On the 2-part of the class group of $\mathbb{Z}[\sqrt{-2 p}]$ for

 $p \equiv-1 \bmod 4$Djordjo Milovic
Institute for Advanced Study

September 26, 2016

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.
Unlike \mathbb{Z}, a number ring might not have unique prime factorization:

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.
Unlike \mathbb{Z}, a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$
10=2 \cdot 5
$$

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.
Unlike \mathbb{Z}, a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$
10=2 \cdot 5=(2+\sqrt{-6}) \cdot(2-\sqrt{-6})
$$

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.
Unlike \mathbb{Z}, a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$
10=2 \cdot 5=(2+\sqrt{-6}) \cdot(2-\sqrt{-6})
$$

However, a(n integrally closed) number ring always has unique prime ideal factorization:

Number rings

In number theory, Diophantine equations over \mathbb{Z} are often solved in number rings.

Example: $x^{2}+y^{2}=z^{2} \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.
Example: $x^{p}+y^{p}=z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right]$.
Unlike \mathbb{Z}, a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$
10=2 \cdot 5=(2+\sqrt{-6}) \cdot(2-\sqrt{-6})
$$

However, a(n integrally closed) number ring always has unique prime ideal factorization:

$$
(10)=\mathfrak{p}_{2}^{2} \cdot\left(\mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime}\right)=\left(\mathfrak{p}_{2} \mathfrak{p}_{5}\right) \cdot\left(\mathfrak{p}_{2} \mathfrak{p}_{5}^{\prime}\right)
$$

Class groups and units

Obstructions in passing from ideals to elements:

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}], \mathfrak{p}_{2}=(2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z} / 2 \mathbb{Z}$.

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Example: $\ln \mathbb{Z}[\sqrt{-6}], \mathfrak{p}_{2}=(2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Principal ideals may have infinitely many generators.

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}], \mathfrak{p}_{2}=(2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Principal ideals may have infinitely many generators.

Example: In $\mathbb{Z}[\sqrt{2017}]$,

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}], \mathfrak{p}_{2}=(2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Principal ideals may have infinitely many generators.

Example: $\ln \mathbb{Z}[\sqrt{2017}]$, if $(a, b)=$
(106515299132603184503844444, 2371696115380807559791481),

Class groups and units

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $\mathrm{Cl}:=\mathcal{I} / \mathcal{P}$.

Example: $\ln \mathbb{Z}[\sqrt{-6}], \mathfrak{p}_{2}=(2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Principal ideals may have infinitely many generators.

Example: $\ln \mathbb{Z}[\sqrt{2017}]$, if $(a, b)=$
(106515299132603184503844444, 2371696115380807559791481),
then

$$
(a+b \sqrt{2017}) \cdot(a-b \sqrt{2017})=-1
$$

A conjecture

A conjecture

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2 p}]$ is of the form

$$
\mathrm{Cl}(-8 p) \cong \mathbb{Z} / 2^{r} \mathbb{Z} \times(\text { odd }),
$$

with $r \geq 1$.

A conjecture

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2 p}]$ is of the form

$$
\mathrm{Cl}(-8 p) \cong \mathbb{Z} / 2^{r} \mathbb{Z} \times(\text { odd }),
$$

with $r \geq 1$. We focus on the case $p \equiv-1 \bmod 4$.

A conjecture

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2 p}]$ is of the form

$$
\mathrm{Cl}(-8 p) \cong \mathbb{Z} / 2^{r} \mathbb{Z} \times(\text { odd }),
$$

with $r \geq 1$. We focus on the case $p \equiv-1 \bmod 4$. Let

$$
N\left(2^{k}, X\right)=\#\left\{p \leq X: p \equiv-1 \bmod 4,2^{k} \mid \# \mathrm{Cl}(-8 p)\right\}
$$

A conjecture

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2 p}]$ is of the form

$$
\mathrm{Cl}(-8 p) \cong \mathbb{Z} / 2^{r} \mathbb{Z} \times(\text { odd })
$$

with $r \geq 1$. We focus on the case $p \equiv-1 \bmod 4$. Let

$$
\begin{aligned}
& N\left(2^{k}, X\right)=\#\left\{p \leq X: p \equiv-1 \bmod 4,2^{k} \mid \# \mathrm{Cl}(-8 p)\right\} . \\
& 2^{k} \quad N\left(2^{k}, 10^{6}\right) \quad N\left(2^{k}, 10^{6}\right) / \pi\left(10^{6}\right) \\
& 239322 \quad 50.09 \% \\
& 419669 \quad 25.06 \% \\
& 8 \quad 9837 \text { 12.53\% } \\
& 165027 \text { 6.40\% } \\
& 32 \quad 2482 \text { 3.16\% } \\
& 6412711.62 \%
\end{aligned}
$$

A conjecture

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2 p}]$ is of the form

$$
\mathrm{Cl}(-8 p) \cong \mathbb{Z} / 2^{r} \mathbb{Z} \times(\text { odd })
$$

with $r \geq 1$. We focus on the case $p \equiv-1 \bmod 4$. Let

$$
\begin{aligned}
& N\left(2^{k}, X\right)=\#\left\{p \leq X: p \equiv-1 \bmod 4,2^{k} \mid \# \mathrm{Cl}(-8 p)\right\} . \\
& 2^{k} \quad N\left(2^{k}, 10^{6}\right) \quad N\left(2^{k}, 10^{6}\right) / \pi\left(10^{6}\right) \\
& 239322 \quad 50.09 \% \\
& 419669 \quad 25.06 \% \\
& 8 \quad 9837 \text { 12.53\% } \\
& 165027 \quad 6.40 \% \\
& 32 \quad 2482 \text { 3.16\% } \\
& 6412711.62 \%
\end{aligned}
$$

Conjecture
$N\left(2^{k}, X\right) \sim 2^{-k} \pi(X)$ as $X \rightarrow+\infty$ for all $k \geq 1$.

Some results

Some results

Theorem (Rédei, 1934)
$N(4, X) \sim \frac{1}{4} \pi(X)$ as $X \rightarrow+\infty$.

Some results

Theorem (Rédei, 1934)
$N(4, X) \sim \frac{1}{4} \pi(X)$ as $X \rightarrow+\infty$.

Theorem (Hasse, 1969)
$N(8, X) \sim \frac{1}{8} \pi(X)$ as $X \rightarrow+\infty$.

Some results

Theorem (Rédei, 1934)
$N(4, X) \sim \frac{1}{4} \pi(X)$ as $X \rightarrow+\infty$.

Theorem (Hasse, 1969)
$N(8, X) \sim \frac{1}{8} \pi(X)$ as $X \rightarrow+\infty$.

Theorem (M., 2015)
$N(16, X) \sim \frac{1}{16} \pi(X)$ as $X \rightarrow+\infty$.

Criteria for divisibility by powers of 2

$$
4 \mid \# \mathrm{Cl}(-8 p) \quad \Longleftrightarrow \quad p \equiv-1 \bmod 8
$$

(Rédei, 1934)

Criteria for divisibility by powers of 2

$$
\begin{aligned}
4 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 8 \quad \text { (Rédei, 1934) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right) \equiv-1 \bmod 8
\end{aligned}
$$

Criteria for divisibility by powers of 2

$$
\begin{aligned}
4 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 8 \quad \text { (Rédei, 1934) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right) \equiv-1 \bmod 8 \\
8 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 16 \quad \text { (Hasse, 1969) }
\end{aligned}
$$

Criteria for divisibility by powers of 2

$$
\begin{aligned}
4 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 8 \quad \text { (Rédei, 1934) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right) \equiv-1 \bmod 8 \\
8 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 16 \quad(\text { Hasse, 1969) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{16}\right) / \mathbb{Q}\right) \equiv-1 \bmod 16
\end{aligned}
$$

Criteria for divisibility by powers of 2

$$
\begin{aligned}
4 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 8 \quad \text { (Rédei, 1934) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}\right) \equiv-1 \bmod 8 \\
8 \mid \# \mathrm{Cl}(-8 p) & \Longleftrightarrow p \equiv-1 \bmod 16 \quad \text { (Hasse, 1969) } \\
& \Longleftrightarrow \operatorname{Frob}\left(p ; \mathbb{Q}\left(\zeta_{16}\right) / \mathbb{Q}\right) \equiv-1 \bmod 16
\end{aligned}
$$

Theorem (Čebotarev, 1922, + La Vallée Poussin, 1899) Let M / \mathbb{Q} be a normal extension with Galois group G. Let C be a union of conjugacy classes in G. Then, as $X \rightarrow+\infty$,

$$
\begin{aligned}
\pi(X ; M / \mathbb{Q}, C) & :=\#\{p \leq X: \operatorname{Frob}(p ; M / \mathbb{Q}) \subset C\} \\
& =\frac{\# C}{\# G} \pi(X)+O\left(X \exp \left(-c_{2} \sqrt{\log X}\right)\right)
\end{aligned}
$$

for some $c>0$ that depends only on M / \mathbb{Q}.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$. The field M_{D} is called a governing field for the 2^{k}-rank in the family $\{\mathbb{Q}(\sqrt{D p})\}_{p}$.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$. The field M_{D} is called a governing field for the 2^{k}-rank in the family $\{\mathbb{Q}(\sqrt{D p})\}_{p}$.

Theorem (Stevenhagen, 1989)
Governing fields for the 8-rank exist.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$. The field M_{D} is called a governing field for the 2^{k}-rank in the family $\{\mathbb{Q}(\sqrt{D p})\}_{p}$.

Theorem (Stevenhagen, 1989)
Governing fields for the 8-rank exist.
No governing field for the 16 -rank has ever been found.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$. The field M_{D} is called a governing field for the 2^{k}-rank in the family $\{\mathbb{Q}(\sqrt{D p})\}_{p}$.

Theorem (Stevenhagen, 1989)
Governing fields for the 8-rank exist.
No governing field for the 16-rank has ever been found. Instead, write

$$
p=u^{2}-2 v^{2}
$$

where u and v are positive integers and $u \equiv 1 \bmod 16$.

Governing fields

Conjecture (Cohn-Lagarias, 1983)
Let D be an integer and let $k \geq 1$. Then there exists a normal extension M_{D} / \mathbb{Q} such that the 2^{k}-rank of $\mathrm{Cl}(D p)$ (when $D p$ is a fundamental discriminant) is determined by $\operatorname{Frob}\left(p ; M_{D} / \mathbb{Q}\right)$. The field M_{D} is called a governing field for the 2^{k}-rank in the family $\{\mathbb{Q}(\sqrt{D p})\}_{p}$.

Theorem (Stevenhagen, 1989)
Governing fields for the 8-rank exist.
No governing field for the 16-rank has ever been found. Instead, write

$$
p=u^{2}-2 v^{2}
$$

where u and v are positive integers and $u \equiv 1 \bmod 16$. Then

$$
16 \left\lvert\, \# \mathrm{Cl}(-8 p) \Longleftrightarrow\left(\frac{v}{u}\right)=1 . \quad\right. \text { (Leonard-Williams, 1982) }
$$

The main result

As $X \rightarrow \infty$, we have

$$
\sum_{\substack{p \leq X \\ p=-1 \bmod 16}}\left(\frac{v}{u}\right) \ll X_{200}^{200} .
$$

The main result

As $X \rightarrow \infty$, we have

$$
\sum_{\substack{p \leq X \\ p \equiv-1 \bmod 16}}\left(\frac{v}{u}\right) \ll X^{\frac{199}{200}}
$$

$$
\begin{array}{cc}
\sigma \leq 1-\frac{c}{\log t} & \sigma \leq 1-\delta \\
\ll X \exp \left(-c^{\prime} \sqrt{\log X}\right) & \ll{ }_{\epsilon} X^{1-\delta+\epsilon}
\end{array}
$$

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1} .
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$.

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1} .
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$.

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1} .
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's.

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1}
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^{+} \leq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}$:

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1}
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^{+} \leq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right) / \mathbb{Q}$,

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1} .
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^{+} \leq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right) / \mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory"

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1}
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^{+} \leq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right) / \mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory" for the unique unramified at finite primes C_{8}-extension $\mathrm{H}_{8} / \mathbb{Q}(\sqrt{2 p})$ to be totally real.

A related open problem

For a real number $X>3$, let

$$
\delta(X)=\#\left\{p \leq X: x^{2}-2 p y^{2}=-1 \text { is solvable }\right\} \cdot \pi(X)^{-1}
$$

Let $\delta^{-}=\liminf _{X \rightarrow+\infty} \delta(X)$ and $\delta^{+}=\lim \sup _{X \rightarrow+\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^{-}=\delta^{+}=\frac{1}{3}$. The best known bounds are

$$
\frac{5}{16} \leq \delta^{-} \leq \delta^{+} \leq \frac{3}{8}
$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^{+} \leq \frac{3}{8}-\frac{1}{32}=\frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}\left(\zeta_{16}, \sqrt[4]{2}\right) / \mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory" for the unique unramified at finite primes C_{8}-extension $\mathrm{H}_{8} / \mathbb{Q}(\sqrt{2 p})$ to be totally real. One approach: non-abelian class field theory over $\mathbb{Q}(\sqrt{2})$.

Thank you for your attention!

A result of Friedlander, Iwaniec, Mazur, and Rubin (2013)

$\left\{a_{n}\right\}_{\mathfrak{n}} \subset \mathbb{C}$. If there exist two real numbers $0<\theta_{1}, \theta_{2}<1$ such that

$$
A_{\mathfrak{v}}(X):=\sum_{\substack{\text { Norm }(\mathrm{n}) \leq X \\ \mathrm{n} \equiv 0 \text { mod } \mathfrak{D}}} a_{\mathrm{n}}<_{\epsilon} X^{1-\theta_{1}+\epsilon}
$$

and
$B(M, N):=\sum_{\operatorname{Norm}(\mathfrak{m}) \leq M} \sum_{\operatorname{Norm}(\mathfrak{n}) \leq N} \alpha_{\mathfrak{m}} \beta_{\mathfrak{n}} a_{\mathfrak{m} \mathfrak{n}}<_{\epsilon}(M+N)^{\theta_{2}}(M N)^{1-\theta_{2}+\epsilon}$,
then

$$
S(X):=\sum_{\operatorname{Norm}(\mathfrak{p}) \leq X} a_{\mathfrak{p}}<_{\epsilon} X^{1-\frac{\theta_{1} \theta_{2}}{2+\theta_{2}}+\epsilon}
$$

Power-saving bounds for linear and bilinear sums in a_{n} imply a power-saving bound for sums over primes.

Handling the unit of infinite order

For $u+v \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with u odd and positive, define

$$
[u+v \sqrt{2}]:=\left(\frac{v}{u}\right) .
$$

Lemma

Let $u+v \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ such that u is odd and positive. Let $\varepsilon=1+\sqrt{2}$. Then

$$
[u+v \sqrt{2}]=\left[\varepsilon^{8}(u+v \sqrt{2})\right] .
$$

This allows us to define

$$
a_{n}:=[w]+\left[\varepsilon^{2} w\right]+\left[\varepsilon^{4} w\right]+\left[\varepsilon^{6} w\right],
$$

where w is any totally positive generator of \mathfrak{n}.

A fundamental domain for the action of ε

$$
\text { Let } \mathcal{D}:=\left\{(u, v) \in \mathbb{R}^{2}: u>0,-u<2 v \leq u\right\} \text {. }
$$

Lemma
Suppose that \mathfrak{n} is a non-zero ideal of $\mathbb{Z}[\sqrt{2}]$. Then \mathfrak{n} has a unique generator $u+v \sqrt{2}$ such that $(u, v) \in \mathcal{D}$.

Bounding linear sums

Recall that

$$
A_{\mathfrak{d}}(X)=\sum_{\substack{\text { Norm }(\mathfrak{n}) \leq X \\ \mathfrak{n} \equiv 0 \bmod \mathfrak{d}}} a_{\mathfrak{n}} .
$$

We sum $\left(\frac{v}{u}\right)$ over $\mathcal{R}(\mathfrak{d}, X)$ using machinery of short character sums.

We obtain

$$
A_{\mathfrak{v}}(X) \ll_{\epsilon} X^{\frac{5}{6}+\epsilon}
$$

i.e. cancellation with $\theta_{1}=\frac{1}{6}$.

Bounding bilinear sums

Recall that $B(M, N)=\sum_{w \in \mathcal{D}(M)} \sum_{z \in \mathcal{D}(N)} \alpha_{w} \beta_{z}[w z]$.
Lemma
Let $w=a+b \sqrt{2}$ and $z=c+d \sqrt{2}$ be two primitive, totally positive, odd elements of $\mathbb{Z}[\sqrt{2}]$. Then

$$
[w z] \sim[w][z] \gamma(w, z)
$$

where

$$
\gamma(w, z):=\left(\frac{c+2 b d / a}{a^{2}-2 b^{2}}\right) .
$$

Hence we are left to bound

$$
Q(M, N):=\sum_{w \in \mathcal{D}(M)} \sum_{z \in \mathcal{D}(N)} \alpha_{w} \beta_{z} \gamma(w, z) .
$$

This is a result about double oscillation. Get cancellation with $\theta_{2}=\frac{1}{12}$.

