Representations of the Kauffman Bracket Skein Algebra of a Surface

IAS Member's Seminar November 20, 2017

Helen Wong von Neumann fellow

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Quantum topology

In the early 1980s, the Jones polynomial for knots and links in 3-space was introduced. Witten followed quickly with an amplification of the Jones polynomial to 3-dimensional manifolds.

Straightaway, these quantum invariants solved some long-standing problems in low-dimensional topology. However, their definition is seemingly unrelated to any of the classically known topological and geometric constructions. To this day there is still no good answer to the question:

What topological or geometric properties do the Jones and Witten quantum invariants measure?

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Quantum topology

The Kauffman bracket skein algebra of a surface has emerged as a likely point of connection. In particular, it

- generalizes the (Kauffman bracket formulation of) Jones' polynomial invariant for links
- features in the Topological Quantum Field Theory description of Witten's 3-manifold invariant
- relates to hyperbolic geometry of surface, particularly the ${\rm SL}_2\mathbb{C}\text{-}character$ variety

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Plan for talk

- 1. Intro to the Kauffman bracket skein algebra $\mathcal{S}^q(\Sigma)$.
- 2. How $\mathcal{S}^q(\Sigma)$ is related to $\mathrm{SL}_2\mathbb{C}$ -character variety.
- 3. Representations of $\mathcal{S}^q(\Sigma)$.

This talk describes joint work with Francis Bonahon.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

The Kauffman bracket $\langle K \rangle$ is an invariant of isotopy classes of framed links in S^3 . The Jones polynomial can be seen as a modification of it for unframed, oriented links.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

The Kauffman bracket $\langle K \rangle$ is an invariant of isotopy classes of framed links in S^3 . The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < ⊙ < ⊙</p>

The Kauffman bracket $\langle K \rangle$ is an invariant of isotopy classes of framed links in S^3 . The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link K in the 3-sphere S^3

The Kauffman bracket $\langle K \rangle$ is an invariant of isotopy classes of framed links in S^3 . The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link K in the 3-sphere S^3 is evaluated from a diagram using the relations:

$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = q^{\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle + q^{-\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle \rangle$$
$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = (-q - q^{-1}) \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

The Kauffman bracket $\langle K \rangle$ is an invariant of isotopy classes of framed links in S^3 . The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link K in the 3-sphere S^3 is evaluated from a diagram using the relations:

$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = q^{\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle + q^{-\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle \\ \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = (-q - q^{-1}) \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle.$$

Convention: Link diagrams are drawn with framing perpendicular to the blackboard.

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$

= $q^{\frac{1}{2}} (-q - q^{-1})^2 + q^{-\frac{1}{2}} (-q - q^{-1})$

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$

= $q^{\frac{1}{2}}(-q-q^{-1})^2 + q^{-\frac{1}{2}}(-q-q^{-1})$
= $-q^{\frac{3}{2}}(-q-q^{-1}),$

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$

$$= q^{\frac{1}{2}} (-q - q^{-1})^2 + q^{-\frac{1}{2}} (-q - q^{-1})$$

$$= -q^{\frac{3}{2}} (-q - q^{-1}),$$

$$\langle \bigcirc \rangle = -q - q^{-1}.$$

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$
$$= q^{\frac{1}{2}}(-q-q^{-1})^2 + q^{-\frac{1}{2}}(-q-q^{-1})$$
$$= -q^{\frac{3}{2}}(-q-q^{-1}),$$
$$\langle \bigcirc \rangle = -q-q^{-1}.$$
This shows that (as framed links) $\bigcirc \neq \bigcirc$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少へ?

$$\langle \bigcirc \rangle = q^{\frac{1}{2}} \langle \bigcirc \rangle + q^{-\frac{1}{2}} \langle \bigcirc \rangle$$
$$= q^{\frac{1}{2}} (-q - q^{-1})^2 + q^{-\frac{1}{2}} (-q - q^{-1})$$
$$= -q^{\frac{3}{2}} (-q - q^{-1}),$$
$$\langle \bigcirc \rangle = -q - q^{-1}.$$
shows that (as framed links) $\bigcirc \neq \bigcirc$.

Observation: The Kauffman bracket can be written as a linear combination of diagrams without crossings, which bound disks in S^3 . This implies $\langle K \rangle \in \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$.

This

<ロ> < 団> < 団> < 三> < 三> < 三> < 三</p>

Kauffman bracket in S^3 is multiplicative

Observation:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Kauffman bracket in S^3 is multiplicative

Observation:

▲□▶ ▲□▶ ▲目▶ ▲目▶ ■ めへぐ

Kauffman bracket in S^3 is multiplicative

Observation:

Juxtaposition/superposition defines a (commutative) multiplication of the Kauffman bracket in S^3 :

$$\langle K_1 \rangle \cdot \langle K_2 \rangle = \langle K_1 \text{ "next to" } K_2 \rangle = \langle K_1 \text{ "over" } K_2 \rangle$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♥ ��や

We consider the structure of the Kauffman bracket of all possible framed links in S^3 .

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

We consider the structure of the Kauffman bracket of all possible framed links in S^3 .

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$.

We consider the structure of the Kauffman bracket of all possible framed links in S^3 .

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. Define $S^q(S^3)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module consisting of linear combinations of framed links K in S^3 ,

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider the structure of the Kauffman bracket of all possible framed links in S^3 .

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. Define $S^q(S^3)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module consisting of linear combinations of framed links K in S^3 , subject to the relations:

$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = q^{\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle + q^{-\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle \rangle$$
$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = (-q - q^{-1}) \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We consider the structure of the Kauffman bracket of all possible framed links in S^3 .

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. Define $S^q(S^3)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module consisting of linear combinations of framed links K in S^3 , subject to the relations:

$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = q^{\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle + q^{-\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle \rangle$$
$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = (-q - q^{-1}) \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle,$$

with multiplication by juxtaposition/superposition of framed links.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Generalization to oriented 3-manifolds

We consider the structure of the Kauffman bracket of all possible framed links in an oriented 3-manifold M.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ��?

Generalization to oriented 3-manifolds

We consider the structure of the Kauffman bracket of all possible framed links in an oriented 3-manifold M.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. Define $S^q(M)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module consisting of linear combinations of framed links K in M, subject to the relations:

$$\langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = q^{\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle + q^{-\frac{1}{2}} \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle \\ \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle = (-q - q^{-1}) \langle \left(\begin{array}{c} \\ \end{array} \right) \rangle.$$

with multiplication by juxtaposition/superposition of framed links.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

▲□▶▲□▶▲≡▶▲≡▶ ●○○

Special case: $M = \Sigma \times [0, 1]$ and Σ is an oriented, compact surface with finitely many punctures.

Special case: $M = \Sigma \times [0, 1]$ and Σ is an oriented, compact surface with finitely many punctures.

Choose a variable $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ and a square root $q^{\frac{1}{2}}$. Define $S^q(\Sigma)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module consisting of linear combinations of framed links K in M, subject to the relations:

$$\langle \left\langle \right\rangle \rangle = q^{\frac{1}{2}} \langle \left\langle \right\rangle \rangle + q^{-\frac{1}{2}} \langle \left\langle \right\rangle \rangle \rangle$$
$$\langle \left\langle \right\rangle \rangle = (-q - q^{-1}) \langle \left\langle \right\rangle \rangle.$$

with multiplication by superposition of framed links.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ のへで

• \exists loops not bounding disks \implies many generators of $\mathcal{S}^q(\Sigma)$.

• \exists loops not bounding disks \implies many generators of $\mathcal{S}^q(\Sigma)$.

• $() \neq () \implies$ multiplication is not commutative.

Remarks

• Every 3-manifold can be decomposed into two handlebodies along a closed surface.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ��

Remarks

- Every 3-manifold can be decomposed into two handlebodies along a closed surface.
- In Witten's TQFT for $q^N = 1$,

$$\Sigma \longmapsto V^q(\Sigma)$$

 $V^q(\Sigma)$ is a finite dim. quotient of $S^q(M)$, where $\partial M = \Sigma$. The action $S^q(\Sigma) \subseteq S^q(M)$ provides an irreducible repn

$$\rho_{\mathsf{Witten}}: \mathcal{S}^q(\Sigma) \longrightarrow \mathrm{End}(V^q(\Sigma))$$

Remarks

- Every 3-manifold can be decomposed into two handlebodies along a closed surface.
- In Witten's TQFT for $q^N = 1$,

$$\Sigma \longmapsto V^q(\Sigma)$$

 $V^q(\Sigma)$ is a finite dim. quotient of $S^q(M)$, where $\partial M = \Sigma$. The action $S^q(\Sigma) \subseteq S^q(M)$ provides an irreducible repn

$$\rho_{\mathsf{Witten}}: \mathcal{S}^q(\Sigma) \longrightarrow \mathrm{End}(V^q(\Sigma))$$

Algebraic Properties of $\mathcal{S}^q(\Sigma)$

- 1. $S^{q}(\Sigma)$ is not commutative, except when:
 - Σ is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2 punctures, or annulus
 - q = 1, when $q^{\frac{1}{2}} = q^{-\frac{1}{2}}$ and $\bigcirc = \pm \bigcirc \pm \bigcirc = \bigcirc$.

Algebraic Properties of $\mathcal{S}^q(\Sigma)$

- 1. $S^{q}(\Sigma)$ is not commutative, except when:
 - Σ is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2 punctures, or annulus
 - q = 1, when $q^{\frac{1}{2}} = q^{-\frac{1}{2}}$ and $\bigcirc = \pm \bigcirc \pm \bigcirc = \bigcirc$.

2. $Z(S^q(\Sigma))$ contains puncture loops.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Algebraic Properties of $\mathcal{S}^q(\Sigma)$

- 1. $S^{q}(\Sigma)$ is not commutative, except when:
 - Σ is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2 punctures, or annulus
 - q = 1, when $q^{\frac{1}{2}} = q^{-\frac{1}{2}}$ and $\bigotimes = \pm \bigotimes \pm \bigotimes = \bigotimes$.
- 2. $Z(S^q(\Sigma))$ contains puncture loops. (

3. (Przytycki, Turaev, 1990) $S^q(\Sigma)$ is (usually) infinitely generated as a module, by framed links whose projection to Σ has no crossings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□
Algebraic Properties of $\mathcal{S}^q(\Sigma)$

- 1. $S^{q}(\Sigma)$ is not commutative, except when:
 - Σ is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2 punctures, or annulus
 - q = 1, when $q^{\frac{1}{2}} = q^{-\frac{1}{2}}$ and $\bigcirc = \pm \bigcirc \pm \bigcirc = \bigcirc$.
- 2. $Z(S^q(\Sigma))$ contains puncture loops. (

- 3. (Przytycki, Turaev, 1990) $S^{q}(\Sigma)$ is (usually) infinitely generated as a module, by framed links whose projection to Σ has no crossings.
- 4. (Bullock, 1999) $S^{q}(\Sigma)$ is finitely generated as an algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$ (very recently proved)

- 1. (Przytycki-Sikora, Le, Bonahon-W.) $S^q(\Sigma)$ has no zero divisors.
- 2. (Przytycki-Sikora) $S^{q}(\Sigma)$ is Noetherian.
- 3. (Frohman-Kania-Bartoszynska-Le) $S^q(\Sigma)$ is almost Azyumaya.
- 4. (Bonahon-W., Le, Frohman-Kania-Bartozynska-Le) Its center $Z(S^q(\Sigma))$ is determined.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Part II

How $\mathcal{S}^q(\Sigma)$ is related to hyperbolic geometry

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Let Σ be a surface with finite topological type.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Let Σ be a surface with finite topological type.

Its Teichmuller space $\mathcal{T}(\Sigma)$ consists of isotopy classes of complete hyperbolic metrics on Σ with finite area.

Every metric $m \in \mathcal{T}(\Sigma)$ corresponds to a monodromy representation $r_m : \pi_1(\Sigma) \to \operatorname{Isom}^+(\mathbb{H}^2) = \operatorname{PSL}_2(\mathbb{R})$, up to conjugation.

・ロッ・白ッ・山ッ・山ッ・山ッ

Hence consider

 $\mathcal{R}_{\mathrm{SL}_2\mathbb{R}} = \{r : \pi_1(\Sigma) \to \mathrm{SL}_2\mathbb{R}\}/\!\!/\mathrm{SL}_2\mathbb{R}.$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence consider

 $\mathcal{R}_{\mathrm{SL}_2\mathbb{R}} = \{r : \pi_1(\Sigma) \to \mathrm{SL}_2\mathbb{R}\}/\!\!/\mathrm{SL}_2\mathbb{R}.$

Notice that we lifted $\mathrm{PSL}_2\mathbb{R}$ to $\mathrm{SL}_2\mathbb{R}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hence consider

 $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}} = \{r : \pi_1(\Sigma) \to \mathrm{SL}_2\mathbb{C}\}/\!\!/\mathrm{SL}_2\mathbb{C}.$

Notice that we lifted $\mathrm{PSL}_2\mathbb{R}$ to $\mathrm{SL}_2\mathbb{R}$ and complexify to $\mathrm{SL}_2\mathbb{C}$.

Hence consider

 $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}} = \{r: \pi_1(\Sigma) \to \mathrm{SL}_2\mathbb{C}\}/\!\!/\mathrm{SL}_2\mathbb{C}.$

Notice that we lifted $PSL_2\mathbb{R}$ to $SL_2\mathbb{R}$ and complexify to $SL_2\mathbb{C}$.

The $\mathrm{SL}_2\mathbb{C}$ -character variety $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ is an algebraic variety that contains a copy of Teichmuller space $\mathcal{T}(\Sigma)$ as a real subvariety.

Note that $[r_1] = [r_2]$ if and only if trace $\circ r_1 = \text{trace} \circ r_2$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

・ ロ ト ・ 母 ト ・ ヨ ト ・ ヨ ・ りへぐ

For every loop K in Σ , define the trace function

 $\operatorname{Tr}_{\mathcal{K}} : \mathcal{R}_{\operatorname{SL}_2\mathbb{C}}(\Sigma) \to \mathbb{C} \text{ by } \operatorname{Tr}_{\mathcal{K}}(r) = -\operatorname{trace}(r([\mathcal{K}])).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For every loop K in Σ , define the trace function

 $\operatorname{Tr}_{K} : \mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma) \to \mathbb{C}$ by $\operatorname{Tr}_{K}(r) = -\operatorname{trace}(r([K])).$

The trace functions generate the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma) \to \mathbb{C}$).

・ロト ・ ロト ・ ボー・ ・ ボー・ ・ ロー・

For every loop K in Σ , define the trace function

 $\operatorname{Tr}_{K} : \mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma) \to \mathbb{C}$ by $\operatorname{Tr}_{K}(r) = -\operatorname{trace}(r([K])).$

The trace functions generate the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma) \to \mathbb{C}$).

Important observation: The trace functions Tr_K satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}} = -1$,

$$\left\langle \begin{array}{c} \\ \end{array} \right\rangle \ = \ (-1) \left\langle \begin{array}{c} \\ \end{array} \right\rangle \ + \ (-1) \left\langle \begin{array}{c} \\ \end{array} \right\rangle$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

For every loop K in Σ , define the trace function

 $\operatorname{Tr}_{K} : \mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma) \to \mathbb{C}$ by $\operatorname{Tr}_{K}(r) = -\operatorname{trace}(r([K])).$

The trace functions generate the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma) \to \mathbb{C}$).

Important observation: The trace functions Tr_K satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}} = -1$,

$$\left\langle \begin{array}{c} \\ \end{array} \right\rangle \ = \ (-1) \left\langle \begin{array}{c} \\ \end{array} \right\rangle + \ (-1) \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$

from identity $Tr(M)Tr(N) = Tr(MN) + Tr(MN^{-1})$ in $SL_2\mathbb{C}$.

For every loop K in Σ , define the trace function

 $\operatorname{Tr}_{K} : \mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma) \to \mathbb{C}$ by $\operatorname{Tr}_{K}(r) = -\operatorname{trace}(r([K])).$

The trace functions generate the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma) \to \mathbb{C}$).

Important observation: The trace functions Tr_K satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}} = -1$,

$$\left\langle \bigotimes \right\rangle = (-1) \left\langle \bigotimes \right\rangle + (-1) \left\langle \bigotimes \right\rangle = \left\langle \bigotimes \right\rangle.$$

from identity $\operatorname{Tr}(M)\operatorname{Tr}(N) = \operatorname{Tr}(MN) + \operatorname{Tr}(MN^{-1})$ in $\operatorname{SL}_2\mathbb{C}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ∽ へ ⊙ ◆

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora) For $q^{\frac{1}{2}} = -1$, there is an isomorphism between the skein algebra $S^1(\Sigma)$ and the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ given by

$$\begin{bmatrix} \mathcal{K} \end{bmatrix} \qquad Tr_{\mathcal{K}} \\ \mathcal{S}^{\Pi}(\Sigma) \quad \longleftrightarrow \quad \mathbb{C}[\mathcal{R}^{\Pi}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)].$$

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora) For $q^{\frac{1}{2}} = -1$, there is an isomorphism between the skein algebra $S^1(\Sigma)$ and the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ given by

$$\begin{bmatrix} \mathcal{K} \end{bmatrix} \qquad Tr_{\mathcal{K}} \\ \mathcal{S}^{\mathbb{n}}(\Sigma) \longleftrightarrow \mathbb{C}[\mathcal{R}^{\mathbb{n}}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)].$$

Alternatively, there is an isomorphism $\{\rho: S^1(\Sigma) \to \mathbb{C}\} \iff \mathcal{R}_{SL_2\mathbb{C}}(\Sigma).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora) For $q^{\frac{1}{2}} = -1$, there is an isomorphism between the skein algebra $S^1(\Sigma)$ and the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ given by

$$\begin{matrix} [\mathcal{K}] & Tr_{\mathcal{K}} \\ \mathcal{S}^{\Pi}(\Sigma) & \longleftrightarrow & \mathbb{C}[\mathcal{R}^{\Pi}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)]. \end{matrix}$$

Alternatively, there is an isomorphism $\{\rho: \mathcal{S}^1(\Sigma) \to \mathbb{C}\} \iff \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma).$

Notice that $\mathcal{S}^1(\Sigma)$ and $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ are commutative.

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora) For $q^{\frac{1}{2}} = -1$, there is an isomorphism between the skein algebra $S^1(\Sigma)$ and the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ given by

$$\begin{bmatrix} \mathcal{K} \end{bmatrix} \qquad Tr_{\mathcal{K}} \\ \mathcal{S}^{1}(\Sigma) \quad \longleftrightarrow \quad \mathbb{C}[\mathcal{R}^{\mathsf{m}}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)].$$

Alternatively, there is an isomorphism $\{\rho: \mathcal{S}^1(\Sigma) \to \mathbb{C}\} \iff \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma).$

Notice that $S^1(\Sigma)$ and $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ are commutative. Can we think of $S^q(\Sigma)$ as a non-commutative version of them?

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora) For $q^{\frac{1}{2}} = -1$, there is an isomorphism between the skein algebra $S^1(\Sigma)$ and the function algebra $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ given by

$$\begin{bmatrix} \mathcal{K} \end{bmatrix} \qquad Tr_{\mathcal{K}} \\ \mathcal{S}^{1}(\Sigma) \quad \longleftrightarrow \quad \mathbb{C}[\mathcal{R}^{\mathsf{m}}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)].$$

Alternatively, there is an isomorphism $\{\rho: \mathcal{S}^1(\Sigma) \to \mathbb{C}\} \iff \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma).$

Notice that $S^1(\Sigma)$ and $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$ are commutative. Can we think of $S^q(\Sigma)$ as a non-commutative version of them?Yes!

Turaev noticed that the commutator in $\mathcal{S}^q(\Sigma)$ has the form

$$[K][L] - [L][K] = \bigotimes - \bigotimes$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽ ⊙ < ⊙

Turaev noticed that the commutator in $\mathcal{S}^q(\Sigma)$ has the form

$$[K][L] - [L][K] = \bigcirc - \bigotimes$$
$$= (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc - (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Turaev noticed that the commutator in $\mathcal{S}^q(\Sigma)$ has the form

$$[K][L] - [L][K] = \bigcirc - \bigotimes$$
$$= (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc - (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc$$

And when $q = e^{2\pi i\hbar}$,

 $[K][L] - [L][K] = 2\pi i\hbar () + \text{ higher order terms in } \hbar$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Turaev noticed that the commutator in $\mathcal{S}^q(\Sigma)$ has the form

$$[K][L] - [L][K] = \bigcirc - \bigotimes$$
$$= (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc - (q^{\frac{1}{2}} - q^{-\frac{1}{2}}) \bigcirc$$

And when $q = e^{2\pi i\hbar}$,

 $[K][L] - [L][K] = 2\pi i\hbar \left(\{ \mathsf{Tr}_{K}, \mathsf{Tr}_{L} \} \right) + \text{ higher order terms in } \hbar$

where { , } is the Weil-Petersson-Atiyah-Bott-Goldman Poisson bracket, using computations of Goldman.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ● ● ●

Theorem (Turaev)

 $\mathcal{S}^q(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Theorem (Turaev)

 $\mathcal{S}^q(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

$$\rho: \mathcal{S}^{q}(\Sigma) \to \mathbb{C} \qquad \in \qquad \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma) \\ \rho: \mathcal{S}^{q}(\Sigma) \to \mathrm{End}(\mathbb{C}^{d}) \qquad \in \qquad quantization \ of \ \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ���

Theorem (Turaev)

 $\mathcal{S}^q(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

$$\rho: \mathcal{S}^{q}(\Sigma) \to \mathbb{C} \qquad \in \qquad \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma) \\ \rho: \mathcal{S}^{q}(\Sigma) \to \mathrm{End}(\mathbb{C}^{d}) \qquad \in \qquad quantization \ of \ \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$$

Often, we say: $S^q(\Sigma)$ is a quantization of Teichmuller space $\mathcal{T}(\Sigma)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ���

Theorem (Turaev)

 $\mathcal{S}^{q}(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

 $\rho: \mathcal{S}^{q}(\Sigma) \to \mathbb{C} \qquad \in \qquad \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$ $\rho: \mathcal{S}^{q}(\Sigma) \to \mathrm{End}(\mathbb{C}^{d}) \qquad \in \qquad quantization \ of \ \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$

Often, we say: $S^q(\Sigma)$ is a quantization of Teichmuller space $\mathcal{T}(\Sigma)$.

There's <u>another</u> quantization of Teichmuller space, related to quantum cluster algebras. (Chekhov-Fock, Kashaev, Bonahon et al.)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Suppose Σ has at least one puncture, with ideal triangulation λ . The shear parameters $x_i(r) \in \mathbb{R}$ along edges $\lambda_1, \ldots \lambda_n$ completely describe a hyperbolic metric $r \in \mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose Σ has at least one puncture, with ideal triangulation λ . The shear parameters $x_i(r) \in \mathbb{R}$ along edges $\lambda_1, \ldots \lambda_n$ completely describe a hyperbolic metric $r \in \mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$.

The trace functions Tr_{K} are polynomials in $x_{i}^{\pm \frac{1}{2}}$. So the function algebra $\mathbb{C}[\mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma)]$ is also generated by commutative shear parameters $x_{1}^{\pm \frac{1}{2}}, \ldots, x_{n}^{\pm \frac{1}{2}}$.

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}$

- $Z_i Z_j = q^{\pm 1} Z_j Z_i$ if the *i*th and *j*th edges share a triangle, $Z_i Z_j = Z_j Z_i$ otherwise
- relations for independence from choice of ideal triangulation

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}$

- $Z_i Z_j = q^{\pm 1} Z_j Z_i$ if the *i*th and *j*th edges share a triangle, $Z_i Z_j = Z_j Z_i$ otherwise
- relations for independence from choice of ideal triangulation

Theorem (Bonahon-W.)

There exists an injective map $S^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$ which is compatible with $S^q(\Sigma)$ as a quantization of $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

◆□▶ ◆□▶ ◆三▶ ◆三 ● ● ●

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}$

- $Z_i Z_j = q^{\pm 1} Z_j Z_i$ if the *i*th and *j*th edges share a triangle, $Z_i Z_j = Z_j Z_i$ otherwise
- relations for independence from choice of ideal triangulation

Theorem (Bonahon-W.)

There exists an injective map $S^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$ which is compatible with $S^q(\Sigma)$ as a quantization of $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Great because multiplication in $\mathcal{T}^q(\Sigma)$ is easier to manipulate. Not great because the map is complicated.

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Summary of Part II

• The Kauffman bracket skein algebra of a surface is the quantization of Teichmuller space (really, $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$) in multiple ways.

• In one

$$\rho: \mathcal{S}^{q}(\Sigma) \to \mathbb{C} \quad \in \quad \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$$
$$\rho: \mathcal{S}^{q}(\Sigma) \to \mathrm{End}(\mathbb{C}^{d}) \quad \in \quad \text{quantization of } \mathcal{R}_{\mathrm{SL}_{2}\mathbb{C}}(\Sigma)$$

• Also

$$\mathcal{S}^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Summary of Part II

- The Kauffman bracket skein algebra of a surface is the quantization of Teichmuller space (really, $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$) in multiple ways.
- In one

 $\rho: \mathcal{S}^q(\Sigma) \to \mathbb{C}$ E $\rho: \mathcal{S}^{q}(\Sigma) \to \operatorname{End}(\mathbb{C}^{d}) \in \operatorname{quantization} \operatorname{of} \mathcal{R}_{\operatorname{SL}_{2}\mathbb{C}}(\Sigma)$ What are these repns?

 $\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$

Also

$$\mathcal{S}^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Part III

Representations of $\mathcal{S}^q(\Sigma)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへぐ
Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Let Σ be a surface with finite topological type.

- 1. Every irreducible representation ρ of $\mathcal{S}^q(\Sigma)$ uniquely determines
 - puncture invariants $p_i \in \mathbb{C}$ for every puncture of Σ
 - classical shadow $r \in \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$
- 2. For every compatible $\{p_i\}$ and $r \in \mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$, there exists an irreducible representation ρ of $\mathcal{S}^q(\Sigma)$ with those invariants.

We'll sketch the methods of construction, starting with a revisit to the algebraic structure of $S^q(\Sigma)$. This will involve Chebyshev polynomials.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● ● ●

Remarks on Theorem

irred representation $\rho: \mathcal{S}^q(\Sigma) \to \operatorname{End}(\mathbb{C}^n)$

 $\stackrel{1-1?}{\longleftrightarrow}$

puncture invs $p_i \in \mathbb{C}$ and classical shadow $r \in \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$

◆□ ▶ ◆昼 ▶ ◆ E ▶ ◆ E ● の Q @

Remarks on Theorem

• \exists two irrepns of $S^q(\Sigma)$ (ρ_{Witten} and ρ_{Thm}) whose classical shadow is the trivial character $r : \pi_1(\Sigma) \to \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$.

Remarks on Theorem

- \exists two irrepns of $S^q(\Sigma)$ (ρ_{Witten} and ρ_{Thm}) whose classical shadow is the trivial character $r : \pi_1(\Sigma) \to \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$.
- Breaking news: In July preprint, Frohman, Kania-Bartoszynska, and Le prove 1-1 for a Zariski dense, open subset of $\mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

▲□▶▲□▶▲□▶▲□▶ ▲□▼

Let $T_n(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$T_{0}(x) = 2$$

$$T_{1}(x) = x$$

$$T_{2}(x) = x^{2} - 2$$

$$T_{3}(x) = x^{3} - 3x$$

$$\vdots$$

$$T_{n}(x) = xT_{n-1}(x) - T_{n-2}(x).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ヘ ⊙

Let $T_n(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$T_{0}(x) = 2$$

$$T_{1}(x) = x$$

$$T_{2}(x) = x^{2} - 2$$

$$T_{3}(x) = x^{3} - 3x$$

$$\vdots$$

$$T_{n}(x) = xT_{n-1}(x) - T_{n-2}(x).$$

Note:

- $\cos(n\theta) = \frac{1}{2}T_n(2\cos\theta)$
- $\operatorname{Tr}(M^n) = T_n(\operatorname{Tr}(M))$ for all $M \in \operatorname{SL}_2(\mathbb{C})$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $T_n(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$T_0(x) = 2$$

$$T_1(x) = x$$

$$T_2(x) = x^2 - 2$$

$$T_3(x) = x^3 - 3x$$

$$\vdots$$

$$T_n(x) = xT_{n-1}(x) - T_{n-2}(x).$$

Note:

- $\cos(n\theta) = \frac{1}{2}T_n(2\cos\theta)$
- $\operatorname{Tr}(M^n) = T_n(\operatorname{Tr}(M))$ for all $M \in \operatorname{SL}_2(\mathbb{C})$.
- Witten's TQFT uses the Chebyshevs of the *second* kind.

・ロ・・母・・ヨ・・ヨ・ ・ しゃ

うせん 聞 (中学 / 明 / 中)

• Example:
$$[K] = \langle \bigcirc \rangle$$
 and $T_3 = x^3 - 3x$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

• Example:
$$[K] = \langle \bigcirc \rangle$$
 and $T_3 = x^3 - 3x$,

$$[K^{T_3}] = \underbrace{(5)}_{13}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

• Example:
$$[K] = \langle \bigcirc \rangle$$
 and $T_3 = x^3 - 3x$,

$$[K^{T_3}] = () = () - 3 () .$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Example:
$$[\mathcal{K}] = \langle \overbrace{\hspace{1.5mm}} \circ \hspace{1.5mm} \rangle \text{ and } T_3 = x^3 - 3x,$$

$$[\mathcal{K}^{T_3}] = \overbrace{\hspace{1.5mm}} \circ \hspace{1.5mm} \circ \hspace{1.5$$

Observe: For a framed link K with n crossings, the Kauffman bracket [K] has 2ⁿ resolutions, whereas [K^{T_N}] has O(2^{n²}) resolutions.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽ ⊙ < ⊙

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $\mathcal{S}^q(\Sigma)$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ��?

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $S^q(\Sigma)$:

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $S^q(\Sigma)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $S^q(\Sigma)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $S^q(\Sigma)$:

Proof: Inject $S^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$. There are many "miraculous cancellations" when checking identities in the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Framed links threaded by T_N in $S^q(\Sigma)$:

Proof: Inject $S^q(\Sigma) \hookrightarrow \mathcal{T}^q(\Sigma)$. There are many "miraculous cancellations" when checking identities in the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$. (See also Le's skein-theoretic proof.)

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

Sketch Proof of Theorem

Theorem (Bonahon-W.)

Let q be a N-root of 1, with N odd. Let Σ be a surface with finite topological type.

- 1. Every irreducible representation of $\mathcal{S}^q(\Sigma)$ uniquely determines
 - puncture invariants $p_i \in \mathbb{C}$ for every puncture of Σ
 - classical shadow $r \in \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$
- 2. For compatible $p_i \in \mathbb{C}$ and $r \in \mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$, there exists an irreducible representation of $\mathcal{S}^q(\Sigma)$ with those invariants.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ●

Suppose $\rho : \mathcal{S}^q(\Sigma) \to \operatorname{End}(\mathbb{C}^d)$ is irreducible.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose $\rho : \mathcal{S}^q(\Sigma) \to \operatorname{End}(\mathbb{C}^d)$ is irreducible.

• The *i*-th puncture loop $[P_i]$ is central.

Schur's Lemma $\Rightarrow \rho : [P_i] \longmapsto p_i \cdot \text{Id for } p_i \in \mathbb{C}$ puncture invs.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Suppose $\rho : \mathcal{S}^{q}(\Sigma) \to \operatorname{End}(\mathbb{C}^{d})$ is irreducible.

- The *i*-th puncture loop $[P_i]$ is central. Schur's Lemma $\Rightarrow \rho : [P_i] \mapsto p_i \cdot \text{Id for } p_i \in \mathbb{C}$ puncture invs.
- A threaded link $[K^{T_N}] \in S^q(\Sigma)$ is central. $\bigotimes = \bigotimes$ Schur's Lemma $\Rightarrow \rho : [K^{T_N}] \longmapsto \hat{\rho}([K]) \cdot \text{Id for } \hat{\rho}(K) \in \mathbb{C}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose $\rho : \mathcal{S}^q(\Sigma) \to \operatorname{End}(\mathbb{C}^d)$ is irreducible.

- The *i*-th puncture loop $[P_i]$ is central. Schur's Lemma $\Rightarrow \rho : [P_i] \mapsto p_i \cdot \text{Id for } p_i \in \mathbb{C}$ puncture invs.
- A threaded link $[K^{T_N}] \in S^q(\Sigma)$ is central. $\checkmark = \checkmark$ Schur's Lemma $\Rightarrow \rho : [K^{T_N}] \mapsto \hat{\rho}([K]) \cdot \text{Id for } \hat{\rho}(K) \in \mathbb{C}.$ $[K^{T_N}]$ satisfy the skein relation $\checkmark = -\bigcirc -\bigcirc$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● のへで

Suppose $\rho : \mathcal{S}^{q}(\Sigma) \to \operatorname{End}(\mathbb{C}^{d})$ is irreducible.

- The *i*-th puncture loop $[P_i]$ is central. Schur's Lemma $\Rightarrow \rho : [P_i] \mapsto p_i \cdot \text{Id for } p_i \in \mathbb{C}$ puncture invs.
- A threaded link $[K^{T_N}] \in S^q(\Sigma)$ is central. $\checkmark = \checkmark$ Schur's Lemma $\Rightarrow \rho : [K^{T_N}] \mapsto \hat{\rho}([K]) \cdot \text{Id for } \hat{\rho}(K) \in \mathbb{C}.$ $[K^{T_N}]$ satisfy the skein relation $\checkmark = -\bigcirc -\bigcirc$. So

$$\hat{\rho}: \mathcal{S}^1(\Sigma) \longrightarrow \mathbb{C}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Suppose $\rho : \mathcal{S}^{q}(\Sigma) \to \operatorname{End}(\mathbb{C}^{d})$ is irreducible.

- The *i*-th puncture loop $[P_i]$ is central. Schur's Lemma $\Rightarrow \rho : [P_i] \mapsto p_i \cdot \text{Id for } p_i \in \mathbb{C}$ puncture invs.
- A threaded link $[K^{T_N}] \in S^q(\Sigma)$ is central. $\swarrow = \bigotimes$ Schur's Lemma $\Rightarrow \rho : [K^{T_N}] \mapsto \hat{\rho}([K]) \cdot \text{Id for } \hat{\rho}(K) \in \mathbb{C}.$ $[K^{T_N}]$ satisfy the skein relation $\bigotimes = -\bigotimes -\bigotimes$. So

$$\hat{\rho} : \mathcal{S}^1(\Sigma) \longrightarrow \mathbb{C} \quad \longleftrightarrow \quad r \in \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$$

classical shadow

from the isomorphism between $\mathcal{S}^q(\Sigma)$ and $\mathbb{C}[\mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)]$.

Suppose we are given compatible puncture invariants $p_i \in \mathbb{C}$ and classical shadow $r \in \mathcal{R}_{SL_2\mathbb{C}}(\Sigma)$.

Recall that for Σ with at least one puncture, the quantum Teichmuller space $\mathcal{T}^q(\Sigma)$ is the algebra generated by $Z_1^{\pm 1}, \ldots, Z_n^{\pm 1}$ with $Z_i Z_j = q^{\pm 1} Z_j Z_i$ if the *i*th and *j*th edges share a triangle. Bonahon-Liu construct all representations of $\mathcal{T}^q(\Sigma)$, which are classified by compatible numbers $p_i \in \mathbb{C}$ and $r \in \mathcal{R}_{\mathrm{SL}_2\mathbb{C}}(\Sigma)$.

When Σ has at least one puncture, compose

$$\rho: \mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma) \xrightarrow{p_{i}, r} \operatorname{End}(\mathbb{C}^{d}).$$

When Σ has no punctures, drill punctures and show there is an invariant subspace that is blind to punctures.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ♥ �� ♥

Further remarks

- In 2016 preprint, Frohman-Kania-Bartoszynska describe another method of constructing representations when Σ has at least one puncture, which matches our construction for generic characters by July 2017 preprint of Frohman-Kania-Bartoszynska-Le.
- S^q(Σ) → T^q(Σ) is used to prove many of the algebraic properties mentioned earlier (e.g., no zero divisors, determination of center).
- How can we use it to more closely tie together the Jones and Witten quantum invariants with hyperbolic geometry?

4 日 > 4 日 > 4 目 > 4 目 > 目 の 4 0 0

Thanks!

< ロ > < 固 > < 置 > < 置 > 差 の < の< の</p>