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Quantum topology

In the early 1980s, the Jones polynomial for knots and links in
3-space was introduced. Witten followed quickly with an
amplification of the Jones polynomial to 3-dimensional manifolds.

Straightaway, these quantum invariants solved some long-standing
problems in low-dimensional topology. However, their definition is

seemingly unrelated to any of the classically known topological and
geometric constructions. To this day there is still no good answer

to the question:

What topological or geometric properties do the Jones and Witten
quantum invariants measure?



Quantum topology

The Kauffman bracket skein algebra of a surface has emerged as a
likely point of connection. In particular, it

e generalizes the (Kauffman bracket formulation of) Jones'
polynomial invariant for links

e features in the Topological Quantum Field Theory description
of Witten's 3-manifold invariant

e relates to hyperbolic geometry of surface, particularly the
SL,>C-character variety



Plan for talk

1. Intro to the Kauffman bracket skein algebra S9(X).
2. How S9(X) is related to SLyC-character variety.

3. Representations of S9(X).

This talk describes joint work with Francis Bonahon.
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The Kauffman bracket for links in S3

The Kauffman bracket (K is an invariant of isotopy classes of
framed links in S3. The Jones polynomial can be seen as a
modification of it for unframed, oriented links.

Choose a variable g = ¢?™" € C — {0} and a square root q%.
The Kauffman bracket of a framed link K in the 3—sphere S3
is evaluated from a diagram using the relations:

</\>— A+ a MO0
QP =(—a—a i

Convention: Link diagrams are drawn with framing perpendicular to the
blackboard.
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Example

(OO = KOO +aH O

_1)2 _1

1 _
= q2(—g—qg 1% +q 2(—g—q 1)

3 _
= —q2(—q—q ),

(O = ama
This shows that (as framed links) <X> Q

Observation: The Kauffman bracket can be written as a linear

combination of diagrams without crossings, which bound disks in
1

S3. This implies (K) € Z[q%, q 2].



Kauffman bracket in S3 is multiplicative

Observation:

QO O =<CO» <O



Kauffman bracket in S3 is multiplicative

Observation:

<Q\/) (> =<OOH»<(OH»
<<®>>



Kauffman bracket in S° is multiplicative

Observation:

<® (> =<OO» <Oy
<(®>>

Juxtaposition /superposition defines a (commutative) multiplication
of the Kauffman bracket in S3:

<K1> . <K2> = <K1 “next to” K2> = <K1 “over” K2>
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The Kauffman bracket skein algebra of S°

We consider the structure of the Kauffman bracket of all possible
framed links in S3.

Choose a variable g = ™" € C — {0} and a square root q%.
1

Define S9(S3) to be the Z[q%, g~ 2 |-module consisting of linear
combinations of framed links K in S3, subject to the relations:

</\>— A+ e OO
QP =(—a-a ) D

with multiplication by juxtaposition/superposition of framed links.
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Generalization to oriented 3-manifolds

We consider the structure of the Kauffman bracket of all possible
framed links in an oriented 3-manifold M.

Choose a variable g = ™" € C — {0} and a square root q%.
1

Define S9(M) to be the Z[q%, g~ 2|-module consisting of linear
combinations of framed links K in M, subject to the relations:

</\>— A+ e OO
QP =(—a—a i

NI e e
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Kauffman bracket skein algebra of a surface

Special case: M =¥ x [0,1] and X is an oriented, compact
surface with finitely many punctures.

Choose a variable g = ¢?™" € C — {0} and a square root q%.

Define S9(¥) to be the Z[q%, q_%]—module consisting of linear
combinations of framed links K in M, subject to the relations:

I,"—--~ . l :"’—-.~ . _l I:"—--N .
Oy = =+ a2
EOQD=(=q—a ) ».

with multiplication by superposition of framed links.
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Example

e 3 loops not bounding disks = many generators of S9(X

X == multiplication is not commutative.

@@
@O ©
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Algebraic Properties of S9(X)

1. S9(X) is not commutative, except when:

e > is a 2-sphere with 0, 1, or 2 punctures, disk with 1 or 2
punctures, or annulus

e qg=1, when q% = q_% and \/\ = i)( + >< = /\/

2. Z(S89(X)) contains puncture loops.

3. (Przytycki, Turaev, 1990) S9(X) is (usually) infinitely generated
as a module, by framed links whose projection to ¥ has no
crossings.

4. (Bullock, 1999) S9(X) is finitely generated as an algebra.



Algebraic Properties of S9(X) (very recently proved)

1. (Przytycki-Sikora, Le, Bonahon-W.) Sq(Z) has no zero divisors.
2. (Przytycki-Sikora) S9(X) is Noetherian.
3. (Frohman-Kania-Bartoszynska-Le) S9(X) is almost Azyumaya.

4. (Bonahon-W., Le, Frohman-Kania-Bartozynska-Le)
Its center Z(S9(X)) is determined.



Part Il

How S9(X) is related to hyperbolic geometry
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Hyperbolic geometry

Let 2 be a surface with finite topological type. @@
Ve

Its Teichmuller space T (X) consists of isotopy classes of complete
hyperbolic metrics on X with finite area.

Every metric m € T (X) corresponds to a monodromy
representation rp, : m1(X) — Isom™ (H?) = PSLy(R), up to
conjugation.
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Hyperbolic geometry

Hence consider
RSL2<C = {I’ . 7T1(Z> — SLQC}//SL2C.

Notice that we lifted PSLoR to SLoR and complexify to SL,C.

The SLyC-character variety Rgr,c(X) is an algebraic variety that
contains a copy of Teichmuller space 7 (X) as a real subvariety.

Note that [r1] = [r2] if and only if trace o n = trace o r.



Hyperbolic geometry

Q>



Trace functions
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For every loop K in X, define the trace function
Trk : Rsr,c(X) — C by Trk(r) = —trace(r([K])).

The trace functions generate the function algebra C[Rgsr,c(X)]
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Skein algebras and hyperbolic geometry

Theorem ( .., Bullock-Frohman-Kania-Bartoszynska, Przytycki—Sikora)

For q% = —1, there is an isomorphism between the skein algebra
SY(X) and the function algebra C[Rsy,,c(X)] given by

[ig] Tri

SUE) «— C[Rspe(D)].

Alternatively, there is an isomorphism
(p:S'(T)->C) —  Rec(®).

Notice that S*(X) and C[Rsp,c(X)] are commutative.
Can we think of S9(X) as a non-commutative version of them?
... Yes!
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Skein algebras and hyperbolic geometry

Turaev noticed that the commutator in S9(¥X) has the form

[K[L] — (LK) = )= (X
B 1 B 1 ul B 1 1 \‘-l
= (92 — q 2)f\ (92 — q 2))(
And when g = e*™",
|K][L] — [L][K] = 2mih ( {Trk, Trr} ) + higher order terms in /i

where { , } is the Weil-Petersson-Atiyah-Bott-Goldman Poisson
bracket, using computations of Goldman.
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Skein algebra is quantization of Teichmuller space

Theorem (Turaev)

S9(X) is a quantization of Rsr,c(X) with respect to the
Weil-Petersson Poisson structure.

Alternatively,

P Sq(Z) — C S RSch(Z)
p:8Y(X) - End(CY) € quantization of Rgy,c(X)

Often, we say: S9(X) is a quantization of Teichmuller space T (X).

There's another quantization of Teichmuller space, related to
quantum cluster algebras. (Chekhov-Fock, Kashaev, Bonahon et al.)
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Another quantization of Teichmuller space

Suppose X has at least one puncture, with ideal triangulation .
The shear parameters x;(r) € R along edges A1, ...\, completely
describe a hyperbolic metric r € Rgr,c(X).

. : . +
The trace functions Try are polynomials in x:

So the function algebra C[Rgsr,c(X)] is also generated by

+1 +1
commutative shear parameters x; ?,...,xp ?

N
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Following the theory of quantum cluster algebras, Chekhov-Fock
define the quantum Teichmuller space 79(X) to be the algebra
generated by non-commutative shear parameters Zlil, L, ZE

o Z;Z; = q-1Z;Z; if the ith and jth edges share a triangle,
ZiZ; = Z;Zj otherwise

e relations for independence from choice of ideal triangulation
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Another quantization of Teichmuller space

Following the theory of quantum cluster algebras, Chekhov-Fock
define the quantum Teichmuller space 79(X) to be the algebra
generated by non-commutative shear parameters Zlil, L, ZE
o Z;Z; = q-1Z;Z; if the ith and jth edges share a triangle,
ZiZ; = Z;Zj otherwise

e relations for independence from choice of ideal triangulation

Theorem (Bonahon-W. )

There exists an injective map S9(X) — T9(X)
which is compatible with S9(¥X) as a quantization of Rgr,c(X)
with respect to the Weil-Petersson Poisson structure.

Great because multiplication in 79(X) is easier to manipulate.
Not great because the map is complicated.
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Summary of Part |

e The Kauffman bracket skein algebra of a surface is the

quantization of Teichmuller space (really, C[Rsr,c(X)]) in
multiple ways.

e |n one

[ Sq(Z) — C € RSLQC(Z)
p:SI(X) - End(C? € quantization of Rg,c(X)
What are these repns?

e Also
SUx) = T%)



Part Il

Representations of S9(X)



Theorem (Bonahon-W.)

Let g be a N-root of 1, with N odd.
Let > be a surface with finite topological type.

1. Every irreducible representation p of S9(X) uniquely
determines

e puncture invariants p; € C for every puncture of X
e classical shadow r € Rgy,c(X)

2. For every compatible {p;} and r € Rsr,c(X), there exists an
irreducible representation p of S9(¥X) with those invariants.

We'll sketch the methods of construction, starting with a revisit to
the algebraic structure of S9(X). This will involve Chebyshev
polynomials.
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Remarks on Theorem

irred representation 1-1?  puncture invs p; € C and

<>

p:SIX) — End(C") classical shadow r € Rgr,c(X)

e 3 two irrepns of S9(X) (pwitten and prnm) Whose classical
shadow is the trivial character r: w1 (X) — {(§9)}.

e Breaking news: In July preprint, Frohman,
Kania-Bartoszynska, and Le prove 1-1 for a Zariski dense,
open subset of Rgr,c(X).



Chebyshev polynomials
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Chebyshev polynomials

Let T,(x) be the Chebyshev polynomials of the first kind, defined
recursively as follows:
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Chebyshev polynomials

Let T,(x) be the Chebyshev polynomials of the first kind, defined
recursively as follows:

To (X) = 2

Ti(x) = x

To(x) = x*>—=2
Ts3(x) = x>—3x

Tn(X) = XTn—l(X)—Tn_Q(X).

Note:
e cos(nf) = 3 T,(2cosb)

o Tr(M") = T,(Tr(M)) for all M € SLy(C).



Chebyshev polynomials

Let T,(x) be the Chebyshev polynomials of the first kind, defined
recursively as follows:

To (X) = 2

Ti(x) = x

To(x) = x*>—=2
Ts3(x) = x>—3x

Tn(X) = XTn—1<X)—Tn_2(X).

Note:
e cos(nf) = 3 T,(2cosb)

o Tr(M") = T,(Tr(M)) for all M € SLy(C).
e Witten's TQFT uses the Chebyshevs of the second kind.
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Threading skeins by Chebyshev polynomials

o Example: [K] =¢ »and T3 = x3 — 3x,

e Observe: For a framed link K with n crossings, the Kauffman
bracket [K] has 2" resolutions, whereas [K V] has O(2")
resolutions.
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Theorem (Bona hon-W. )

Let g be a N-root of 1, with N odd. Framed links threaded by Ty
in S9(X):
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Proof: Inject S9(X) < T9(X). There are many “miraculous
cancellations” when checking identities in the quantum
Teichmuller space T9(X).



Threading skeins by Chebyshev polynomials

Theorem (Bona hon-W. )

Let g be a N-root of 1, with N odd. Framed links threaded by Ty
in S9(X):
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[K V] are in the center.

— 1,

N =

[K TN] satisfy the skein relation, q

Proof: Inject S9(X) < T9(X). There are many “miraculous
cancellations” when checking identities in the quantum
Teichmuller space T9(X). (See also Le's skein-theoretic proof.)



Sketch Proof of Theorem

Theorem (Bonahon-W.)

Let g be a N-root of 1, with N odd.
Let 2 be a surface with finite topological type.

1. Every irreducible representation of S9(¥) uniquely determines

e puncture invariants p; € C for every puncture of X
e classical shadow r € Rgy,c(X)

2. For compatible p; € C and r € Rsr,c(X), there exists an
irreducible representation of S9(¥) with those invariants.



Sketch proof of Theorem, part 1

Suppose p : S9(X) — End(C?) is irreducible.
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Sketch proof of Theorem, part 1

Suppose p : S9(X) — End(CY) is irreducible.

e The i-th puncture loop [P;] is central.
o

Schur's Lemma = p : [P;] — p; - 1d for p; € C puncture invs.

e A threaded link [K %] € S9(X) is central. }/\ X
Schur's Lemma = p: [K V] — p([K]) - 1d for p(K) e C.

[K TV] satisfy the skein relation : ,/\ = — )Q *“J . So
p:SHE) —C <« reRsc(X)
classical shadow

from the isomorphism between S9(X) and C[Rgsr,c(X)].



Sketch proof of Theorem, part 2

Suppose we are given compatible puncture invariants p; € C and
classical shadow r € Rgr,c(X).

Recall that for > with at least one puncture, the quantum
Teichmuller space 79(X) is the algebra generated by Z*, ... Z+1
with Z;Z; = q*1Z;Z; if the ith and jth edges share a triangle.
Bonahon-Liu construct all representations of 79(X), which are
classified by compatible numbers p; € C and r € Rgp,c(X).

When X has at least one puncture, compose

p: SIT) — TIX) 2L End(CY).

When X has no punctures, drill punctures and show there is an
invariant subspace that is blind to punctures.



Further remarks

e In 2016 preprint, Frohnman-Kania-Bartoszynska describe
another method of constructing representations when X has
at least one puncture, which matches our construction for
generic characters by July 2017 preprint of
Frohman-Kania-Bartoszynska-Le.

e S9(X) — T9(X) is used to prove many of the algebraic
properties mentioned earlier (e.g., no zero divisors,
determination of center).

e How can we use it to more closely tie together the Jones and
Witten quantum invariants with hyperbolic geometry?



Thanks!

(O <Fr «




