On the 2-part of the class group of $\mathbb{Z}[\sqrt{-2p}]$ for $p \equiv -1 \mod 4$

Djordjo Milovic

Institute for Advanced Study

September 26, 2016

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: $x^2 + y^2 = z^2 \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: $x^2 + y^2 = z^2 \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.

Example: $x^p + y^p = z^p \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_p]$.

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

Example: $x^2 + y^2 = z^2 \rightsquigarrow$ Gaussian integers $\mathbb{Z}[i]$.

Example: $x^p + y^p = z^p \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_p]$.

Unlike \mathbb{Z} , a number ring might **not** have unique prime factorization:

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

Example:
$$x^2 + y^2 = z^2 \rightsquigarrow$$
 Gaussian integers $\mathbb{Z}[i]$.

Example: $x^{p} + y^{p} = z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_{p}]$.

Unlike $\mathbb{Z},$ a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}],$

$$10 = 2 \cdot 5$$

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

Example:
$$x^2 + y^2 = z^2 \rightsquigarrow$$
 Gaussian integers $\mathbb{Z}[i]$.

Example: $x^{p} + y^{p} = z^{p} \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_{p}]$.

Unlike $\mathbb{Z},$ a number ring might not have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}],$

$$10 = 2 \cdot 5 = (2 + \sqrt{-6}) \cdot (2 - \sqrt{-6}).$$

In number theory, Diophantine equations over $\ensuremath{\mathbb{Z}}$ are often solved in number rings.

Example:
$$x^2 + y^2 = z^2 \rightsquigarrow$$
 Gaussian integers $\mathbb{Z}[i]$.

Example: $x^p + y^p = z^p \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_p]$.

Unlike \mathbb{Z} , a number ring might **not** have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$10 = 2 \cdot 5 = (2 + \sqrt{-6}) \cdot (2 - \sqrt{-6}).$$

However, a(n integrally closed) number ring always has **unique prime ideal factorization**:

In number theory, Diophantine equations over $\mathbb Z$ are often solved in number rings.

Example:
$$x^2 + y^2 = z^2 \rightsquigarrow$$
 Gaussian integers $\mathbb{Z}[i]$.

Example: $x^p + y^p = z^p \rightsquigarrow$ cyclotomic integers $\mathbb{Z}[\zeta_p]$.

Unlike \mathbb{Z} , a number ring might **not** have unique prime factorization: for instance, in $\mathbb{Z}[\sqrt{-6}]$,

$$10 = 2 \cdot 5 = (2 + \sqrt{-6}) \cdot (2 - \sqrt{-6}).$$

However, a(n integrally closed) number ring always has **unique prime ideal factorization**:

$$(10) = \mathfrak{p}_2^2 \cdot (\mathfrak{p}_5 \mathfrak{p}_5') = (\mathfrak{p}_2 \mathfrak{p}_5) \cdot (\mathfrak{p}_2 \mathfrak{p}_5').$$

Obstructions in passing from ideals to elements:

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}]$, $\mathfrak{p}_2 = (2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z}/2\mathbb{Z}$.

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}]$, $\mathfrak{p}_2 = (2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z}/2\mathbb{Z}$.

2. Principal ideals may have infinitely many generators.

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}]$, $\mathfrak{p}_2 = (2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z}/2\mathbb{Z}$.

2. Principal ideals may have infinitely many generators.

Example: In $\mathbb{Z}[\sqrt{2017}]$,

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}]$, $\mathfrak{p}_2 = (2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z}/2\mathbb{Z}$.

2. Principal ideals may have infinitely many generators.

Example: In $\mathbb{Z}[\sqrt{2017}]$, if (a, b) =

(106515299132603184503844444, 2371696115380807559791481),

Obstructions in passing from ideals to elements:

1. Non-principality \rightsquigarrow class group $Cl := \mathcal{I}/\mathcal{P}$.

Example: In $\mathbb{Z}[\sqrt{-6}]$, $\mathfrak{p}_2 = (2, \sqrt{-6})$ is not principal and in fact $\mathrm{Cl} \cong \mathbb{Z}/2\mathbb{Z}$.

2. Principal ideals may have infinitely many generators.

Example: In $\mathbb{Z}[\sqrt{2017}]$, if (a, b) =

(106515299132603184503844444, 2371696115380807559791481),

then

$$(a + b\sqrt{2017}) \cdot (a - b\sqrt{2017}) = -1.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2p}]$ is of the form

 $\operatorname{Cl}(-8p) \cong \mathbb{Z}/2^r \mathbb{Z} \times (\operatorname{odd}),$

with $r \geq 1$.

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2p}]$ is of the form

$$\operatorname{Cl}(-8p) \cong \mathbb{Z}/2^r \mathbb{Z} \times (\operatorname{odd}),$$

with $r \ge 1$. We focus on the case $p \equiv -1 \mod 4$.

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2p}]$ is of the form

$$\operatorname{Cl}(-8p) \cong \mathbb{Z}/2^{r}\mathbb{Z} \times (\operatorname{odd}),$$

with $r \geq 1$. We focus on the case $p \equiv -1 \mod 4$. Let

 $N(2^k, X) = \#\{p \le X : p \equiv -1 \mod 4, \ 2^k \mid \#\mathrm{Cl}(-8p)\}.$

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2p}]$ is of the form

$$\operatorname{Cl}(-8p) \cong \mathbb{Z}/2^r \mathbb{Z} \times (\operatorname{odd}),$$

with $r \geq 1$. We focus on the case $p \equiv -1 \mod 4$. Let

$$N(2^k, X) = \#\{p \le X : p \equiv -1 \mod 4, \ 2^k \mid \#\mathrm{Cl}(-8p)\}.$$

2^k	$N(2^{k}, 10^{6})$	$N(2^k, 10^6)/\pi(10^6)$
2	39322	50.09%
4	19669	25.06%
8	9837	12.53%
16	5027	6.40%
32	2482	3.16%
64	1271	1.62%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gauss proved that the class group of $\mathbb{Z}[\sqrt{-2p}]$ is of the form

$$\operatorname{Cl}(-8p) \cong \mathbb{Z}/2^r \mathbb{Z} \times (\operatorname{odd}),$$

with $r \geq 1$. We focus on the case $p \equiv -1 \mod 4$. Let

$$N(2^k, X) = \#\{p \le X : p \equiv -1 \mod 4, \ 2^k \mid \#\mathrm{Cl}(-8p)\}.$$

2 ^k	$N(2^{k}, 10^{6})$	$N(2^k, 10^6)/\pi(10^6)$
2	39322	50.09%
4	19669	25.06%
8	9837	12.53%
16	5027	6.40%
32	2482	3.16%
64	1271	1.62%

Conjecture

$$N(2^k, X) \sim 2^{-k} \pi(X)$$
 as $X \to +\infty$ for all $k \ge 1$.

Theorem (Rédei, 1934) $N(4, X) \sim \frac{1}{4}\pi(X) \text{ as } X \to +\infty.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Rédei, 1934) $N(4, X) \sim \frac{1}{4}\pi(X) \text{ as } X \to +\infty.$

Theorem (Hasse, 1969) $N(8, X) \sim \frac{1}{8}\pi(X) \text{ as } X \to +\infty.$

Theorem (Rédei, 1934) $N(4, X) \sim \frac{1}{4}\pi(X) \text{ as } X \to +\infty.$

Theorem (Hasse, 1969) $N(8, X) \sim \frac{1}{8}\pi(X) \text{ as } X \to +\infty.$

Theorem (M., 2015) $N(16, X) \sim \frac{1}{16}\pi(X) \text{ as } X \to +\infty.$

$$4|\#\operatorname{Cl}(-8p) \iff p \equiv -1 \mod 8$$
 (Rédei, 1934)

$$\begin{array}{rcl} 4|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 8 & (\mathsf{R\acute{e}dei}, \ 1934) \\ & \Longleftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_8)/\mathbb{Q}) \equiv -1 \bmod 8 \end{array}$$

$$\begin{array}{rcl} 4|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 8 & (\mathsf{R\acute{e}dei}, 1934) \\ & \Leftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_8)/\mathbb{Q}) \equiv -1 \bmod 8 \\ 8|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 16 & (\mathsf{Hasse}, 1969) \end{array}$$

$$\begin{array}{rcl} 4|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 8 & (\mathsf{R\acute{e}dei}, 1934) \\ & \Leftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_8)/\mathbb{Q}) \equiv -1 \bmod 8 \\ 8|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 16 & (\mathsf{Hasse}, 1969) \\ & \Leftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_{16})/\mathbb{Q}) \equiv -1 \bmod 16 \end{array}$$

$$\begin{array}{rcl} 4|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 8 & (\mathsf{R\acute{e}dei}, 1934) \\ & \Leftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_8)/\mathbb{Q}) \equiv -1 \bmod 8 \\ 8|\#\mathrm{Cl}(-8p) & \Longleftrightarrow & p \equiv -1 \bmod 16 & (\mathsf{Hasse}, 1969) \\ & \Leftrightarrow & \mathrm{Frob}(p; \mathbb{Q}(\zeta_{16})/\mathbb{Q}) \equiv -1 \bmod 16 \end{array}$$

Theorem (Čebotarev, 1922, + La Vallée Poussin, 1899) Let M/\mathbb{Q} be a normal extension with Galois group G. Let C be a union of conjugacy classes in G. Then, as $X \to +\infty$,

$$\begin{aligned} \pi(X; M/\mathbb{Q}, C) &:= & \#\{p \leq X : \operatorname{Frob}(p; M/\mathbb{Q}) \subset C\} \\ &= & \frac{\#C}{\#G} \pi(X) + O\left(X \exp(-c_2 \sqrt{\log X})\right) \end{aligned}$$

for some c > 0 that depends only on M/\mathbb{Q} .

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$.

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$. The field M_D is called a governing field for the 2^k -rank in the family $\{\mathbb{Q}(\sqrt{Dp})\}_p$.

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$. The field M_D is called a governing field for the 2^k -rank in the family $\{\mathbb{Q}(\sqrt{Dp})\}_p$.

Theorem (Stevenhagen, 1989)

Governing fields for the 8-rank exist.

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$. The field M_D is called a governing field for the 2^k -rank in the family $\{\mathbb{Q}(\sqrt{Dp})\}_p$.

Theorem (Stevenhagen, 1989)

Governing fields for the 8-rank exist.

No governing field for the 16-rank has ever been found.

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$. The field M_D is called a governing field for the 2^k -rank in the family $\{\mathbb{Q}(\sqrt{Dp})\}_p$.

Theorem (Stevenhagen, 1989)

Governing fields for the 8-rank exist.

No governing field for the 16-rank has ever been found. Instead, write

$$p=u^2-2v^2$$

where u and v are positive integers and $u \equiv 1 \mod 16$.

Governing fields

Conjecture (Cohn-Lagarias, 1983)

Let D be an integer and let $k \ge 1$. Then there exists a normal extension M_D/\mathbb{Q} such that the 2^k -rank of $\operatorname{Cl}(Dp)$ (when Dp is a fundamental discriminant) is determined by $\operatorname{Frob}(p; M_D/\mathbb{Q})$. The field M_D is called a governing field for the 2^k -rank in the family $\{\mathbb{Q}(\sqrt{Dp})\}_p$.

Theorem (Stevenhagen, 1989)

Governing fields for the 8-rank exist.

No governing field for the 16-rank has ever been found. Instead, write

$$p=u^2-2v^2$$

where u and v are positive integers and $u \equiv 1 \mod 16$. Then

$$16|\#\operatorname{Cl}(-8p) \iff \left(\frac{v}{u}\right) = 1.$$
 (Leonard-Williams, 1982)

The main result

As $X \to \infty$, we have

$$\sum_{\substack{p \leq X \\ p \equiv -1 \mod 16}} \left(\frac{v}{u}\right) \ll X^{\frac{199}{200}}.$$

<□ > < @ > < E > < E > E のQ @

The main result

As $X \to \infty$, we have

$$\sigma \le 1 - \frac{c}{\log t} \\ \ll X \exp(-c' \sqrt{\log X})$$

 $\sigma \leq 1 - \delta \ \ll_{\epsilon} X^{1 - \delta + \epsilon}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の��

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$.

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$.

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

and they follow from results available in the 1930's.

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^+ \leq \frac{3}{8} - \frac{1}{32} = \frac{11}{32}$:

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

(日) (同) (三) (三) (三) (○) (○)

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^+ \leq \frac{3}{8} - \frac{1}{32} = \frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}(\zeta_{16}, \sqrt[4]{2})/\mathbb{Q}$,

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^+ \leq \frac{3}{8} - \frac{1}{32} = \frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}(\zeta_{16}, \sqrt[4]{2})/\mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory"

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^+ \leq \frac{3}{8} - \frac{1}{32} = \frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}(\zeta_{16}, \sqrt[4]{2})/\mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory" for the unique unramified at finite primes C_8 -extension $H_8/\mathbb{Q}(\sqrt{2p})$ to be totally real.

For a real number X > 3, let

$$\delta(X) = \#\{p \leq X : x^2 - 2py^2 = -1 \text{ is solvable}\} \cdot \pi(X)^{-1}.$$

Let $\delta^- = \liminf_{X \to +\infty} \delta(X)$ and $\delta^+ = \limsup_{X \to +\infty} \delta(X)$. Stevenhagen (1992) conjectured that $\delta^- = \delta^+ = \frac{1}{3}$. The best known bounds are

$$\frac{5}{16} \le \delta^- \le \delta^+ \le \frac{3}{8},$$

and they follow from results available in the 1930's. To make progress on the upper bound and obtain $\delta^+ \leq \frac{3}{8} - \frac{1}{32} = \frac{11}{32}$: in the case that p is a prime number that splits completely in $\mathbb{Q}(\zeta_{16}, \sqrt[4]{2})/\mathbb{Q}$, one would need to find a criterion "conducive to analytic number theory" for the unique unramified at finite primes C_8 -extension $H_8/\mathbb{Q}(\sqrt{2p})$ to be totally real. One approach: non-abelian class field theory over $\mathbb{Q}(\sqrt{2})$.

Thank you for your attention!

A result of Friedlander, Iwaniec, Mazur, and Rubin (2013)

 $\{a_{\mathfrak{n}}\}_{\mathfrak{n}}\subset\mathbb{C}.$ If there exist two real numbers $0<\theta_1,\theta_2<1$ such that

$$A_{\mathfrak{d}}(X) := \sum_{\substack{\operatorname{Norm}(\mathfrak{n}) \leq X\\ \mathfrak{n} \equiv 0 \mod \mathfrak{d}}} a_{\mathfrak{n}} \ll_{\epsilon} X^{1-\theta_{1}+\epsilon}$$

and

$$B(M,N) := \sum_{\operatorname{Norm}(\mathfrak{m}) \leq M} \sum_{\operatorname{Norm}(\mathfrak{n}) \leq N} \alpha_{\mathfrak{m}} \beta_{\mathfrak{n}} a_{\mathfrak{m}\mathfrak{n}} \ll_{\epsilon} (M+N)^{\theta_2} (MN)^{1-\theta_2+\epsilon},$$

then

$$S(X) := \sum_{\operatorname{Norm}(\mathfrak{p}) \leq X} a_{\mathfrak{p}} \ll_{\epsilon} X^{1 - rac{ heta_1 heta_2}{2 + heta_2} + \epsilon}$$

Power-saving bounds for **linear** and **bilinear** sums in a_n imply a **power-saving** bound for sums over **primes**.

Handling the unit of infinite order

For $u + v\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with u odd and positive, define $[u + v\sqrt{2}] := \left(\frac{v}{u}\right).$

Lemma

Let $u + v\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ such that u is odd and positive. Let $\varepsilon = 1 + \sqrt{2}$. Then

$$[u+v\sqrt{2}]=[\varepsilon^8(u+v\sqrt{2})].$$

This allows us to define

$$a_{\mathfrak{n}} := [w] + [\varepsilon^2 w] + [\varepsilon^4 w] + [\varepsilon^6 w],$$

where w is any totally positive generator of n.

A fundamental domain for the action of ${\ensuremath{\varepsilon}}$

Let
$$\mathcal{D} := \{(u, v) \in \mathbb{R}^2 : u > 0, -u < 2v \leq u\}.$$

Lemma

Suppose that n is a non-zero ideal of $\mathbb{Z}[\sqrt{2}]$. Then n has a unique generator $u + v\sqrt{2}$ such that $(u, v) \in \mathcal{D}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bounding linear sums

Recall that

$$A_{\mathfrak{d}}(X) = \sum_{\substack{\operatorname{Norm}(\mathfrak{n}) \leq X\\ \mathfrak{n} \equiv 0 \text{ mod } \mathfrak{d}}} a_{\mathfrak{n}}.$$

We sum $\left(\frac{v}{u}\right)$ over $\mathcal{R}(\mathfrak{d}, X)$ using machinery of **short** character sums.

We obtain

$$A_{\mathfrak{d}}(X) \ll_{\epsilon} X^{\frac{5}{6}+\epsilon},$$

i.e. cancellation with $\theta_1 = \frac{1}{6}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bounding bilinear sums

Recall that
$$B(M, N) = \sum_{w \in \mathcal{D}(M)} \sum_{z \in \mathcal{D}(N)} \alpha_w \beta_z[wz].$$

Lemma

Let $w = a + b\sqrt{2}$ and $z = c + d\sqrt{2}$ be two primitive, totally positive, odd elements of $\mathbb{Z}[\sqrt{2}]$. Then

$$[wz] \sim [w][z]\gamma(w,z),$$

where

$$\gamma(w,z) := \left(\frac{c+2bd/a}{a^2-2b^2}\right).$$

Hence we are left to bound

$$Q(M,N) := \sum_{w \in \mathcal{D}(M)} \sum_{z \in \mathcal{D}(N)} \alpha_w \beta_z \gamma(w,z).$$

This is a result about **double oscillation**. Get cancellation with $\theta_2 = \frac{1}{12}$.