Toward Better Formula Lower Bounds: An Information Complexity Approach to the KRW Composition Conjecture

Dmitry Gavinsky Or Meir Omri Weinstein Avi Wigderson

Circuit lower bounds

- In complexity theory, we want to prove hardness.

Circuit lower bounds

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.

Circuit lower bounds

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ does not have circuits of size $n^{O(1)}$.

Circuit lower bounds

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ does not have circuits of size $n^{O(1)}$.
- We focus on explicit functions.

Circuit lower bounds

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$ does not have circuits of size $n^{O(1)}$.
- We focus on explicit functions.
- This talk: Fan-in is 2 .

Weaker models

- Proving hardness for general circuits is hard.
- We try to prove hardness for weaker models.

Weaker models

- Proving hardness for general circuits is hard.
- We try to prove hardness for weaker models.
- This talk: Log-depth circuits and formulas.

Log-depth circuits

- The depth of a circuit is the length of the longest path from an input to an output.

Log-depth circuits

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.

Log-depth circuits

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.
- The depth complexity $\mathrm{D}(f)$ is the depth of the shallowest circuit for f.

Log-depth circuits

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.
- The depth complexity $\mathrm{D}(f)$ is the depth of the shallowest circuit for f.
- Would like: Explicit f with $\mathrm{D}(f)=\omega(\log n)$.
- Formulas are circuits with fan-out 1.
- l.e., they are trees.
- Can not store intermediate results.
- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.
- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.
- The formula complexity $\mathrm{L}(f)$ is the size of the smallest formula for f.
- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.
- The formula complexity $\mathrm{L}(f)$ is the size of the smallest formula for f.
- Would like: Explicit f with $\mathrm{L}(f)=n^{\omega(1)}$.

Models are related

- Every circuit of depth $d=O(\log n)$ can be transformed to a formula of size $2^{d}=\operatorname{poly}(n)$.

Models are related

- Every circuit of depth $d=O(\log n)$ can be transformed to a formula of size $2^{d}=\operatorname{poly}(n)$.
- Every formula of size $s=\operatorname{poly}(n)$ can be transormed to a circuit of depth $O(\log s)=O(\log n)$ (Spira's theorem).

Models are related

- Every circuit of depth $d=O(\log n)$ can be transformed to a formula of size $2^{d}=\operatorname{poly}(n)$.
- Every formula of size $s=\operatorname{poly}(n)$ can be transormed to a circuit of depth $O(\log s)=O(\log n)$ (Spira's theorem).
- The class NC_{1} can be defined as
- The class of functions f with $\mathrm{D}(f)=O(\log n)$.
- The class of functions f with $\mathrm{L}(f)=\operatorname{poly}(n)$.

Models are related

- Every circuit of depth $d=O(\log n)$ can be transformed to a formula of size $2^{d}=\operatorname{poly}(n)$.
- Every formula of size $s=\operatorname{poly}(n)$ can be transormed to a circuit of depth $O(\log s)=O(\log n)$ (Spira's theorem).
- The class NC_{1} can be defined as
- The class of functions f with $\mathrm{D}(f)=O(\log n)$.
- The class of functions f with $\mathrm{L}(f)=\operatorname{poly}(n)$.
- Major open problem: Prove $\mathbf{N C}_{1} \neq \mathbf{P}$.

The KRW Conjecture

- [KRW91] suggested an approach.
- [KRW91] suggested an approach.
- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- The composition $g \circ f:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

$$
(g \circ f)\left(x_{1}, \ldots, x_{m}\right)=g\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)
$$

- Clearly, $\mathrm{D}(g \circ f) \leq \mathrm{D}(g)+\mathrm{D}(f)$.
- [KRW91] suggested an approach.
- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- The composition $g \circ f:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

$$
(g \circ f)\left(x_{1}, \ldots, x_{m}\right)=g\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)
$$

- Clearly, $\mathrm{D}(g \circ f) \leq \mathrm{D}(g)+\mathrm{D}(f)$.
- KRW conjecture: $\mathrm{D}(g \circ f) \approx \mathrm{D}(g)+\mathrm{D}(f)$.
- [KRW91] suggested an approach.
- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- The composition $g \circ f:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

$$
(g \circ f)\left(x_{1}, \ldots, x_{m}\right)=g\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right) .
$$

- Clearly, $\mathrm{D}(g \circ f) \leq \mathrm{D}(g)+\mathrm{D}(f)$.
- KRW conjecture: $\mathrm{D}(g \circ f) \approx \mathrm{D}(g)+\mathrm{D}(f)$.
- Implies that $\mathrm{NC}_{1} \neq \mathbf{P}$.
- Compose a random function on $\log n$ bits for $\log n$ times.

KW relations

- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.

KW relations

- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find i s.t. $x_{i} \neq y_{i}$.
- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find i s.t. $x_{i} \neq y_{i}$.
- Communicate minimal number of bits.
- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find i s.t. $x_{i} \neq y_{i}$.
- Communicate minimal number of bits.
-
- One tool we can use is KW relations.
- Relates $\mathrm{D}(f)$ and $\mathrm{L}(f)$ to the communication complexity of a problem R_{f}.
- The problem R_{f} is defined as follows:
- Alice gets $x \in f^{-1}(0)$.
- Bob gets $y \in f^{-1}(1)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find i s.t. $x_{i} \neq y_{i}$.
- Communicate minimal number of bits.
-
- Only deterministic protocols!

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

Alice

n

Bob

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{\text {gof }}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

Alice

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

- KRW conjecture: the trivial protocol is essentially optimal.
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation $R_{\mathrm{U}_{n}}$ is:
- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets $y \in\{0,1\}^{n}$.
- $x \neq y$.
- Wish to find i s.t. $x_{i} \neq y_{i}$.
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation $R_{\mathrm{U}_{n}}$ is:
- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets $y \in\{0,1\}^{n}$.
- $x \neq y$.
- Wish to find i s.t. $x_{i} \neq y_{i}$.
- Every KW relation reduces to $R_{\mathrm{U}_{n}}$.
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation $R_{\mathrm{U}_{n}}$ is:
- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets $y \in\{0,1\}^{n}$.
- $x \neq y$.
- Wish to find i s.t. $x_{i} \neq y_{i}$.
- Every KW relation reduces to $R_{\mathrm{U}_{n}}$.
- Easy to prove: $\mathrm{C}\left(R_{\mathrm{U}_{n}}\right) \geq n$.
- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation $R_{\mathrm{U}_{n}}$ is:
- Alice gets $x \in\{0,1\}^{n}$.
- Bob gets $y \in\{0,1\}^{n}$.
- $x \neq y$.
- Wish to find i s.t. $x_{i} \neq y_{i}$.
- Every KW relation reduces to $R_{\mathrm{U}_{n}}$.
- Easy to prove: $\mathrm{C}\left(R_{\mathrm{U}_{n}}\right) \geq n$.
- [KRW91] suggested to study $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.
- [KRW91] suggested to study the composition $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- [KRW91] suggested to study the composition $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- [KRW91] suggested to study the composition $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- [KRW91] suggested to study the composition $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- [KRW91] suggested to study the composition $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- Every KW relation $R_{g \circ f}$ reduces to $R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}$.
- Goal: $\mathrm{C}\left(R_{\mathrm{U}_{m} \circ \mathrm{U}_{n}}\right) \geq m+n$.
- Challenge was met by [EIRS91] and [HW93].
- To this end, they developed new techniques.

Our main result

- We analyze $R_{g \circ \mathrm{U}_{n}}$ for $g:\{0,1\}^{m} \rightarrow\{0,1\}$.

Our main result

- We analyze $R_{g \circ \mathrm{U}_{n}}$ for $g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- Wish: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+n$.

Our main result

- We analyze $R_{g \circ \mathrm{U}_{n}}$ for $g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- Wish: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+n$.
- Our result: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right) \geq \Omega\left(\mathrm{C}\left(R_{g}\right)\right)+n-O\left(\frac{m \cdot \log m}{n}\right)$.

Our main result

- We analyze $R_{g \circ \mathrm{U}_{n}}$ for $g:\{0,1\}^{m} \rightarrow\{0,1\}$.
- Wish: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+n$.
- Our result: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right) \geq \Omega\left(\mathrm{C}\left(R_{g}\right)\right)+n-O\left(\frac{m \cdot \log m}{n}\right)$.
- Actually: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right) \geq \log \mathrm{L}(g)+n-O\left(\frac{m \cdot \log m}{n}\right)$.

Our main result

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.

Our main result

- If $a_{j} \neq b_{j}$ then $X_{j} \neq Y_{j}$.
- Every KW game $R_{g \circ f}$ reduces to $R_{g \circ \mathrm{U}_{n}}$.

Our approach

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.

Our approach

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.
- $\log \mathrm{L}(g)$ can be viewed as information complexity of R_{g}.
- This is why we have $\log \mathrm{L}(g)$ in our bound.

Our approach

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.
- $\log \mathrm{L}(g)$ can be viewed as information complexity of R_{g}.
- This is why we have $\log \mathrm{L}(g)$ in our bound.
- Maybe "correct" KRW conjecture is $\mathrm{L}(g \circ f) \approx \mathrm{L}(g) \cdot \mathrm{L}(f)$.

Our approach

- Wish to prove: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$.

Our approach

- Wish to prove: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$.
- Would like:
- Must speak $\mathrm{C}\left(R_{g}\right)$ bits about R_{g}.
- Must speak $\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$ bits about $R_{\mathrm{U}_{n}}$.

Our approach

- Wish to prove: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$.
- Would like:
- Must speak $\mathrm{C}\left(R_{g}\right)$ bits about R_{g}.
- Must speak $\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$ bits about $R_{\mathrm{U}_{n}}$.
- How do we perform such a decomposition?

Our approach

- Wish to prove: $\mathrm{C}\left(R_{g \circ \mathrm{U}_{n}}\right)=\mathrm{C}\left(R_{g}\right)+\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$.
- Would like:
- Must speak $\mathrm{C}\left(R_{g}\right)$ bits about R_{g}.
- Must speak $\mathrm{C}\left(R_{\mathrm{U}_{n}}\right)$ bits about $R_{\mathrm{U}_{n}}$.
- How do we perform such a decomposition?

One key idea

When measuring information instead of communication, can use the chain rule to do the decomposition.

Other results

- Basic observations for analyzing KW relations with information complexity.

Other results

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $-\oplus_{m} \circ f$?

Other results

- Basic observations for analyzing KW relations with information complexity.
- Next milestone - $\oplus_{m} \circ f$?
- Constructing a candidate hard distribution.

Other results

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $-\oplus_{m} \circ f$?
- Constructing a candidate hard distribution.
- Almost tight result for $R_{\oplus_{m} \circ U_{n}}$.

Other results

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $-\oplus_{m} \circ f$?
- Constructing a candidate hard distribution.
- Almost tight result for $R_{\oplus_{m} \circ U_{n}}$.
- Alternative proof for main result using a counting argument.

Other results

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $-\oplus_{m} \circ f$?
- Constructing a candidate hard distribution.
- Almost tight result for $R_{\oplus_{m} \circ U_{n}}$.
- Alternative proof for main result using a counting argument.
- Another open problem: What about $R_{U_{m} \circ f}$?

