# Representations of the Kauffman Bracket Skein Algebra of a Surface 

IAS Member's Seminar

November 20, 2017
Helen Wong
von Neumann fellow

## Quantum topology

In the early 1980s, the Jones polynomial for knots and links in 3 -space was introduced. Witten followed quickly with an amplification of the Jones polynomial to 3-dimensional manifolds.

Straightaway, these quantum invariants solved some long-standing problems in low-dimensional topology. However, their definition is seemingly unrelated to any of the classically known topological and geometric constructions. To this day there is still no good answer to the question:

What topological or geometric properties do the Jones and Witten quantum invariants measure?

## Quantum topology

The Kauffman bracket skein algebra of a surface has emerged as a likely point of connection. In particular, it

- generalizes the (Kauffman bracket formulation of) Jones' polynomial invariant for links
- features in the Topological Quantum Field Theory description of Witten's 3-manifold invariant
- relates to hyperbolic geometry of surface, particularly the $\mathrm{SL}_{2} \mathbb{C}$-character variety


## Plan for talk

1. Intro to the Kauffman bracket skein algebra $\mathcal{S}^{q}(\Sigma)$.
2. How $\mathcal{S}^{q}(\Sigma)$ is related to $\mathrm{SL}_{2} \mathbb{C}$-character variety.
3. Representations of $\mathcal{S}^{q}(\Sigma)$.

This talk describes joint work with Francis Bonahon.

## The Kauffman bracket for links in $S^{3}$

The Kauffman bracket $\langle K\rangle$ is an invariant of isotopy classes of framed links in $S^{3}$. The Jones polynomial can be seen as a modification of it for unframed, oriented links.

## The Kauffman bracket for links in $S^{3}$

The Kauffman bracket $\langle K\rangle$ is an invariant of isotopy classes of framed links in $S^{3}$. The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q=e^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$.

## The Kauffman bracket for links in $S^{3}$

The Kauffman bracket $\langle K\rangle$ is an invariant of isotopy classes of framed links in $S^{3}$. The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q=e^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link $K$ in the 3 -sphere $S^{3}$

## The Kauffman bracket for links in $S^{3}$

The Kauffman bracket $\langle K\rangle$ is an invariant of isotopy classes of framed links in $S^{3}$. The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link $K$ in the 3-sphere $S^{3}$ is evaluated from a diagram using the relations:


## The Kauffman bracket for links in $S^{3}$

The Kauffman bracket $\langle K\rangle$ is an invariant of isotopy classes of framed links in $S^{3}$. The Jones polynomial can be seen as a modification of it for unframed, oriented links.

Choose a variable $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. The Kauffman bracket of a framed link $K$ in the 3 -sphere $S^{3}$ is evaluated from a diagram using the relations:


Convention: Link diagrams are drawn with framing perpendicular to the blackboard.

## Example



## Example



## Example

$$
\begin{aligned}
\langle\bigcirc\rangle & =q^{\frac{1}{2}}\left\langle\bigcirc \bigcirc+q^{-\frac{1}{2}}\langle\bigcirc\rangle\right. \\
& =q^{\frac{1}{2}}\left(-q-q^{-1}\right)^{2}+q^{-\frac{1}{2}}\left(-q-q^{-1}\right) \\
& =-q^{\frac{3}{2}}\left(-q-q^{-1}\right),
\end{aligned}
$$

Example

$$
\begin{aligned}
\langle\bigcirc\rangle & =q^{\frac{1}{2}}\langle\bigcirc\rangle+q^{-\frac{1}{2}}\langle\bigcirc\rangle \\
& =q^{\frac{1}{2}}\left(-q-q^{-1}\right)^{2}+q^{-\frac{1}{2}}\left(-q-q^{-1}\right) \\
& =-q^{\frac{3}{2}}\left(-q-q^{-1}\right) \\
\langle\bigcirc\rangle & =-q-q^{-1} .
\end{aligned}
$$

## Example

$$
\begin{aligned}
\langle\bigcirc\rangle & =q^{\frac{1}{2}}\langle\bigcirc\rangle+q^{-\frac{1}{2}}\langle\bigcirc\rangle \\
& =q^{\frac{1}{2}}\left(-q-q^{-1}\right)^{2}+q^{-\frac{1}{2}}\left(-q-q^{-1}\right) \\
& =-q^{\frac{3}{2}}\left(-q-q^{-1}\right), \\
\langle> & =-q-q^{-1} .
\end{aligned}
$$

This shows that (as framed links)


## Example

$$
\begin{aligned}
\langle\bigcirc\rangle & =q^{\frac{1}{2}}\langle\bigcirc \bigcirc\rangle+q^{-\frac{1}{2}}\langle\bigcirc\rangle \\
& =q^{\frac{1}{2}}\left(-q-q^{-1}\right)^{2}+q^{-\frac{1}{2}}\left(-q-q^{-1}\right) \\
& =-q^{\frac{3}{2}}\left(-q-q^{-1}\right), \\
\langle\bigcirc\rangle & =-q-q^{-1} .
\end{aligned}
$$

This shows that (as framed links)


Observation: The Kauffman bracket can be written as a linear combination of diagrams without crossings, which bound disks in $S^{3}$. This implies $\langle K\rangle \in \mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$.

## Kauffman bracket in $S^{3}$ is multiplicative

Observation:


## Kauffman bracket in $S^{3}$ is multiplicative

Observation:


## Kauffman bracket in $S^{3}$ is multiplicative

## Observation:


\|


Juxtaposition/superposition defines a (commutative) multiplication of the Kauffman bracket in $S^{3}$ :

$$
\left\langle K_{1}\right\rangle \cdot\left\langle K_{2}\right\rangle=\left\langle K_{1} \text { "next to" } K_{2}\right\rangle=\left\langle K_{1} \text { "over" } K_{2}\right\rangle
$$

## The Kauffman bracket skein algebra of $S^{3}$

We consider the structure of the Kauffman bracket of all possible framed links in $S^{3}$.

## The Kauffman bracket skein algebra of $S^{3}$

We consider the structure of the Kauffman bracket of all possible framed links in $S^{3}$.

Choose a variable $q=e^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$.

## The Kauffman bracket skein algebra of $S^{3}$

We consider the structure of the Kauffman bracket of all possible framed links in $S^{3}$.

Choose a variable $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. Define $\mathcal{S}^{q}\left(S^{3}\right)$ to be the $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$-module consisting of linear combinations of framed links $K$ in $S^{3}$,

## The Kauffman bracket skein algebra of $S^{3}$

We consider the structure of the Kauffman bracket of all possible framed links in $S^{3}$.

Choose a variable $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. Define $\mathcal{S}^{q}\left(S^{3}\right)$ to be the $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$-module consisting of linear combinations of framed links $K$ in $S^{3}$, subject to the relations:


## The Kauffman bracket skein algebra of $S^{3}$

We consider the structure of the Kauffman bracket of all possible framed links in $S^{3}$.

Choose a variable $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. Define $\mathcal{S}^{q}\left(S^{3}\right)$ to be the $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$-module consisting of linear combinations of framed links $K$ in $S^{3}$, subject to the relations:

with multiplication by juxtaposition/superposition of framed links.

## Generalization to oriented 3-manifolds

We consider the structure of the Kauffman bracket of all possible framed links in an oriented 3-manifold $M$.

## Generalization to oriented 3-manifolds

We consider the structure of the Kauffman bracket of all possible framed links in an oriented 3-manifold $M$.

Choose a variable $q=\mathrm{e}^{2 \mathrm{\pi} \mathrm{i} \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. Define $\mathcal{S}^{q}(M)$ to be the $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$-module consisting of linear combinations of framed links $K$ in $M$, subject to the relations:

with multiplication by juxtaposition/superposition of framed links.

## Kauffman bracket skein algebra of a surface

## Kauffman bracket skein algebra of a surface

Special case: $M=\Sigma \times[0,1]$ and $\Sigma$ is an oriented, compact surface with finitely many punctures.

## Kauffman bracket skein algebra of a surface

Special case: $M=\Sigma \times[0,1]$ and $\Sigma$ is an oriented, compact surface with finitely many punctures.

Choose a variable $q=e^{2 \pi i \hbar} \in \mathbb{C}-\{0\}$ and a square root $q^{\frac{1}{2}}$. Define $\mathcal{S}^{q}(\Sigma)$ to be the $\mathbb{Z}\left[q^{\frac{1}{2}}, q^{-\frac{1}{2}}\right]$-module consisting of linear combinations of framed links $K$ in $M$, subject to the relations:

with multiplication by superposition of framed links.

Example

- $\exists$ loops not bounding disks $\Longrightarrow$ many generators of $\mathcal{S}^{q}(\Sigma)$.



## Example

- $\exists$ loops not bounding disks $\Longrightarrow$ many generators of $\mathcal{S}^{q}(\Sigma)$.

- $X \neq \mathbb{\text { multiplication is not commutative. }}$



## Kauffman bracket skein algebra of a surface

## Remarks

- Every 3-manifold can be decomposed into two handlebodies along a closed surface.


## Kauffman bracket skein algebra of a surface

Remarks

- Every 3-manifold can be decomposed into two handlebodies along a closed surface.
- In Witten's TQFT for $q^{N}=1$,

$$
\Sigma \longmapsto V^{q}(\Sigma)
$$

$V^{q}(\Sigma)$ is a finite $\operatorname{dim}$. quotient of $\mathcal{S}^{q}(M)$, where $\partial M=\Sigma$. The action $\mathcal{S}^{q}(\Sigma) G \mathcal{S}^{q}(M)$ provides an irreducible repn

$$
\rho_{\text {Witten }}: \mathcal{S}^{q}(\Sigma) \longrightarrow \operatorname{End}\left(V^{q}(\Sigma)\right)
$$

## Kauffman bracket skein algebra of a surface

Remarks

- Every 3-manifold can be decomposed into two handlebodies along a closed surface.
- In Witten's TQFT for $q^{N}=1$,

$$
\Sigma \longmapsto V^{q}(\Sigma)
$$

$V^{q}(\Sigma)$ is a finite $\operatorname{dim}$. quotient of $\mathcal{S}^{q}(M)$, where $\partial M=\Sigma$. The action $\mathcal{S}^{q}(\Sigma) G \mathcal{S}^{q}(M)$ provides an irreducible repn

$$
\rho_{\text {Witten }}: \mathcal{S}^{q}(\Sigma) \longrightarrow \operatorname{End}\left(V^{q}(\Sigma)\right)
$$

## Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$

1. $\mathcal{S}^{q}(\Sigma)$ is not commutative, except when:

- $\Sigma$ is a 2 -sphere with 0,1 , or 2 punctures, disk with 1 or 2 punctures, or annulus
- $q=1$, when $q^{\frac{1}{2}}=q^{-\frac{1}{2}}$ and $Q= \pm 0 \pm Q=Q$.


## Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$

1. $\mathcal{S}^{q}(\Sigma)$ is not commutative, except when:

- $\Sigma$ is a 2 -sphere with 0,1 , or 2 punctures, disk with 1 or 2 punctures, or annulus
- $q=1$, when $q^{\frac{1}{2}}=q^{-\frac{1}{2}}$ and $Q= \pm 0 \pm Q=Q$.

2. $Z\left(\mathcal{S}^{q}(\Sigma)\right)$ contains puncture loops.

## Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$

1. $\mathcal{S}^{q}(\Sigma)$ is not commutative, except when:

- $\Sigma$ is a 2 -sphere with 0,1 , or 2 punctures, disk with 1 or 2 punctures, or annulus
- $q=1$, when $q^{\frac{1}{2}}=q^{-\frac{1}{2}}$ and $Q= \pm 0 \pm=$.

2. $Z\left(\mathcal{S}^{q}(\Sigma)\right)$ contains puncture loops.
3. (Przytycki, Turaev, 1990) $\mathcal{S}^{q}(\Sigma)$ is (usually) infinitely generated as a module, by framed links whose projection to $\Sigma$ has no crossings.

## Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$

1. $\mathcal{S}^{q}(\Sigma)$ is not commutative, except when:

- $\Sigma$ is a 2 -sphere with 0,1 , or 2 punctures, disk with 1 or 2 punctures, or annulus
- $q=1$, when $q^{\frac{1}{2}}=q^{-\frac{1}{2}}$ and $Q= \pm 0 \pm=$.

2. $Z\left(\mathcal{S}^{q}(\Sigma)\right)$ contains puncture loops.

3. (Przytycki, Turaev, 1990) $\mathcal{S}^{q}(\Sigma)$ is (usually) infinitely generated as a module, by framed links whose projection to $\Sigma$ has no crossings.
4. (Bullock, 1999) $\mathcal{S}^{q}(\Sigma)$ is finitely generated as an algebra.

Algebraic Properties of $\mathcal{S}^{q}(\Sigma)$ (very recently proved)

1. (Przytycki-Sikora, Le, Bonahon-W.) $\mathcal{S}^{q}(\Sigma)$ has no zero divisors.
2. (Przytycki-Sikora) $\mathcal{S}^{q}(\Sigma)$ is Noetherian.
3. (Frohman-Kania-Bartoszynska-Le) $\mathcal{S}^{q}(\Sigma)$ is almost Azyumaya.
4. (Bonahon-W., Le, Frohman-Kania-Bartozynska-Le) Its center $Z\left(\mathcal{S}^{q}(\Sigma)\right)$ is determined.

## Part II

How $\mathcal{S}^{q}(\Sigma)$ is related to hyperbolic geometry

## Hyperbolic geometry

Let $\Sigma$ be a surface with finite topological type.


## Hyperbolic geometry

Let $\Sigma$ be a surface with finite topological type.


Its Teichmuller space $\mathcal{T}(\Sigma)$ consists of isotopy classes of complete hyperbolic metrics on $\Sigma$ with finite area.


Every metric $m \in \mathcal{T}(\Sigma)$ corresponds to a monodromy representation $r_{m}: \pi_{1}(\Sigma) \rightarrow \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)=\operatorname{PSL}_{2}(\mathbb{R})$, up to conjugation.

## Hyperbolic geometry

Hence consider

$$
\mathcal{R}_{\mathrm{SL}_{2} \mathbb{R}}=\left\{r: \pi_{1}(\Sigma) \rightarrow \mathrm{SL}_{2} \mathbb{R}\right\} / \mathrm{SL}_{2} \mathbb{R}
$$

## Hyperbolic geometry

Hence consider

$$
\mathcal{R}_{\mathrm{SL}_{2} \mathbb{R}}=\left\{r: \pi_{1}(\Sigma) \rightarrow \mathrm{SL}_{2} \mathbb{R}\right\} / \mathrm{SL}_{2} \mathbb{R}
$$

Notice that we lifted $\mathrm{PSL}_{2} \mathbb{R}$ to $\mathrm{SL}_{2} \mathbb{R}$

## Hyperbolic geometry

Hence consider

$$
\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}=\left\{r: \pi_{1}(\Sigma) \rightarrow \mathrm{SL}_{2} \mathbb{C}\right\} / \mathrm{SL}_{2} \mathbb{C} .
$$

Notice that we lifted $\mathrm{PSL}_{2} \mathbb{R}$ to $\mathrm{SL}_{2} \mathbb{R}$ and complexify to $\mathrm{SL}_{2} \mathbb{C}$.

## Hyperbolic geometry

Hence consider

$$
\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}=\left\{r: \pi_{1}(\Sigma) \rightarrow \mathrm{SL}_{2} \mathbb{C}\right\} / \mathrm{SL}_{2} \mathbb{C} .
$$

Notice that we lifted $\mathrm{PSL}_{2} \mathbb{R}$ to $\mathrm{SL}_{2} \mathbb{R}$ and complexify to $\mathrm{SL}_{2} \mathbb{C}$.

The $\mathrm{SL}_{2} \mathbb{C}$-character variety $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ is an algebraic variety that contains a copy of Teichmuller space $\mathcal{T}(\Sigma)$ as a real subvariety.

Note that $\left[r_{1}\right]=\left[r_{2}\right]$ if and only if trace $\circ r_{1}=$ trace $\circ r_{2}$.

## Hyperbolic geometry

## Trace functions

For every loop $K$ in $\Sigma$, define the trace function

$$
\operatorname{Tr}_{K}: \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \rightarrow \mathbb{C} \text { by } \operatorname{Tr}_{K}(r)=-\operatorname{trace}(r([K])) .
$$

## Trace functions

For every loop $K$ in $\Sigma$, define the trace function

$$
\operatorname{Tr}_{K}: \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \rightarrow \mathbb{C} \text { by } \operatorname{Tr}_{K}(r)=-\operatorname{trace}(r([K])) .
$$

The trace functions generate the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma) \rightarrow \mathbb{C}$ ).

## Trace functions

For every loop $K$ in $\Sigma$, define the trace function

$$
\operatorname{Tr}_{K}: \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \rightarrow \mathbb{C} \text { by } \operatorname{Tr}_{K}(r)=-\operatorname{trace}(r([K])) .
$$

The trace functions generate the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma) \rightarrow \mathbb{C}$ ).

Important observation: The trace functions $\operatorname{Tr}_{K}$ satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}}=-1$,

$$
\bigcirc
$$

## Trace functions

For every loop $K$ in $\Sigma$, define the trace function

$$
\operatorname{Tr}_{K}: \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \rightarrow \mathbb{C} \text { by } \operatorname{Tr}_{K}(r)=-\operatorname{trace}(r([K])) .
$$

The trace functions generate the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma) \rightarrow \mathbb{C}$ ).

Important observation: The trace functions $\operatorname{Tr}_{K}$ satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}}=-1$,

$$
\bigcirc
$$

from identity $\operatorname{Tr}(M) \operatorname{Tr}(N)=\operatorname{Tr}(M N)+\operatorname{Tr}\left(M N^{-1}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$.

## Trace functions

For every loop $K$ in $\Sigma$, define the trace function

$$
\operatorname{Tr}_{K}: \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \rightarrow \mathbb{C} \text { by } \operatorname{Tr}_{K}(r)=-\operatorname{trace}(r([K]))
$$

The trace functions generate the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ (consisting of all regular functions $\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma) \rightarrow \mathbb{C}$ ).

Important observation: The trace functions $\operatorname{Tr}_{K}$ satisfy the Kauffman bracket skein relation when $q^{\frac{1}{2}}=-1$,

$$
\widehat{O}=(-1)(-1)+(
$$

from identity $\operatorname{Tr}(M) \operatorname{Tr}(N)=\operatorname{Tr}(M N)+\operatorname{Tr}\left(M N^{-1}\right)$ in $\mathrm{SL}_{2} \mathbb{C}$.

## Skein algebras and hyperbolic geometry

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)
For $q^{\frac{1}{2}}=-1$, there is an isomorphism between the skein algebra $\mathcal{S}^{1}(\Sigma)$ and the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)\right]$ given by

$$
\begin{array}{ccc}
{[K]} & & \operatorname{Tr}_{K} \\
\mathcal{S}^{1}(\Sigma) & & \stackrel{+}{{ }^{1}} \\
\left.\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]
\end{array}
$$

## Skein algebras and hyperbolic geometry

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)
For $q^{\frac{1}{2}}=-1$, there is an isomorphism between the skein algebra $\mathcal{S}^{1}(\Sigma)$ and the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ given by

$$
\begin{array}{ccc}
{[K]} & & \operatorname{Tr}_{K} \\
\underset{\sim}{m} & & \stackrel{\oplus}{\mathcal{S}^{1}}(\Sigma) \\
\mathcal{S}^{1}(\Sigma & \mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]
\end{array}
$$

Alternatively, there is an isomorphism

$$
\left\{\rho: \mathcal{S}^{1}(\Sigma) \rightarrow \mathbb{C}\right\} \quad \longleftrightarrow \quad \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) .
$$

## Skein algebras and hyperbolic geometry

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)
For $q^{\frac{1}{2}}=-1$, there is an isomorphism between the skein algebra $\mathcal{S}^{1}(\Sigma)$ and the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ given by

$$
\begin{array}{ccc}
{[K]} & & \operatorname{Tr}_{K} \\
\boldsymbol{m} & & \stackrel{\Pi}{n} \\
\mathcal{S}^{1}(\Sigma) & \longleftrightarrow & \mathbb{C}\left[{ }^{\mathcal{R}} \mathrm{SL}_{2} \mathbb{C}\right. \\
(\Sigma)]
\end{array}
$$

Alternatively, there is an isomorphism

$$
\left\{\rho: \mathcal{S}^{1}(\Sigma) \rightarrow \mathbb{C}\right\} \quad \longleftrightarrow \quad \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) .
$$

Notice that $\mathcal{S}^{1}(\Sigma)$ and $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ are commutative.

## Skein algebras and hyperbolic geometry

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)
For $q^{\frac{1}{2}}=-1$, there is an isomorphism between the skein algebra $\mathcal{S}^{1}(\Sigma)$ and the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ given by

$$
\begin{array}{ccc}
{[K]} & & \operatorname{Tr}_{K} \\
\boldsymbol{m} & & \stackrel{\aleph}{\boldsymbol{m}} \\
\mathcal{S}^{1}(\Sigma) & \longleftrightarrow & \mathbb{C}\left[{\stackrel{\mathcal{R}}{\mathrm{SL}_{2} \mathbb{C}}}(\Sigma)\right] .
\end{array}
$$

Alternatively, there is an isomorphism

$$
\left\{\rho: \mathcal{S}^{1}(\Sigma) \rightarrow \mathbb{C}\right\} \quad \longleftrightarrow \quad \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) .
$$

Notice that $\mathcal{S}^{1}(\Sigma)$ and $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ are commutative.
Can we think of $\mathcal{S}^{q}(\Sigma)$ as a non-commutative version of them?

## Skein algebras and hyperbolic geometry

Theorem (..., Bullock-Frohman-Kania-Bartoszynska, Przytycki-Sikora)
For $q^{\frac{1}{2}}=-1$, there is an isomorphism between the skein algebra $\mathcal{S}^{1}(\Sigma)$ and the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ given by

$$
\begin{array}{ccc}
{[K]} & & \operatorname{Tr}_{K} \\
\boldsymbol{m} & & \stackrel{\Pi}{n} \\
\mathcal{S}^{1}(\Sigma) & \longleftrightarrow & \mathbb{C}\left[{ }^{\mathcal{R}} \mathrm{SL}_{2} \mathbb{C}\right. \\
(\Sigma)]
\end{array}
$$

Alternatively, there is an isomorphism

$$
\left\{\rho: \mathcal{S}^{1}(\Sigma) \rightarrow \mathbb{C}\right\} \quad \longleftrightarrow \quad \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) .
$$

Notice that $\mathcal{S}^{1}(\Sigma)$ and $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ are commutative.
Can we think of $\mathcal{S}^{q}(\Sigma)$ as a non-commutative version of them?

## Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in $\mathcal{S}^{q}(\Sigma)$ has the form

$$
[K][L]-[L][K]=Q-X
$$

## Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in $\mathcal{S}^{q}(\Sigma)$ has the form

$$
\begin{aligned}
{[K][L]-[L][K] } & =1 \\
& \left.=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)-\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right)(
\end{aligned}
$$

## Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in $\mathcal{S}^{q}(\Sigma)$ has the form

$$
\begin{aligned}
{[K][L]-[L][K] } & =1 \\
& \left.=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)-\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right)(
\end{aligned}
$$

And when $q=e^{2 \pi i \hbar}$,

$$
[K][L]-[L][K]=2 \pi i \hbar(\quad)+\text { higher order terms in } \hbar
$$

## Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in $\mathcal{S}^{q}(\Sigma)$ has the form

$$
\begin{aligned}
{[K][L]-[L][K] } & \left.=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)-\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right)( \\
& =
\end{aligned}
$$

And when $q=e^{2 \pi i \hbar}$,
$[K][L]-[L][K]=2 \pi i \hbar\left(\left\{\operatorname{Tr}_{K}, \operatorname{Tr}_{L}\right\}\right)+$ higher order terms in $\hbar$ where $\{$,$\} is the Weil-Petersson-Atiyah-Bott-Goldman Poisson$ bracket, using computations of Goldman.

Skein algebra is quantization of Teichmuller space
Theorem (Turaev)
$\mathcal{S}^{q}(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

## Skein algebra is quantization of Teichmuller space

Theorem (Turaev)
$\mathcal{S}^{q}(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

$$
\begin{array}{llc}
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \quad \mathbb{C} & \in & \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \\
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right) & \in & \text { quantization of } \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)
\end{array}
$$

## Skein algebra is quantization of Teichmuller space

Theorem (Turaev)
$\mathcal{S}^{q}(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

$$
\begin{array}{llc}
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \quad \mathbb{C} & \in & \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \\
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right) & \in & \text { quantization of } \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)
\end{array}
$$

Often, we say: $\mathcal{S}^{q}(\Sigma)$ is a quantization of Teichmuller space $\mathcal{T}(\Sigma)$.

## Skein algebra is quantization of Teichmuller space

Theorem (Turaev)
$\mathcal{S}^{q}(\Sigma)$ is a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Alternatively,

$$
\begin{aligned}
& \rho: \mathcal{S}^{q}(\Sigma) \rightarrow \mathbb{C} \quad \in \quad \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \\
& \rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right) \quad \in \quad \text { quantization of } \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)
\end{aligned}
$$

Often, we say: $\mathcal{S}^{q}(\Sigma)$ is a quantization of Teichmuller space $\mathcal{T}(\Sigma)$.

There's another quantization of Teichmuller space, related to quantum cluster algebras. (Chekhov-Fock, Kashaev, Bonahon et al.)

## Another quantization of Teichmuller space

Suppose $\Sigma$ has at least one puncture, with ideal triangulation $\lambda$. The shear parameters $x_{i}(r) \in \mathbb{R}$ along edges $\lambda_{1}, \ldots \lambda_{n}$ completely describe a hyperbolic metric $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$.


## Another quantization of Teichmuller space

Suppose $\Sigma$ has at least one puncture, with ideal triangulation $\lambda$. The shear parameters $x_{i}(r) \in \mathbb{R}$ along edges $\lambda_{1}, \ldots \lambda_{n}$ completely describe a hyperbolic metric $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$.


The trace functions $\operatorname{Tr}_{K}$ are polynomials in $x_{i}^{ \pm \frac{1}{2}}$. So the function algebra $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ is also generated by commutative shear parameters $x_{1}^{ \pm \frac{1}{2}}, \ldots, x_{n}^{ \pm \frac{1}{2}}$.

## Another quantization of Teichmuller space

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_{1}^{ \pm 1}, \ldots, Z_{n}^{ \pm 1}$

- $Z_{i} Z_{j}=q^{ \pm 1} Z_{j} Z_{i}$ if the $i$ th and $j$ th edges share a triangle, $Z_{i} Z_{j}=Z_{j} Z_{i}$ otherwise
- relations for independence from choice of ideal triangulation


## Another quantization of Teichmuller space

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_{1}^{ \pm 1}, \ldots, Z_{n}^{ \pm 1}$

- $Z_{i} Z_{j}=q^{ \pm 1} Z_{j} Z_{i}$ if the $i$ th and $j$ th edges share a triangle, $Z_{i} Z_{j}=Z_{j} Z_{i}$ otherwise
- relations for independence from choice of ideal triangulation


## Theorem (Bonahon-W.)

There exists an injective map $\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)$
which is compatible with $\mathcal{S}^{q}(\Sigma)$ as a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

## Another quantization of Teichmuller space

Following the theory of quantum cluster algebras, Chekhov-Fock define the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$ to be the algebra generated by non-commutative shear parameters $Z_{1}^{ \pm 1}, \ldots, Z_{n}^{ \pm 1}$

- $Z_{i} Z_{j}=q^{ \pm 1} Z_{j} Z_{i}$ if the $i$ th and $j$ th edges share a triangle, $Z_{i} Z_{j}=Z_{j} Z_{i}$ otherwise
- relations for independence from choice of ideal triangulation


## Theorem (Bonahon-W.)

There exists an injective map $\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)$ which is compatible with $\mathcal{S}^{q}(\Sigma)$ as a quantization of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ with respect to the Weil-Petersson Poisson structure.

Great because multiplication in $\mathcal{T}^{q}(\Sigma)$ is easier to manipulate. Not great because the map is complicated.

## Summary of Part II

- The Kauffman bracket skein algebra of a surface is the quantization of Teichmuller space (really, $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ ) in multiple ways.
- In one

$$
\begin{array}{llc}
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow & \mathbb{C} & \in
\end{array} \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma), ~\left(\Sigma \operatorname{End}\left(\mathbb{C}^{d}\right) \quad \in \quad \text { quantization of } \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right.
$$

- Also

$$
\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)
$$

## Summary of Part II

- The Kauffman bracket skein algebra of a surface is the quantization of Teichmuller space (really, $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)\right]$ ) in multiple ways.
- In one

$$
\begin{array}{llc}
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \quad \mathbb{C} & \in & \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \\
\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right) & \in & \text { quantization of } \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma) \\
\text { What are these repns? } & &
\end{array}
$$

- Also

$$
\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)
$$

## Part III

## Representations of $\mathcal{S}^{a}(\Sigma)$

## Theorem (Bonahon-W.)

Let $q$ be a $N$-root of 1 , with $N$ odd.
Let $\Sigma$ be a surface with finite topological type.

1. Every irreducible representation $\rho$ of $\mathcal{S}^{q}(\Sigma)$ uniquely determines

- puncture invariants $p_{i} \in \mathbb{C}$ for every puncture of $\Sigma$
- classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)$

2. For every compatible $\left\{p_{i}\right\}$ and $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$, there exists an irreducible representation $\rho$ of $\mathcal{S}^{q}(\Sigma)$ with those invariants.

We'll sketch the methods of construction, starting with a revisit to the algebraic structure of $\mathcal{S}^{q}(\Sigma)$. This will involve Chebyshev polynomials.

## Remarks on Theorem

irred representation
$\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)$
$\stackrel{1-1 ?}{\longleftrightarrow}$ puncture invs $p_{i} \in \mathbb{C}$ and classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)$

## Remarks on Theorem

irred representation

$\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)$$\quad \stackrel{1-1 ?}{\longleftrightarrow} \quad$| puncture invs $p_{i} \in \mathbb{C}$ and |
| :--- |
| classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ |

- $\exists$ two irrepns of $\mathcal{S}^{q}(\Sigma)\left(\rho_{\text {Witten }}\right.$ and $\left.\rho_{\mathrm{Thm}}\right)$ whose classical shadow is the trivial character $r: \pi_{1}(\Sigma) \rightarrow\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.


## Remarks on Theorem

irred representation

$\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)$$\quad \stackrel{1-1 ?}{\longleftrightarrow} \quad$| puncture invs $p_{i} \in \mathbb{C}$ and |
| :--- |
| classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$ |

- $\exists$ two irrepns of $\mathcal{S}^{q}(\Sigma)\left(\rho_{\text {Witten }}\right.$ and $\left.\rho_{\text {Thm }}\right)$ whose classical shadow is the trivial character $r: \pi_{1}(\Sigma) \rightarrow\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.
- Breaking news: In July preprint, Frohman, Kania-Bartoszynska, and Le prove 1-1 for a Zariski dense, open subset of $\mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$.


## Chebyshev polynomials

## Chebyshev polynomials

Let $T_{n}(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$
\begin{aligned}
T_{0}(x) & =2 \\
T_{1}(x) & =x \\
T_{2}(x) & =x^{2}-2 \\
T_{3}(x) & =x^{3}-3 x \\
\vdots & \\
T_{n}(x) & =x T_{n-1}(x)-T_{n-2}(x) .
\end{aligned}
$$

## Chebyshev polynomials

Let $T_{n}(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$
\begin{aligned}
T_{0}(x) & =2 \\
T_{1}(x) & =x \\
T_{2}(x) & =x^{2}-2 \\
T_{3}(x) & =x^{3}-3 x \\
\vdots & \\
T_{n}(x) & =x T_{n-1}(x)-T_{n-2}(x) .
\end{aligned}
$$

Note:

- $\cos (n \theta)=\frac{1}{2} T_{n}(2 \cos \theta)$
- $\operatorname{Tr}\left(M^{n}\right)=T_{n}(\operatorname{Tr}(M))$ for all $M \in \mathrm{SL}_{2}(\mathbb{C})$.


## Chebyshev polynomials

Let $T_{n}(x)$ be the Chebyshev polynomials of the first kind, defined recursively as follows:

$$
\begin{aligned}
T_{0}(x) & =2 \\
T_{1}(x) & =x \\
T_{2}(x) & =x^{2}-2 \\
T_{3}(x) & =x^{3}-3 x \\
\vdots & \\
T_{n}(x) & =x T_{n-1}(x)-T_{n-2}(x) .
\end{aligned}
$$

Note:

- $\cos (n \theta)=\frac{1}{2} T_{n}(2 \cos \theta)$
- $\operatorname{Tr}\left(M^{n}\right)=T_{n}(\operatorname{Tr}(M))$ for all $M \in \mathrm{SL}_{2}(\mathbb{C})$.
- Witten's TQFT uses the Chebyshevs of the second kind.

Threading skeins by Chebyshev polynomials

## Threading skeins by Chebyshev polynomials

- Example: $[K]=\left\langle\gg\right.$ and $T_{3}=x^{3}-3 x$,

Threading skeins by Chebyshev polynomials

- Example: $[K]=\left\langle\infty\right.$ and $T_{3}=x^{3}-3 x$,


Threading skeins by Chebyshev polynomials

- Example: $[K]=\left\langle\infty\right.$ and $T_{3}=x^{3}-3 x$,


Threading skeins by Chebyshev polynomials

- Example: $[K]=\langle\bigcirc\rangle$ and $T_{3}=x^{3}-3 x$,

- Observe: For a framed link $K$ with $n$ crossings, the Kauffman bracket $[K]$ has $2^{n}$ resolutions, whereas [ $K^{T_{N}}$ ] has $\mathcal{O}\left(2^{n^{2}}\right)$ resolutions.


## Threading skeins by Chebyshev polynomials

Theorem (Bonahon-W.)
Let $q$ be a $N$-root of 1 , with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :

## Threading skeins by Chebyshev polynomials

Theorem (Bonahon-W.)
Let $q$ be a $N$-root of 1, with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :
1.


## Threading skeins by Chebyshev polynomials

Theorem (Bonahon-W.)
Let $q$ be a $N$-root of 1 , with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :
1.

2.

## Threading skeins by Chebyshev polynomials

## Theorem (Bonahon-W.)

Let $q$ be a $N$-root of 1, with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :
1.

[ $K^{T_{N}}$ ] are in the center.
2.
$\left[K^{T_{N}}\right]$ satisfy the skein relation, $q^{\frac{1}{2}}=-1$.

## Threading skeins by Chebyshev polynomials

## Theorem (Bonahon-W.)

Let $q$ be a $N$-root of 1, with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :
1.

[ $K^{T_{N}}$ ] are in the center.
2.


Proof: Inject $\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)$. There are many "miraculous cancellations" when checking identities in the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$.

## Threading skeins by Chebyshev polynomials

## Theorem (Bonahon-W.)

Let $q$ be a $N$-root of 1 , with $N$ odd. Framed links threaded by $T_{N}$ in $\mathcal{S}^{q}(\Sigma)$ :
1.

[ $K^{T_{N}}$ ] are in the center.
2.


Proof: Inject $\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)$. There are many "miraculous cancellations" when checking identities in the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$. (See also Le's skein-theoretic proof.)

## Sketch Proof of Theorem

## Theorem (Bonahon-W.)

Let $q$ be a $N$-root of 1 , with $N$ odd.
Let $\Sigma$ be a surface with finite topological type.

1. Every irreducible representation of $\mathcal{S}^{q}(\Sigma)$ uniquely determines

- puncture invariants $p_{i} \in \mathbb{C}$ for every puncture of $\Sigma$
- classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)$

2. For compatible $p_{i} \in \mathbb{C}$ and $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$, there exists an irreducible representation of $\mathcal{S}^{q}(\Sigma)$ with those invariants.

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

- The $i$-th puncture loop $\left[P_{i}\right]$ is central.


Schur's Lemma $\Rightarrow \rho:\left[P_{i}\right] \longmapsto p_{i} \cdot$ Id for $p_{i} \in \mathbb{C}$ puncture invs.

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

- The $i$-th puncture loop $\left[P_{i}\right]$ is central.


Schur's Lemma $\Rightarrow \rho:\left[P_{i}\right] \longmapsto p_{i} \cdot$ Id for $p_{i} \in \mathbb{C}$ puncture invs.

- A threaded link $\left[K^{T_{N}}\right] \in \mathcal{S}^{q}(\Sigma)$ is central. $\Omega=\varnothing$

Schur's Lemma $\Rightarrow \rho:\left[K^{T_{N}}\right] \longmapsto \hat{\rho}([K]) \cdot$ Id for $\hat{\rho}(K) \in \mathbb{C}$.

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

- The $i$-th puncture loop $\left[P_{i}\right]$ is central.


Schur's Lemma $\Rightarrow \rho:\left[P_{i}\right] \longmapsto p_{i} \cdot$ Id for $p_{i} \in \mathbb{C}$ puncture invs.

- A threaded link $\left[K^{T_{N}}\right] \in \mathcal{S}^{q}(\Sigma)$ is central. $<=0$

Schur's Lemma $\Rightarrow \rho:\left[K^{T_{N}}\right] \longmapsto \hat{\rho}([K]) \cdot$ Id for $\hat{\rho}(K) \in \mathbb{C}$. $\left[K^{T_{N}}\right]$ satisfy the skein relation $8=-0-$

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

- The $i$-th puncture loop $\left[P_{i}\right]$ is central.


Schur's Lemma $\Rightarrow \rho:\left[P_{i}\right] \longmapsto p_{i} \cdot$ Id for $p_{i} \in \mathbb{C}$ puncture invs.

- A threaded link $\left[K^{T_{N}}\right] \in \mathcal{S}^{q}(\Sigma)$ is central. $\Omega=\infty$

Schur's Lemma $\Rightarrow \rho:\left[K^{T_{N}}\right] \longmapsto \hat{\rho}([K]) \cdot$ Id for $\hat{\rho}(K) \in \mathbb{C}$. $\left[K^{T_{N}}\right]$ satisfy the skein relation $0=-0-$ So

$$
\hat{\rho}: \mathcal{S}^{1}(\Sigma) \longrightarrow \mathbb{C}
$$

## Sketch proof of Theorem, part 1

Suppose $\rho: \mathcal{S}^{q}(\Sigma) \rightarrow \operatorname{End}\left(\mathbb{C}^{d}\right)$ is irreducible.

- The $i$-th puncture loop $\left[P_{i}\right]$ is central.


Schur's Lemma $\Rightarrow \rho:\left[P_{i}\right] \longmapsto p_{i} \cdot$ Id for $p_{i} \in \mathbb{C}$ puncture invs.

- A threaded link $\left[K^{T_{N}}\right] \in \mathcal{S}^{q}(\Sigma)$ is central. $\mathcal{X}$

Schur's Lemma $\Rightarrow \rho:\left[K^{T_{N}}\right] \longmapsto \hat{\rho}([K]) \cdot$ Id for $\hat{\rho}(K) \in \mathbb{C}$. $\left[K^{T_{N}}\right]$ satisfy the skein relation $8=-0-$. So

$$
\hat{\rho}: \mathcal{S}^{1}(\Sigma) \longrightarrow \mathbb{C} \longleftrightarrow \quad \begin{aligned}
& r \in \mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma) \\
& \text { classical shadow }
\end{aligned}
$$

from the isomorphism between $\mathcal{S}^{q}(\Sigma)$ and $\mathbb{C}\left[\mathcal{R}_{\mathrm{SL}_{2} \mathrm{C}}(\Sigma)\right]$.

## Sketch proof of Theorem, part 2

Suppose we are given compatible puncture invariants $p_{i} \in \mathbb{C}$ and classical shadow $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$.

Recall that for $\Sigma$ with at least one puncture, the quantum Teichmuller space $\mathcal{T}^{q}(\Sigma)$ is the algebra generated by $Z_{1}^{ \pm 1}, \ldots, Z_{n}^{ \pm 1}$ with $Z_{i} Z_{j}=q^{ \pm 1} Z_{j} Z_{i}$ if the $i$ th and $j$ th edges share a triangle. Bonahon-Liu construct all representations of $\mathcal{T}^{q}(\Sigma)$, which are classified by compatible numbers $p_{i} \in \mathbb{C}$ and $r \in \mathcal{R}_{\mathrm{SL}_{2} \mathbb{C}}(\Sigma)$.

When $\Sigma$ has at least one puncture, compose

$$
\rho: \mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma) \xrightarrow{p_{i}, r} \operatorname{End}\left(\mathbb{C}^{d}\right)
$$

When $\Sigma$ has no punctures, drill punctures and show there is an invariant subspace that is blind to punctures.

## Further remarks

- In 2016 preprint, Frohman-Kania-Bartoszynska describe another method of constructing representations when $\Sigma$ has at least one puncture, which matches our construction for generic characters by July 2017 preprint of Frohman-Kania-Bartoszynska-Le.
- $\mathcal{S}^{q}(\Sigma) \hookrightarrow \mathcal{T}^{q}(\Sigma)$ is used to prove many of the algebraic properties mentioned earlier (e.g., no zero divisors, determination of center).
- How can we use it to more closely tie together the Jones and Witten quantum invariants with hyperbolic geometry?

Thanks!

