?

- The sine kernel has some universal feature; so is there really something about zeta?
- Spectral interpretation: the conjectures are proved in the function field case by Katz and Sarnak;
- There are more striking connections to RMT through the approach by Keating and Snaith.

Moments of the zeta function

It was conjectured by number theorists that the following should hold: for $\mathfrak{R e}(\lambda>-1 / 2)$,

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2 \lambda} d t \sim a(\lambda) g(\lambda)(\log T)^{\lambda^{2} / 2}
$$

with

$$
a(\lambda)=\prod_{p}\left(1-p^{-1}\right)^{\lambda^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(m+\lambda)}{m!\Gamma(\lambda)}\right) p^{-m}
$$

and g a rational function with $g(1)=1, g(2)=2, g(3)=\frac{42}{9!}$ and $g(4)=\frac{24024}{16!}$.

A random model for the value distribution of
 $\zeta(1 / 2+i t)$

A remarkable random variable: for $u \in U(n)$,

$$
P_{n}(z)=\operatorname{det}(z I-u)
$$

and

$$
\int_{U(n)}\left|P_{n}(1)\right|^{2 \lambda} d \mu \sim \frac{G^{2}(1+\lambda)}{G(1+2 \lambda)} n^{\lambda^{2}}
$$

where G is the Barnes function defined by $G(z+1)=\Gamma(z) G(z)$ and $G(1)=1$.

The missing factor

It is not hard to see that:

$$
\frac{G^{2}(1+k)}{G(1+2 k)}=\prod_{j=1}^{k-1} \frac{j!}{(j+k)!}
$$

For $k=1,2,3,4$, this $g(k)$.

Conjecture

$$
g(\lambda)=\frac{G^{2}(1+\lambda)}{G(1+2 \lambda)}
$$

A remarkable finite n computation

Keating and Snaith proved that for s, t complex numbers with $\mathfrak{R e}(t)>-1$,

$$
\mathbb{E}\left[\left|P_{n}(1)\right|^{t} \exp \left(i s \arg P_{n}(1)\right)\right]=\prod_{k=1}^{n} \frac{\Gamma(k) \Gamma(k+t)}{\Gamma(k+(t+s) / 2) \Gamma(k+(t-s) / 2)} .
$$

From this they were able to show that as $n \rightarrow \infty$

$$
\frac{\log P_{n}(1)}{\sqrt{1 / 2 \log n}} \rightarrow \mathcal{N}_{\mathbb{C}}, \text { in law }
$$

This is to be compared with Selberg's CLT:

$$
\frac{\log \zeta\left(1 / 2+i U_{T}\right)}{\sqrt{1 / 2 \log \log T}} \rightarrow \mathcal{N}_{\mathbb{C}} \quad \text { in law }
$$

where

$$
\mathcal{N}_{\mathbb{C}}=\mathcal{N}(0,1)+i \mathcal{N}^{\prime}(0,1)
$$

Questions

- This approach allows a dictionary where one tries to solve in the RMT world hard problems in NT;
- Problem by Katz and Sarnak: how to associate in a natural way to a given ensemble of random matrices an infinite dimensional operator with the good eigenvalues?
- Can one construct a limiting random analytic function from the characteristic polynomials?
- Take a typical problem about the value distribution of the zeta function, say Ramachandra's conjecture. Can one develop methods which would lead to theorems?
- Examples of problems which are proved in NT and whose RMT analogue would be meaningful.

Goals

- Give a meaning to strong convergence;
- Prove convergence of eigenvalues and eigenvectors;
- Set the framework for the construction of the operator;

Consider

$$
\xi_{n}(z)=\frac{P_{n}\left(e^{2 i z \pi / n}\right)}{P_{n}(1)}
$$

Theorem (Chhaibi, Najnudel, N)

In the space of continuous functions from \mathbb{C} to \mathbb{C}, endowed with the topology of uniform convergence on compact sets, the random entire function ξ_{n} converges in law to a limiting entire function ξ_{∞}. The zeros of ξ_{∞} are all real and form a determinantal sine-kernel point process, i.e. for all $r \geq 1$, the r-point correlation function ρ_{r} corresponding to this point process is given, for all $x_{1}, \ldots, x_{r} \in \mathbb{R}$, by

$$
\rho_{r}^{(\infty)}\left(x_{1}, \ldots, x_{r}\right)=\operatorname{det}\left(\frac{\sin \left[\pi\left(x_{j}-x_{k}\right)\right]}{\pi\left(x_{j}-x_{k}\right)}\right)_{1 \leq j, k \leq r}
$$

Virtual Permutations (Kerov, Olshanski, Vershik)

Proposition

For $n \in \mathbb{N}$, let $t(n) \in\{1, \ldots, n\}$. Then any permutation σ_{n} can be uniquely written as

$$
\sigma_{n}=\tau_{n, t(n)} \tau_{n-1, t(n-1)} \cdots \tau_{1,1}
$$

where $\tau_{k, j}=1$ if $j=k$ and otherwise is the transposition (j, k).

- If for each $k \geq 1, \mathbb{P}[t(k)=j]=1 / k$ for $1 \leq j \leq k$, and the $t(k)$ are independent, then σ_{n} is Haar distributed.
- A virtual permutation is a sequence $\left\{\left(\sigma_{n}\right), n \geq 1\right\}$ such that $\sigma_{n+1}=\tau_{n+1, t(n+1)} \sigma_{n}$.
- One goes from σ_{n+1} to σ_{n} by deleting $n+1$ from the cycle structure of σ_{n+1}.
- With $(t(n))_{n \geq 1}$, independent and chosen as above, each σ_{n} is Haar distributed.
- Then there exists a projective limit of the Haar measure on the space of virtual permutations and it is w.r.to this measure that a.s. convergence can be established.

Complex Reflections

- We endow \mathbb{C}^{n} with the scalar product: $\langle x, y\rangle=\sum_{k=1}^{n} x_{k} \bar{y}_{k}$.
- A reflection is a unitary transformation such that r such that it is the identity or the rank of $I d-r$ is 1 .
- Every reflection can be represented as:

$$
r(x)=x-(1-\alpha) \frac{\langle x, a\rangle}{\langle a, a\rangle} a
$$

where a is some vector and α is an element of the unit circle.

- Given two distinct unit vectors e and m, there exists a unique complex reflection r such that $r(e)=m$ and it is given by

$$
r(x)=x-\frac{\langle x, m-e\rangle}{1-\langle e, m\rangle}(m-e)
$$

Constructing virtual isometries $\left(u_{n}\right)_{n \geq 1}$

The sequence $\left(u_{n}\right)_{n \geq 1}$ can be constructed in the following way:
(1) One considers a sequence $\left(x_{n}\right)_{x \geq 1}$ of independent random vectors, x_{n} being uniform on the unit sphere of \mathbb{C}^{n}.
(2) Almost surely, for all $n \geq 1, x_{n}$ is different from the last basis vector e_{n} of \mathbb{C}^{n}, which implies that there exists a unique complex reflection $r_{n} \in U(n)$ such that $r_{n}\left(e_{n}\right)=x_{n}$ and $I_{n}-r_{n}$ has rank one.
(3) We define $\left(u_{n}\right)_{n \geq 1}$ by induction as follows: $u_{1}=x_{1}$ and for all $n \geq 2$,

$$
u_{n}=r_{n}\left(\begin{array}{cc}
u_{n-1} & 0 \\
0 & 1
\end{array}\right) .
$$

Random virtual isometries

Theorem [Bourgade-Najnudel-N]

Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence of random vectors, $x_{n} \in \mathbb{C}^{n}$ and $\|x\|=1$. Let $\left(u_{n}\right)_{n \geq 1}$ be the virtual isometry satisfying $u_{n}\left(e_{n}\right)=x_{n}$. Then for each n, the random matrix u_{n} follows the Haar measure on $U(n)$ iff the vectors $\left(x_{n}\right)$ are independent and uniformly distributed on the corresponding spheres (i.e. x_{n} uniformly distributed on the unit sphere of \mathbb{C}^{n}).

The space of virtual isometries

Projective limit of the Haar measure

Let \mathcal{U} be the sigma-algebra generated on U^{∞} by the sets

$$
\left\{\left(u_{n}\right), u_{k} \in \mathcal{B}_{k}\right\}, \quad k \geq 1 \quad \text { and } B_{k} \in \mathcal{B}(U(k)) .
$$

There exists a unique probability measure μ_{∞} on this space such that its image under projection on $U(n)$ is the Haar measure on $U(n)$.

The characteristic polynomial

Theorem [Bourgade-Najnudel-N]

Let $\left(u_{n}\right)_{n \geq 1}$ be the virtual isometry satisfying $u_{n}\left(e_{n}\right)=x_{n}$ and note $v_{n}=x_{n}-e_{n}$. Let $\left(f_{k}^{(n)}\right)_{1 \leq k \leq n}$ be an o.n. basis of \mathbb{C}^{n} consisting of eigenvectors of u_{n} and let $\left(\lambda_{k}^{(n)}\right)_{1 \leq k \leq n}$ be the corresponding sequence of eigenvalues. Recall $P_{n}=\operatorname{det}\left(z-u_{n}\right)$. Let us also decompose x_{n+1} as follows:

$$
x_{n+1}=\sum_{k=1}^{n} \mu_{k}^{(n)} f_{k}^{(n)}+\nu_{n} e_{n+1}
$$

Then for all n such that $x_{n+1} \neq e_{n+1}$, one has $\nu_{n} \neq 1$ and

$$
P_{n+1}(z)=\frac{P_{n}(z)}{\bar{\nu}_{n}-1}\left[\left(z-\nu_{n}\right)\left(\bar{\nu}_{n}-1\right)-(z-1) \sum_{k=1}^{n}\left|\mu_{k}^{(n)}\right|^{2} \frac{\lambda_{k}^{(n)}}{z-\lambda_{k}^{(n)}}\right] .
$$

The space of virtual isometries

Spectral Decomposition

Idea of the proof

- Let $x_{n}=u_{n}\left(e_{n}\right)$ and let r_{n} denote the unique reflection on \mathbb{C}^{n} mapping e_{n} to x_{n}. Therefore, we have $u_{n+1}=r_{n+1} \circ\left(u_{n} \oplus 1\right)$.
- Write $r_{n+1}=I_{n+1}+\frac{1}{\bar{\nu}_{n}-1} v_{n+1} \bar{v}_{n+1}^{t}$.
- Then note that

$$
P_{n+1}(z)=(z-1) P_{n}(z) \operatorname{det}\left(I_{n+1}-\left(\frac{1}{\bar{\nu}_{n}-1}\left(z I_{n+1}-u_{n} \oplus 1\right)^{-1} v_{n+1} \bar{v}_{n+1}^{t}\left(u_{n} \oplus\right)\right.\right.
$$

- Use $\operatorname{det}(1+A)=1+\operatorname{Tr}(A)$ for a matrix of rank 1 .

Theorem (Maple-Najnudel-N)

Almost surely the eigenvalues of u_{n+1} are the unique roots of the rational equation

$$
\sum_{j=1}^{n}\left|\mu_{j}^{(n)}\right|^{2} \frac{\lambda_{j}^{(n)}}{\lambda_{j}^{(n)}-z}+\frac{\left|1-\nu_{n}\right|^{2}}{1-z}=1-\bar{\nu}_{n}
$$

on the unit circle. Furthermore, they interlace between 1 and the eigenvalues of u_{n}

$$
0<\theta_{1}^{(n+1)}<\theta_{1}^{(n)}<\theta_{2}^{(n+1)}<\cdots<\theta_{n}^{(n)}<\theta_{n+1}^{(n+1)}<2 \pi .
$$

and the eigenvectors satisfy the relation

$$
\begin{gathered}
\left(h_{k}^{(n+1)}\right)^{\frac{1}{2}} f_{k}^{(n+1)}=\sum_{j=1}^{n} \frac{\mu_{j}^{(n)}}{\lambda_{j}^{(n)}-\lambda_{k}^{(n+1)}} f_{j}^{(n)}+\frac{\nu_{n}-1}{1-\lambda_{k}^{(n+1)}} e_{n+1}, \\
h_{k}^{(n+1)}=\sum_{j=1}^{n} \frac{\left|\mu_{j}^{(n)}\right|^{2}}{\left|\lambda_{j}^{(n)}-\lambda_{k}^{(n+1)}\right|^{2}}+\frac{\left|\nu_{n}-1\right|^{2}}{\left|1-\lambda_{k}^{(n+1)}\right|^{2}}
\end{gathered}
$$

Idea of Proof

- Let f be an eigenvector of u_{n+1} with corresponding eigenvalue z. Then we write

$$
f=\sum_{j=1}^{n} a_{j} f_{j}^{(n)}+b e_{n+1}
$$

where a_{1}, \ldots, a_{n}, b are (as yet unknown) complex numbers, not all zero. Our goal is to write these coefficients in terms of x_{n+1} and the eigenvalues of u_{n}.

- We write $z f=u_{n+1} f$ and use $u_{n+1}=r_{n+1} \circ\left(u_{n} \oplus 1\right)$.
- This leads to the system $Q f=0$ where

$$
Q=I_{n+1}+w v^{t},
$$

and

$$
w=\left(\begin{array}{c}
\frac{\mu_{n}^{(n)}}{\lambda_{1}^{(n)}-z} \\
\vdots \\
\frac{\mu_{n}^{(n)}}{\lambda_{n}^{(n)}-z} \\
\frac{\nu_{n}-1}{1-z}
\end{array}\right) ; \text { and } \quad v^{t}=\left(\lambda_{1}^{(n)} \frac{\overline{\mu_{1}^{(n)}}}{\bar{\nu}_{n}-1}, \cdots \quad \lambda_{n}^{(n)} \frac{\overline{\mu_{n}^{(n)}}}{\frac{\nu_{n}-1}{}}, \quad 1\right) .
$$

The space of virtual isometries

Spectral Decomposition

- The one can show that

$$
v^{t} w=-1
$$

and this gives the recurrence relations.

- The interlacing property is obtained after a careful study of the rational function $\Phi: S^{1} \rightarrow \mathbb{C} \cup\{\infty\}$ by

$$
\Phi(z)=\sum_{j=1}^{n} \frac{\lambda_{j}^{(n)}\left|\mu_{j}^{(n)}\right|^{2}}{\lambda_{j}^{(n)}-z}+\frac{\left|\nu_{n}-1\right|^{2}}{1-z}-\left(1-\overline{\nu_{n}}\right) .
$$

The space of virtual isometries

Some fundamental a priori estimates

Let us fix $\epsilon>0$, and let us define the following events:

$$
\begin{aligned}
& E_{0}=\left\{\theta_{0}^{(1)} \neq 0\right\} \cap\left\{\forall n \geq 1, \nu_{n} \neq 0\right\} \cap\left\{\forall n \geq 1,1 \leq k \leq n, \mu_{k}^{(n)} \neq 0\right\} \\
& E_{1}=\left\{\exists n_{0} \geq 1, \forall n \geq n_{0},\left|\nu_{n}\right| \leq n^{-\frac{1}{2}+\epsilon}\right\} \\
& E_{2}=\left\{\exists n_{0} \geq 1, \forall n \geq n_{0}, 1 \leq k \leq n,\left|\mu_{k}^{(n)}\right| \leq n^{-\frac{1}{2}+\epsilon}\right\} \\
& E_{3}=\left\{\exists n_{0} \geq 1, \forall n \geq n_{0}, k \geq 1, n^{-\frac{5}{3}-\epsilon} \leq \theta_{k+1}^{(n)}-\theta_{k}^{(n)} \leq n^{-1+\epsilon}\right\} .
\end{aligned}
$$

We then let $E:=E_{0} \cap E_{1} \cap E_{2} \cap E_{3}$. Then E is a set of full measure.

Convergence of eigenangles

Theorem (Bourgade, Najnudel, N/ Maples, Najnudel, N)

There is a sine-kernel point process $\left(y_{k}\right)_{k \in \mathbb{Z}}$ such that almost surely,

$$
\frac{n}{2 \pi} \theta_{k}^{(n)}=y_{k}+O\left(\left(1+k^{2}\right) n^{-\frac{1}{3}+\epsilon}\right)
$$

for all $n \geq 1,|k| \leq n^{1 / 4}$ and $\epsilon>0$, where the implied constant may depend on $\left(u_{m}\right)_{m \geq 1}$ and ϵ, but not on n and k.

Some filtrations

Lemma (Maples, Najnudel, N)

For $n \geq 1$, we define the σ-algebra $\mathcal{A}_{n}=\sigma\left\{\lambda_{j}^{(m)} \mid 1 \leq m \leq n, 1 \leq j \leq m\right\}$ and its limit $\mathcal{A}=\vee_{n=1}^{\infty} \mathcal{A}_{n}$. For all $n \geq 1$, the σ-algebra \mathcal{A}_{n} is equal, up to completion, to the σ-algebra generated by u_{1} the variables $\left|\mu_{j}^{(m)}\right|$ and ν_{m} for $1 \leq m \leq n-1$ and $1 \leq j \leq m$.

Lemma (Maples, Najnudel, N)

For $1 \leq j \leq n$, we define the phase $\phi_{j}^{(n)}$ by $\mu_{j}^{(n)}=\phi_{j}^{(n)}\left|\mu_{j}^{(n)}\right|$, and the σ-algebras $\mathcal{B}_{n}=\mathcal{A} \vee \sigma\left\{\phi_{j}^{(m)} \mid 1 \leq m \leq n-1,1 \leq j \leq m\right\}$ and $\mathcal{B}=\vee_{n=1}^{\infty} \mathcal{B}_{n}$. Then the σ-algebra \mathcal{B}_{n} is equal, up to completion, to the σ-algebra generated by \mathcal{A} and the eigenvectors $f_{j}^{(m)}$ for $1 \leq j \leq m$ and $1 \leq m \leq n$.

A.s. weak convergence of eigenvectors

We introduce the following eigenvectors, for $n \geq k$:

$$
g_{k}^{(n)}:=D_{k}^{(n)} f_{k}^{(n)},
$$

where $D_{k}^{(n)} \in \mathbb{C}$ is the random variable

$$
D_{k}^{(n)}=\prod_{s=k}^{n-1}\left(h_{k}^{(s+1)}\right)^{\frac{1}{2}} \frac{\lambda_{k}^{(s)}-\lambda_{k}^{(s+1)}}{\mu_{k}^{(s)}}
$$

Theorem (Maples, Najnudel, N)
For each $k \geq 1$ and $\ell \geq 1$, the sequence $\left\{\left\langle g_{k}^{(n)}, e_{\ell}\right\rangle\right\}_{n \geq k v \ell}$ is a martingale with respect to the filtration $\left(\mathcal{B}_{n}\right)_{n \geq k v \ell}$, and the conditional expectation of $\left|\left\langle g_{k}^{(n)}, e_{\ell}\right\rangle\right|^{2}$, given \mathcal{A}, is almost surely bounded when n varies.

A.s. weak convergence of eigenvectors

Because this martingale is bounded in L^{2}, we have the following immediate corollary.

Corollary (Maples, Najnudel, N)

Almost surely, for all $k \in \mathbb{Z}$ and $\ell \geq 1$, the scalar product $\left\langle g_{k}^{(n)}, e_{\ell}\right\rangle$ converges to a limit $g_{k, \ell}$ when n goes to infinity.

- For each $k \in \mathbb{Z}$, the infinite sequence $g_{k}:=\left(g_{k, \ell}\right)_{\ell \geq 1} \in \mathbb{C}^{\infty}$ can be considered as the weak limit of the eigenvector $g_{k}^{(n)}$ of u_{n}, when n goes to infinity.

A.s. weak convergence of eigenvectors

Theorem (Maples, Najnudel, N)

Let $\left(u_{n}\right)_{n \geq 1}$ be a virtual rotation, following the Haar measure. For $k \in \mathbb{Z}$ and $n \geq 1$, let $v_{k}^{(n)}$ be a unit eigenvector corresponding to the k th smallest nonnegative eigenangle of u_{n} for $k \geq 1$, and the $(1-k)$ th largest strictly negative eigenangle of u_{n} for $k \leq 0$. Then for all $k \in \mathbb{Z}$, there almost surely exist some complex numbers $\left(\psi_{k}^{(n)}\right)_{n \geq 1}$ of modulus 1 , and a sequence $\left(t_{k, \ell}\right)_{\ell \geq 1}$, such that for all $\ell \geq 1$,

$$
\sqrt{n}\left\langle\psi_{k}^{(n)} v_{k}^{(n)}, e_{\ell}\right\rangle \underset{n \rightarrow \infty}{\longrightarrow} t_{k, \ell} .
$$

Almost surely, for all $k \in \mathbb{Z}$, the sequence $\left(t_{k, \ell}\right)_{\ell \geq 1}$ depends, up to a multiplicative factor of modulus one, only on the virtual rotation $\left(u_{n}\right)_{n \geq 1}$. Moreover, if $\left(\psi_{k}\right)_{k \in \mathbb{Z}}$ is a sequence of iid, uniform variables on \mathbb{U}, independent of $\left(t_{k, \ell}\right)_{\ell \geq 1}$, then $\left(\psi_{k} t_{k, \ell}\right)_{k \in \mathbb{Z}, \ell \geq 1}$ is an iid family of standard complex gaussian variables $\left(\mathbb{E}\left[\left|\psi_{k} t_{k, \ell}\right|^{2}\right]=1\right)$.

A flow of operators on a random space

- For each $\alpha \in \mathbb{R}$, let $\left(\alpha_{n}\right)_{n \geq 1}$ be a sequence such that α_{n} is equivalent to αn when n goes to infinity. For $n \geq 1, k \in \mathbb{Z}$, we have

$$
u_{n}^{\alpha_{n}} f_{k}^{(n)}=e^{i \theta_{k}^{(n)} \alpha_{n}} f_{k}^{(n)}
$$

- Now, $e^{i \theta_{k}^{(n)} \alpha_{n}}$ tends to $e^{2 i \pi \alpha y_{k}}$ and after normalization, the coordinates of $f_{k}^{(n)}$ tend to the corresponding coordinates of the sequence $\left(t_{k, \ell}\right)_{\ell \geq 1}$. It is then natural to expect that, in a sense which needs to be made precise, $u_{n}^{\alpha_{n}}$ tends to some operator U, acting on some infinite sequences, such that

$$
U\left(\left(t_{k, \ell}\right)_{\ell \geq 1}\right)=e^{2 i \pi \alpha y_{k}}\left(t_{k, \ell}\right)_{\ell \geq 1}
$$

Definition of the random space

Definition

The space \mathcal{E} is the random vector subspace of \mathbb{C}^{∞}, generated by the sequences $\left(t_{k, \ell}\right)_{\ell \geq 1}$, or equivalently, $\left(g_{k, \ell}\right)_{\ell \geq 1}$, for $k \in \mathbb{Z}$. For $\alpha \in \mathbb{R}$, the operator U^{α} is the unique linear application from \mathcal{E} to \mathcal{E} such that for all $k \in \mathbb{Z}$,

$$
U^{\alpha}\left(\left(t_{k, \ell}\right)_{\ell \geq 1}\right)=e^{2 i \pi \alpha y_{k}}\left(t_{k, \ell}\right)_{\ell \geq 1},
$$

or equivalently,

$$
U^{\alpha}\left(\left(g_{k, \ell}\right)_{\ell \geq 1}\right)=e^{2 i \pi \alpha y_{k}}\left(g_{k, \ell}\right)_{\ell \geq 1} .
$$

- The notation U^{α} is motivated by the immediate fact that $\left(U^{\alpha}\right)_{\alpha \in \mathbb{R}}$ is a flow of operators on \mathcal{E}, i.e. $U^{0}=I_{\mathcal{E}}$ and $U^{\alpha+\beta}=U^{\alpha} U^{\beta}$ for all $\alpha, \beta \in \mathbb{R}$.

Theorem (Maples, Najnudel, N)

Almost surely, for any sequence $\left(s_{\ell}\right)_{\ell \geq 1}$ in \mathcal{E} and for all integers $m \geq 1$,

$$
\left[u_{n}^{\alpha_{n}}\left(\left(s_{\ell}\right)_{1 \leq \ell \leq n}\right)\right]_{m} \underset{n \rightarrow \infty}{\longrightarrow}\left[U^{\alpha}\left(\left(s_{\ell}\right)_{\ell \geq 1}\right)\right]_{m}
$$

where $[\cdot]_{m}$ denotes the m th coordinate of a vector or a sequence.

Theorem

Let $\epsilon>0$. Almost surely, for all $k \in \mathbb{Z}$, we have the following.
(1) The euclidian norm $\left\|g_{k}[n]\right\|$ is equivalent to a strictly positive random variable times \sqrt{n}, when n goes to infinity.
(2) $\left\|g_{k}[n]-g_{k}^{(n)}\right\|=O_{\epsilon}\left(n^{\frac{1}{3}+\epsilon}\right)$.
(3) For any $T>0$ and $\delta \in(0,1 / 6)$,

$$
\sup _{\alpha \in[-T, T]} \sup _{\alpha_{n} \in\left[n\left(\alpha-n^{-\delta}\right), n\left(\alpha+n^{-\delta}\right)\right]}\left\|u_{n}^{\alpha_{n}} g_{k}[n]-e^{2 \pi i \alpha y_{k}} g_{k}[n]\right\|=O\left(n^{\frac{1}{2}-\delta}\right) .
$$

Theorem

Almost surely, for all $k \in \mathbb{Z}, \ell \geq 1, \alpha, \gamma \in \mathbb{R}$, and for all sequences $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(\gamma_{n}\right)_{n \geq 1}$ such that $\alpha_{n} / n=\alpha+o\left(n^{-\delta}\right)$ and $\gamma_{n} / n=\gamma+o\left(n^{-\delta}\right)$ for some $\delta \in[0,1 / 6)$,

$$
\left\langle u_{n}^{\alpha_{n}}\left(g_{k}[n]\right)-e^{2 \pi i \alpha y_{k}} g_{k}[n], u_{n}^{\gamma_{n}}\left(e_{\ell}\right)\right\rangle=o\left(n^{-\delta}\right),
$$

when n goes to infinity. Moreover, for $\delta \in(0,1 / 6)$, we get the uniform estimate:

$$
\sup _{\substack{\alpha_{n} \in\left[n\left(\alpha-n^{-\delta}\right), n\left(\alpha+n^{-\delta}\right)\right] \\ \gamma_{n} \in\left[n\left(\gamma-n^{-\delta}\right), n\left(\gamma+n^{-\delta}\right)\right]}}\left\langle u_{n}^{\alpha_{n}}\left(g_{k}[n]\right)-e^{2 \pi i \alpha y_{k}} g_{k}[n], u_{n}^{\gamma_{n}}\left(e_{\ell}\right)\right\rangle=O\left(n^{-\delta}\right)
$$

- We can naturally define an inner product $\langle\cdot, \cdot\rangle$ on \mathcal{E}, by saying that the vectors $\left(t_{k, \ell}\right)_{\ell \geq 1}, k \in \mathbb{Z}$ have norm 1 and are pairwise orthogonal. Note that this construction does not depend on the phase of $\left(t_{k, \ell}\right)_{\ell \geq 1}$ for $k \in \mathbb{Z}$, so it is almost surely well-defined. From this point on, we assume that the phases are chosen in such a way that $\left(t_{k, \ell}\right)_{\ell \geq 1, k \in \mathbb{Z}}$ are iid, complex gaussian. Then, the scalar product on \mathcal{E} can almost surely be written as a function of the coordinates of the sequences:

Proposition

Let $\left(w_{\ell}\right)_{\ell \geq 1}$ and $\left(w_{\ell}^{\prime}\right)_{\ell \geq 1}$ be two vectors in \mathcal{E}. Then

$$
\left\langle w, w^{\prime}\right\rangle=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\ell=1}^{n} w_{\ell} \overline{w_{\ell}^{\prime}}=\lim _{s \rightarrow 1, s<1}(1-s) \sum_{\ell=1}^{\infty} s^{\ell-1} w_{\ell} \overline{w_{\ell}^{\prime}} .
$$

- For $\delta>0$, let \mathcal{E}_{δ} be given by combinations $\left(\lambda_{k}\right)$ such that

$$
\sum_{k \in \mathbb{Z}}\left(1+|k|^{1+\delta}\right)\left|\lambda_{k}\right|^{2}<\infty
$$

Indeed, under this assumption, for all $\ell \geq 1$, by Cauchy-Schwarz

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}\left|\lambda_{k} t_{k, \ell}\right| \leq\left(\sum_{k \in \mathbb{Z}}\left(1+|k|^{1+\delta}\right)\left|\lambda_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k \in \mathbb{Z}} \frac{\left|t_{k, \ell}\right|^{2}}{1+|k|^{1+\delta}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

The first factor is finite from the definition of \mathcal{E}_{δ} and the second factor is almost surely finite, since

$$
\mathbb{E}\left[\sum_{k \in \mathbb{Z}} \frac{\left|t_{k, \ell}\right|^{2}}{1+|k|^{1+\delta}}\right]=\sum_{k \in \mathbb{Z}} \frac{1}{1+|k|^{1+\delta}}<\infty
$$

Proposition

Let w and w^{\prime} be two sequences in \mathcal{E}_{δ}, such that

$$
w_{\ell}=\sum_{k \in \mathbb{Z}} \lambda_{k} t_{k, \ell}, w_{\ell}^{\prime}=\sum_{k \in \mathbb{Z}} \lambda_{k}^{\prime} t_{k, \ell}
$$

where

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}\left(1+|k|^{1+\delta}\right)\left(\left|\lambda_{k}\right|^{2}+\left|\lambda_{k}^{\prime}\right|^{2}\right)<\infty \tag{2}
\end{equation*}
$$

Then, for

$$
\left\langle w, w^{\prime}\right\rangle:=\sum_{k \in \mathbb{Z}} \lambda_{k} \overline{\lambda_{k}^{\prime}},
$$

the conclusion of the previous Proposition holds.

Proposition (Chhaibi, Najnudel, N)

Almost surely:

$$
y_{k}^{(n)} \equiv \frac{n}{2 \pi} \theta_{k}^{(n)}=k+O(\log (2+|k|))
$$

This comes from the fact (plus all information about the characteristic polynomial) that if $k \in \mathbb{Z}$, and if $\varepsilon>0$ is small enough so that there are no eigenangles of U_{n} in $[0, \varepsilon]$ and $\left(\theta_{k}^{(n)}, \theta_{k}^{(n)}+\varepsilon\right]$, then:

$$
k=y_{k}^{(n)}-\frac{1}{\pi} \Im \mathfrak{I m}\left(\log \left(Z_{n}\left(e^{i\left(\theta_{k}^{(n)}+\varepsilon\right)}\right)\right)-\log \left(Z_{n}\left(e^{i \varepsilon}\right)\right)\right)
$$

Theorem (Chhaibi, Najnudel, N)

Almost surely and uniformly on compact subsets of \mathbb{C}, we have the convergence:

$$
\xi_{n}(z) \xrightarrow{n \rightarrow \infty} \xi_{\infty}(z):=e^{i \pi z} \prod_{k \in \mathbb{Z}}\left(1-\frac{z}{y_{k}}\right)
$$

Here, the infinite product is not absolutely convergent. It has to be understood as the limit of the following product, obtained by regrouping the factors two by two:

$$
\left(1-\frac{z}{y_{0}}\right) \prod_{k \geq 1}\left[\left(1-\frac{z}{y_{k}}\right)\left(1-\frac{z}{y_{-k}}\right)\right]
$$

which is absolutely convergent.

Proposition (Chhaibi, Najnudel, N)

Almost surely, ξ_{∞} is of order 1. More precisely, the exists a.s. a random $C>0$, such that for all $z \in \mathbb{C}$.

$$
\left|\xi_{\infty}(z)\right| \leq e^{C|z| \log (2+|z|)} .
$$

On the other hand, there exists a.s. a random $c>0$ such that for all $x \in \mathbb{R}$,

$$
\left|\xi_{\infty}(i x)\right| \geq c e^{c|x|} .
$$

From Central to local limit theorems

Theorem

Let $\left(X_{k}\right)_{k \geq 1}$ be symmetric i.i.d. random variables which are non-lattice. Assume that there exists a sequence $\left(b_{n}\right)_{n \geq 1}$ such that $b_{n} \rightarrow \infty$ and as $n \rightarrow \infty$

$$
\frac{X_{1}+\cdots+X_{n}}{b_{n}} \rightarrow \mu \text { in law }
$$

where μ is a probability distribution whose c.f. is given by $\exp \left(-|t|^{p}\right)$ for some $0<p \leq 2$. Then for every Borel bounded set B whose boundary has Lebesgue measure 0 we have

$$
\lim _{n \rightarrow \infty} b_{n} \mathbb{P}\left(X_{1}+\cdots X_{n} \in B\right)=c_{p} \lambda(B)
$$

where λ is the Lebesgue measure and $c_{p}=\frac{1}{2 \pi} \int \exp \left(-|t|^{p}\right) d t$.

Mod ϕ Convergence

Let μ be a probability measure on \mathbb{R}^{d} with c.f. ϕ. Let X_{n} be random vector with values in \mathbb{R}^{d} with c.f. φ_{n}. We say that there is mod- ϕ convergence if there exists $A_{n} \in G L_{d}(\mathbb{R})$ such that:

- (H1) ϕ is integrable;
- (H2) Denoting $\Sigma_{n}=A_{n}^{-1}$, we have $\Sigma_{n} \rightarrow 0$ and the vectors $Y_{n}=\Sigma_{n} X_{n}$ converge in law to μ.
- (H3) For all $k \geq 0$, we have

$$
\sup _{n \geq 1} \int_{|t| \geq a}\left|\varphi_{n}\left(\sum_{n}^{*} t\right)\right| \mathbf{1}_{\left|\Sigma_{n}^{*} t\right| \leq k} d t \rightarrow 0 \quad \text { as } a \rightarrow \infty
$$

Theorem (Delbaen, Kowalski, N)
Suppose that mod- ϕ convergence holds for $\left(X_{n}\right)$. Then for all continuous functions with compact support, we have:

$$
\operatorname{det}\left(A_{n}\right) \mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \frac{d \mu}{d \lambda}(0) \int f d \lambda .
$$

Consequently for all relatively compact Borel set B with boundary of Lebesgue measure 0 ,

$$
\operatorname{det}\left(A_{n}\right) \mathbb{P}\left(X_{n} \in B\right) \rightarrow \frac{d \mu}{d \lambda}(0) \lambda(B) .
$$

Link with mod-Gaussian Convergence

Proposition

If $(\mathrm{H} 1)$ holds and if there exists a continuous function $\psi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\varphi_{n}(t)=\psi(t) \phi\left(A_{n}^{*} t\right)(1+o(1))
$$

uniformly for $\left|\sum_{n}^{*} t\right| \leq k$ for $k>0$, then we have $\bmod -\phi$ convergence.

Useful Lemma

Lemma

Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a continuous function with compact support. Then for each $\eta>0$ we can find two integrable functions g_{1}, g_{2} such that
(i) $\hat{\mathrm{g}}_{1}$ and $\hat{\mathrm{g}}_{2}$ have compact support;
(ii) $g_{2} \leq f \leq g_{1}$,
(iii) $\int_{\mathbb{R}^{d}}\left(g_{1}-g_{2}\right)(t) d t \leq \eta$.

Sketch of the proof of the Theorem

We can assume that f is continuous, integrable with \hat{f} having compact support. We write

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=\int_{\mathbb{R}^{d}} f(x) d \mu_{n}(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \varphi_{n}(t) \hat{f}(-t) d t .
$$

Change of variables:

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=(2 \pi)^{-d}\left|\operatorname{det} \Sigma_{n}\right| \int_{\left|\Sigma_{n}^{*} s\right| \leq k} \varphi_{n}\left(\Sigma_{n}^{*} s\right) \hat{f}\left(-\Sigma_{n}^{*} s\right) d t .
$$

The integrand converges piecewise to $\varphi(s) \hat{f}(0)$.

The Winding Number of the Complex Brownian Motion

Let $\left(W_{t}\right)_{t \geq 0}$ be a complex BM starting at 1 . Let $\left(\theta_{t}\right)_{t \geq 0}$ be the argument of W, starting at 0 and defined by continuity. Spitzer theorem asserts that

$$
\frac{2 \theta_{t}}{\log t} \rightarrow \mathcal{C}
$$

where the convergence is in law and where \mathcal{C} stands for a random variable with the Cauchy distribution with density $\frac{1}{\pi} \frac{d x}{1+x^{2}}$.

Theorem

We have the following local limit theorem for the winding number:

$$
\frac{\log t}{2} \mathbb{P}\left(\theta_{t} \in(a, b)\right) \rightarrow \frac{b-a}{\pi} .
$$

This is a situation where we are in the stronger mod-Cauchy convergence situation with an explicitly computable limiting function involving Bessel functions.

Random Matrices

Theorem

For B a suitable Borel set of \mathbb{C},

$$
\mathbb{P}\left(P_{n} \in B\right) \sim \frac{1}{\pi \log n} \lambda(B) .
$$

Conjecture for the Riemann zeta function

Conjecture

For any suitable Borel subset of \mathbb{C}, we have:

$$
\lim _{T \rightarrow \infty} \frac{1 / 2 \log \log T}{T} \lambda\{t \in[0, T] \mid \log \zeta(1 / 2+i t) \in B\}=\frac{\lambda(B)}{2 \pi} .
$$

This conjecture is true if for instance one can show that for all $k>0$, there exists $C_{k}>0$ such that

$$
\left|\frac{1}{T} \int_{0}^{T} \exp (i t \cdot \log \zeta(1 / 2+i u)) d u\right| \leq \frac{C_{k}}{1+|t|^{4}(\log \log T)^{2}}
$$

for all $T \geq 1$ and $|t| \leq k$.

Theorem [Kowalski-N]

The set of central values of the L-functions attached to non-trivial primitive Dirichlet characters of $\mathbb{F}_{p}[X]$, where p ranges over primes, is dense in \mathbb{C}.

For L-functions of hyper elliptic curves we have:

Theorem [Kowalski-N]

Let $\mathcal{H}_{g}\left(\mathbb{F}_{q}\right)$ be the set of square free, monic, polynomials of degree $2 g+1$ in $\mathbb{F}_{q}[X]$. Fix a non-empty open interval $(\alpha, \beta) \subset(0, \infty)$. For all g large enough we have

$$
\liminf _{q \rightarrow \infty} \frac{1}{\left|\mathcal{H}_{g}\left(\mathbb{F}_{q}\right)\right|}\left|\left\{f \in \mathcal{H}_{g}\left(\mathbb{F}_{q}\right), \frac{L\left(C_{f}, 1 / 2\right)}{\sqrt{\pi g / 2}} \in(\alpha, \beta)\right\}\right| \gg \frac{1}{\sqrt{\log g}} .
$$

