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Quantum topology

In the early 1980s, the Jones polynomial for knots and links in
3-space was introduced. Witten followed quickly with an
amplification of the Jones polynomial to 3-dimensional manifolds.

Straightaway, these quantum invariants solved some long-standing
problems in low-dimensional topology. However, their definition is
seemingly unrelated to any of the classically known topological and
geometric constructions. To this day there is still no good answer
to the question:

What topological or geometric properties do the Jones and Witten
quantum invariants measure?



Quantum topology

The Kau↵man bracket skein algebra of a surface has emerged as a
likely point of connection. In particular, it

• generalizes the (Kau↵man bracket formulation of) Jones’
polynomial invariant for links

• features in the Topological Quantum Field Theory description
of Witten’s 3-manifold invariant

• relates to hyperbolic geometry of surface, particularly the
SL2C-character variety



Plan for talk

1. Intro to the Kau↵man bracket skein algebra Sq
p⌃q.

2. How Sq
p⌃q is related to SL2C-character variety.

3. Representations of Sq
p⌃q.

This talk describes joint work with Francis Bonahon.



The Kau↵man bracket for links in S3

The Kau↵man bracket xKy is an invariant of isotopy classes of
framed links in S

3. The Jones polynomial can be seen as a
modification of it for unframed, oriented links.

Choose a variable q “ e

2⇡i~
P C ´ t0u and a square root q

1
2 .

The Kau↵man bracket of a framed link K in the 3–sphere S

3

is evaluated from a diagram using the relations:

x y “ q

1
2
x y ` q

´ 1
2
x y

x y “ p´q ´ q

´1
qx y.

Convention: Link diagrams are drawn with framing perpendicular to the

blackboard.
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Example

x y “ q

1
2
x y ` q

´ 1
2
x y

“ q

1
2
p´q ´ q

´1
q

2
` q

´ 1
2
p´q ´ q

´1
q

“ ´q

3
2
p´q ´ q

´1
q,

x y “ ´q ´ q

´1.

This shows that (as framed links) ‰ .

Observation: The Kau↵man bracket can be written as a linear
combination of diagrams without crossings, which bound disks in
S

3. This implies xKy P Zrq

1
2 , q´ 1

2
s.
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Kau↵man bracket in S3 is multiplicative

Observation:

x y “ x y ¨ x y

“

x y

Juxtaposition/superposition defines a (commutative) multiplication
of the Kau↵man bracket in S

3:

xK1y ¨ xK2y “ xK1 “next to” K2y “ xK1 “over” K2y

.
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We consider the structure of the Kau↵man bracket of all possible
framed links in S

3.

Choose a variable q “ e

2⇡i~
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pS

3
q to be the Zrq

1
2 , q´ 1

2
s-module consisting of linear

combinations of framed links K in S
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Example

•
D loops not bounding disks ùñ many generators of Sq

p⌃q.

x y “ q

1
2
x y ` q

´ 1
2
x y

•
‰ ùñ multiplication is not commutative.

x y ¨ x y “ x y

‰

x y ¨ x y “ x y



Kau↵man bracket skein algebra of a surface

Remarks

• Every 3-manifold can be decomposed into two handlebodies
along a closed surface.

• In Witten’s TQFT for qN “ 1,

⌃ fi›Ñ V

q
p⌃q

V

q
p⌃q is a finite dim. quotient of Sq

pMq, where BM “ ⌃.
The action Sq

p⌃q ü Sq
pMq provides an irreducible repn

⇢Witten : Sq
p⌃q ›Ñ EndpV

q
p⌃qq
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Algebraic Properties of Sqp⌃q

1. Sq
p⌃q is not commutative, except when:

• ⌃ is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2

punctures, or annulus

•
q “ 1, when q

1
2

“ q

´ 1
2
and “ ˘ ˘ “ .

2. Z pSq
p⌃qq contains puncture loops.

3. (Przytycki, Turaev, 1990) Sq
p⌃q is (usually) infinitely generated

as a module, by framed links whose projection to ⌃ has no

crossings.

4. (Bullock, 1999) Sq
p⌃q is finitely generated as an algebra.
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Algebraic Properties of Sqp⌃q (very recently proved)

1. (Przytycki-Sikora, Le, Bonahon-W.) Sq
p⌃q has no zero divisors.

2. (Przytycki-Sikora) Sq
p⌃q is Noetherian.

3. (Frohman-Kania-Bartoszynska-Le) Sq
p⌃q is almost Azyumaya.

4. (Bonahon-W., Le, Frohman-Kania-Bartozynska-Le)

Its center Z pSq
p⌃qq is determined.



Part II

How Sqp⌃q is related to hyperbolic geometry



Hyperbolic geometry

Let ⌃ be a surface with finite topological type.

Its Teichmuller space T p⌃q consists of isotopy classes of complete
hyperbolic metrics on ⌃ with finite area.

Every metric m P T p⌃q corresponds to a monodromy
representation rm : ⇡1p⌃q Ñ Isom

`
pH2

q “ PSL2pRq, up to
conjugation.
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The SL2C-character variety RSL2Cp⌃q is an algebraic variety that
contains a copy of Teichmuller space T p⌃q as a real subvariety.

Note that rr1s “ rr2s if and only if trace ˝ r1 “ trace ˝ r2.
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Trace functions

For every loop K in ⌃, define the trace function

TrK : RSL2Cp⌃q Ñ C by TrK prq “ ´traceprprK sqq.

The trace functions generate the function algebra CrRSL2Cp⌃qs

(consisting of all regular functions RSL2Cp⌃q Ñ C).

Important observation: The trace functions TrK satisfy the
Kau↵man bracket skein relation when q

1
2

“ ´1,

“ p´1q ` p´1q

“ .

from identity TrpMqTrpNq “ TrpMNq ` TrpMN

´1
q in SL2C.
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Skein algebras and hyperbolic geometry

Theorem (. . . , Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)

For q

1
2

“ ´1, there is an isomorphism between the skein algebra

S1
p⌃q and the function algebra CrRSL2Cp⌃qs given by

rK s

P

S1
p⌃q –Ñ

TrK

P

CrRSL2Cp⌃qs.

Alternatively, there is an isomorphism

t⇢ : S1
p⌃q Ñ Cu –Ñ RSL2Cp⌃q.

Notice that S1
p⌃q and CrRSL2Cp⌃qs are commutative.

Can we think of Sq
p⌃q as a non-commutative version of them?

. . . Yes!
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Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in Sq
p⌃q has the form

rK srLs ´ rLsrK s “ ´

“ pq

1
2

´ q

´ 1
2
q ´ pq

1
2

´ q

´ 1
2
q

.

And when q “ e

2⇡i~,

rK srLs ´ rLsrK s “ 2⇡i~ p

tTrK ,TrLu

q ` higher order terms in ~

where t , u is the Weil-Petersson-Atiyah-Bott-Goldman Poisson
bracket, using computations of Goldman.
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Skein algebra is quantization of Teichmuller space

Theorem (Turaev )

Sq
p⌃q is a quantization of RSL2Cp⌃q with respect to the

Weil-Petersson Poisson structure.

Alternatively,

⇢ : Sq
p⌃q Ñ C P RSL2Cp⌃q

⇢ : Sq
p⌃q Ñ EndpCd

q P quantization of RSL2Cp⌃q

Often, we say: Sq
p⌃q is a quantization of Teichmuller space T p⌃q.

There’s another quantization of Teichmuller space, related to
quantum cluster algebras. (Chekhov-Fock, Kashaev, Bonahon et al.)
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Another quantization of Teichmuller space

Suppose ⌃ has at least one puncture, with ideal triangulation �.
The shear parameters xi prq P R along edges �1, . . .�n completely
describe a hyperbolic metric r P RSL2Cp⌃q.

Xi

The trace functions TrK are polynomials in x

˘ 1
2

i .
So the function algebra CrRSL2Cp⌃qs is also generated by

commutative shear parameters x
˘ 1

2
1 , . . . , x

˘ 1
2

n .
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Another quantization of Teichmuller space

Following the theory of quantum cluster algebras, Chekhov-Fock
define the quantum Teichmuller space T q

p⌃q to be the algebra
generated by non-commutative shear parameters Z˘1

1 , . . . ,Z˘1
n

•
ZiZj “ q

˘1
ZjZi if the ith and jth edges share a triangle,

ZiZj “ ZjZi otherwise

• relations for independence from choice of ideal triangulation

Theorem (Bonahon-W. )

There exists an injective map Sq
p⌃q ãÑ T q

p⌃q

which is compatible with Sq
p⌃q as a quantization of RSL2Cp⌃q

with respect to the Weil-Petersson Poisson structure.

Great because multiplication in T q
p⌃q is easier to manipulate.

Not great because the map is complicated.
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Summary of Part II

• The Kau↵man bracket skein algebra of a surface is the
quantization of Teichmuller space (really, CrRSL2Cp⌃qs) in
multiple ways.

• In one

⇢ : Sq
p⌃q Ñ C P RSL2Cp⌃q

⇢ : Sq
p⌃q Ñ EndpCd

q P quantization of RSL2Cp⌃q

• Also
Sq

p⌃q ãÑ T q
p⌃q
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Part III

Representations of Sqp⌃q



Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd.

Let ⌃ be a surface with finite topological type.

1. Every irreducible representation ⇢ of Sq
p⌃q uniquely

determines

•
puncture invariants pi P C for every puncture of ⌃

•
classical shadow r P RSL2Cp⌃q

2. For every compatible tpiu and r P RSL2Cp⌃q, there exists an

irreducible representation ⇢ of Sq
p⌃q with those invariants.

We’ll sketch the methods of construction, starting with a revisit to
the algebraic structure of Sq

p⌃q. This will involve Chebyshev
polynomials.



Remarks on Theorem

irred representation
⇢ : Sq

p⌃q Ñ EndpCn
q

1´1?
–Ñ

puncture invs pi P C and
classical shadow r P RSL2Cp⌃q

•
D two irrepns of Sq

p⌃q (⇢Witten and ⇢Thm) whose classical
shadow is the trivial character r : ⇡1p⌃q Ñ tp

1 0
0 1 qu.

• Breaking news: In July preprint, Frohman,
Kania-Bartoszynska, and Le prove 1-1 for a Zariski dense,
open subset of RSL2Cp⌃q.
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Chebyshev polynomials

Let Tnpxq be the Chebyshev polynomials of the first kind, defined
recursively as follows:

T0pxq “ 2
T1pxq “ x

T2pxq “ x

2
´ 2

T3pxq “ x

3
´ 3x

...
Tnpxq “ xTn´1pxq ´ Tn´2pxq.

Note:

• cospn✓q “

1
2Tnp2 cos ✓q

• TrpMn
q “ TnpTrpMq q for all M P SL2pCq.

• Witten’s TQFT uses the Chebyshevs of the second kind.
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Threading skeins by Chebyshev polynomials

• Example: rK s “ x y and T3 “ x

3
´ 3x ,

rK

T3
s “

T3
“ ´ 3 .

• Observe: For a framed link K with n crossings, the Kau↵man
bracket rK s has 2n resolutions, whereas rK

TN
s has Op2n

2
q

resolutions.



Threading skeins by Chebyshev polynomials

Theorem (Bonahon-W. )

Let q be a N-root of 1, with N odd. Framed links threaded by TN

in Sq
p⌃q:

1. “

rK

TN
s are in the center.

2. “ p´1q ` p´1q .

rK

TN
s satisfy the skein relation, q

1
2

“ ´1.

Proof: Inject Sq
p⌃q ãÑ T q

p⌃q. There are many “miraculous
cancellations” when checking identities in the quantum
Teichmuller space T q

p⌃q. (See also Le’s skein-theoretic proof.)
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Sketch Proof of Theorem

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd.

Let ⌃ be a surface with finite topological type.

1. Every irreducible representation of Sq
p⌃q uniquely determines

•
puncture invariants pi P C for every puncture of ⌃

•
classical shadow r P RSL2Cp⌃q

2. For compatible pi P C and r P RSL2Cp⌃q, there exists an

irreducible representation of Sq
p⌃q with those invariants.



Sketch proof of Theorem, part 1

Suppose ⇢ : Sq
p⌃q Ñ EndpCd

q is irreducible.

• The i-th puncture loop rPi s is central.

Schur’s Lemma ñ ⇢ : rPi s fi›Ñ pi ¨ Id for pi P C puncture invs.

• A threaded link rK

TN
s P Sq

p⌃q is central. “

Schur’s Lemma ñ ⇢ : rK

TN
s fi›Ñ ⇢̂prK sq ¨ Id for ⇢̂pK q P C.

rK

TN
s satisfy the skein relation “ ´ ´ . So

⇢̂ : S1
p⌃q ›Ñ C –Ñ r P RSL2Cp⌃q

classical shadow

from the isomorphism between Sq
p⌃q and CrRSL2Cp⌃qs.
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Sketch proof of Theorem, part 2

Suppose we are given compatible puncture invariants pi P C and
classical shadow r P RSL2Cp⌃q.

Recall that for ⌃ with at least one puncture, the quantum
Teichmuller space T q

p⌃q is the algebra generated by Z

˘1
1 , . . . ,Z˘1

n

with ZiZj “ q

˘1
ZjZi if the ith and jth edges share a triangle.

Bonahon-Liu construct all representations of T q
p⌃q, which are

classified by compatible numbers pi P C and r P RSL2Cp⌃q.

When ⌃ has at least one puncture, compose

⇢ : Sq
p⌃q ãÑ T q

p⌃q

pi ,r
›››Ñ EndpCd

q.

When ⌃ has no punctures, drill punctures and show there is an
invariant subspace that is blind to punctures.



Further remarks

• In 2016 preprint, Frohman-Kania-Bartoszynska describe
another method of constructing representations when ⌃ has
at least one puncture, which matches our construction for
generic characters by July 2017 preprint of
Frohman-Kania-Bartoszynska-Le.

• Sq
p⌃q ãÑ T q

p⌃q is used to prove many of the algebraic
properties mentioned earlier (e.g., no zero divisors,
determination of center).

• How can we use it to more closely tie together the Jones and
Witten quantum invariants with hyperbolic geometry?



Thanks!


