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In number theory, Diophantine equations over Z are often solved in
number rings.

2~ Gaussian integers Z[i].

Example: x? + y? =z
Example: xP + yP = zP ~ cyclotomic integers Z[(p).

Unlike Z, a number ring might not have unique prime factorization:
for instance, in Z[v/—6],

10=2-5=2+V-6)-(2—V-6).

However, a(n integrally closed) number ring always has unique
prime ideal factorization:

(10) = p5 - (psp5) = (p2bs) - (p2ps)-
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Class groups and units

Obstructions in passing from ideals to elements:
1. Non-principality ~~ class group Cl :=Z/P.

Example: In Z[\/—6], p2 = (2,v/—6) is not principal and in fact
Cl = 7,/27.

2. Principal ideals may have infinitely many generators.
Example: In Z[v/2017], if (a,b) =
(106515299132603184503844444,2371696115380807559791481),

then

(a+ bV/2017) - (a — bV2017) = —1.
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A conjecture
Gauss proved that the class group of Z[/—2p] is of the form

Cl(—8p) = Z/2"Z x (odd),
with r > 1. We focus on the case p = —1 mod 4. Let
N@2K X)=#{p < X :p=—1mod 4, 25| #Cl(—8p)}.

2K N(2k,10%)  N(2k 10°)/7(10°)

2 39322 50.09%
4 19669 25.06%
8 9837 12.53%
16 5027 6.40%
32 2482 3.16%
64 1271 1.62%

Conjecture
N2k, X) ~ 27kx(X) as X — +oo for all k > 1.
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Some results

Theorem (Rédei, 1934)
N(4,X) ~ Ltr(X) as X — +oc.

Theorem (Hasse, 1969)
N(8,X) ~ gm(X) as X — +ooc.

Theorem (M., 2015)
N(16,X) ~ &m(X) as X — +oc.
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Criteria for divisibility by powers of 2

4|#Cl(—-8p) <= p=-1mod38 (Rédei, 1934)
<= Frob(p; Q(¢s)/Q) = —1 mod 8

8|#Cl(—8p) <= p=-1mod16 (Hasse, 1969)
<= Frob(p; Q(¢16)/Q) = —1 mod 16

Theorem (Cebotarev, 1922, 4 La Vallée Poussin, 1899)

Let M/Q be a normal extension with Galois group G. Let C be a
union of conjugacy classes in G. Then, as X — 400,

T(X;M/Q,C) = #{p<X: Frob(p;M/Q) C C}
= £50(X) + O (Xexp(— oo X))

for some ¢ > 0 that depends only on M/Q.
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Governing fields

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let k > 1. Then there exists a normal

extension Mp/Q such that the 2%-rank of C1(Dp) (when Dp is a
fundamental discriminant) is determined by Frob(p; Mp/Q).The
field Mp is called a governing field for the 2%-rank in the family

{Q(VDp)}p.
Theorem (Stevenhagen, 1989)

Governing fields for the 8-rank exist.

No governing field for the 16-rank has ever been found. Instead,

write
p= u? —2v?

where u and v are positive integers and u =1 mod 16. Then

16| 4 C1(—8p) < (g) — 1. (Leonard-Williams, 1982)
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The main result
As X — oo, we have
> <K> < X0,
u

p<X
p=—1 mod 16

051—@ c<1-4§

< Xexp(—c'v/log X) L X1ote
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A related open problem

For a real number X > 3, let
5(X) = #{p < X : x> —2py? = —1 is solvable} - w(X) 1.

Let 6~ = liminfx_, 4o 0(X) and 61 = limsupy_, , o (X).
Stevenhagen (1992) conjectured that 6~ = 6" = 3. The best

known bounds are 3
- +

S <0<t <
and they follow from results available in the 1930’s. To make
progress on the upper bound and obtain §+ < % — % = %:
in the case that p is a prime number that splits completely in
Q(¢16, v/2)/Q, one would need to find a criterion “conducive to
analytic number theory” for the unique unramified at finite primes
Cs-extension Hg/Q(1/2p) to be totally real. One approach:

non-abelian class field theory over Q(v/2).



Thank you for your attention!



A result of Friedlander, Iwaniec, Mazur, and Rubin (2013)

{an}n C C. If there exist two real numbers 0 < 01,6, < 1 such

that
A(X) = Y an < X0t
Norm(n)<X
n=0 mod 0
and
B(M,N):= > Y mBram K (M+N)?2(MN)-0Fe,
Norm(m)<M Norm(n)<N
then
SX)= > @< xlahi e,
Norm(p)<X

Power-saving bounds for linear and bilinear sums in a, imply a
power-saving bound for sums over primes.



Handling the unit of infinite order

For u+ vv2 € Z[\@] with u odd and positive, define

[u+ V\/i] = <K> .

u

Lemma
Let u+ vv/2 € Z[V/?2] such that u is odd and positive. Let
e=1++/2. Then

[u+vv2] = [¥(u+ vV2)].
This allows us to define
an = [w] + [2w] + [*w] + [°w],

where w is any totally positive generator of n.



A fundamental domain for the action of ¢

Let D:= {(u,v) ER?: u>0,—u < 2v < u}.

v

Lemma
Suppose that n is a
non-zero ideal of

Z[\/2]. Thenn has a
unique generator

u + vv/2 such that
(u,v) e D.




Bounding linear sums

Recall that

AX)= D a.
Norm(n)<X
n=0 mod 0

We sum (%) over
R(d, X) using
machinery of short
character sums.

We obtain
Aa(X) <e X3¢,

i.e. cancellation

with 6, = %.

R(X)

R(0, X)




Bounding bilinear sums
Recall that B(M, N) = 3", cpm) 2_zep(n) OwBz[wz].

Lemma
Let w=a+ b2 and z = ¢ + d\/2 be two primitive, totally
positive, odd elements of Z[\/2]. Then

[wz] ~ [w][z]y(w, 2),

[ c+2bd/a
v(w,z) = < 2 oh? ) .
Hence we are left to bound

Q(M, N) := Z Z awB2v(w, 2).

weD(M) zeD(N)

where

This is a result about double oscillation. Get cancellation with
0, = L.
12



