Toward Better Formula Lower Bounds: An Information Complexity Approach to the KRW Composition Conjecture

Dmitry Gavinsky Or Meir Omri Weinstein Avi Wigderson

Dmitry Gavinsky, Or Meir, Omri Weinstein, Avi Wigderson Toward Better Formula Lower Bounds

• In complexity theory, we want to prove hardness.

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
 - $f: \{0,1\}^n \to \{0,1\}$ does not have circuits of size $n^{O(1)}$.

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
 - $f: \{0,1\}^n \to \{0,1\}$ does not have circuits of size $n^{O(1)}$.
- We focus on explicit functions.

- In complexity theory, we want to prove hardness.
- One model of computation we use is boolean circuits.
- We would like to prove results of the form:
 - $f: \{0,1\}^n \to \{0,1\}$ does not have circuits of size $n^{O(1)}$.
- We focus on explicit functions.
- This talk: Fan-in is 2.

- Proving hardness for general circuits is hard.
- We try to prove hardness for weaker models.

- Proving hardness for general circuits is hard.
- We try to prove hardness for weaker models.
- This talk: Log-depth circuits and formulas.

• The depth of a circuit is the length of the longest path from an input to an output.

∃ >

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.
- The depth complexity $\mathsf{D}(f)$ is the depth of the shallowest circuit for f.

- The depth of a circuit is the length of the longest path from an input to an output.
- We study lower bounds for circuits of depth $O(\log n)$.
- Capture highly parallelizable computations.
- The depth complexity $\mathsf{D}(f)$ is the depth of the shallowest circuit for f.
- Would like: Explicit f with $D(f) = \omega(\log n)$.

- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.

- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.

- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.
- The formula complexity L(f) is the size of the smallest formula for f.

- Formulas are circuits with fan-out 1.
- I.e., they are trees.
- Can not store intermediate results.
- The size of the formula is the number of its leaves.
- The formula complexity L(f) is the size of the smallest formula for f.
- Would like: Explicit f with $L(f) = n^{\omega(1)}$.

• Every circuit of depth $d = O(\log n)$ can be transformed to a formula of size $2^d = \mathrm{poly}(n)$.

- Every circuit of depth $d = O(\log n)$ can be transformed to a formula of size $2^d = \operatorname{poly}(n)$.
- Every formula of size s = poly(n) can be transormed to a circuit of depth $O(\log s) = O(\log n)$ (Spira's theorem).

- Every circuit of depth $d = O(\log n)$ can be transformed to a formula of size $2^d = poly(n)$.
- Every formula of size s = poly(n) can be transormed to a circuit of depth $O(\log s) = O(\log n)$ (Spira's theorem).
- The class NC₁ can be defined as
 - The class of functions f with $D(f) = O(\log n)$.
 - The class of functions f with L(f) = poly(n).

- Every circuit of depth $d = O(\log n)$ can be transformed to a formula of size $2^d = poly(n)$.
- Every formula of size s = poly(n) can be transormed to a circuit of depth $O(\log s) = O(\log n)$ (Spira's theorem).
- The class NC₁ can be defined as
 - The class of functions f with $D(f) = O(\log n)$.
 - The class of functions f with L(f) = poly(n).
- Major open problem: Prove $NC_1 \neq P$.

• [KRW91] suggested an approach.

- [KRW91] suggested an approach.
- Let $f: \{0,1\}^n \to \{0,1\}, g: \{0,1\}^m \to \{0,1\}.$
- \bullet The composition $g\circ f:\{0,1\}^{m\times n}\to \{0,1\}$ is

$$(g \circ f)(x_1, \ldots, x_m) = g(f(x_1), \ldots, f(x_m)).$$

• Clearly,
$$\mathsf{D}(g \circ f) \le \mathsf{D}(g) + \mathsf{D}(f)$$
.

- [KRW91] suggested an approach.
- Let $f: \{0,1\}^n \to \{0,1\}, g: \{0,1\}^m \to \{0,1\}.$
- The composition $g \circ f : \{0,1\}^{m \times n} \to \{0,1\}$ is

$$(g \circ f)(x_1, \ldots, x_m) = g(f(x_1), \ldots, f(x_m)).$$

- Clearly, $D(g \circ f) \leq D(g) + D(f)$.
- KRW conjecture: $D(g \circ f) \approx D(g) + D(f)$.

- [KRW91] suggested an approach.
- Let $f: \{0,1\}^n \to \{0,1\}, g: \{0,1\}^m \to \{0,1\}.$
- The composition $g \circ f : \{0,1\}^{m \times n} \to \{0,1\}$ is

$$(g \circ f)(x_1, \ldots, x_m) = g(f(x_1), \ldots, f(x_m)).$$

- Clearly, $D(g \circ f) \leq D(g) + D(f)$.
- KRW conjecture: $D(g \circ f) \approx D(g) + D(f)$.
- Implies that $\mathbf{NC}_1 \neq \mathbf{P}$.
- Compose a random function on $\log n$ bits for $\log n$ times.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.

∃ >

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find i s.t. $x_i \neq y_i$.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find i s.t. $x_i \neq y_i$.
 - Communicate minimal number of bits.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find i s.t. $x_i \neq y_i$.
 - Communicate minimal number of bits.
- [KW90]: $D(f) = C(R_f)$.

- One tool we can use is KW relations.
- Relates D(f) and L(f) to the communication complexity of a problem R_f.
- The problem R_f is defined as follows:
 - Alice gets $x \in f^{-1}(0)$.
 - Bob gets $y \in f^{-1}(1)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find i s.t. $x_i \neq y_i$.
 - Communicate minimal number of bits.
- [KW90]: $D(f) = C(R_f)$.
- Only deterministic protocols!

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

- B- 6

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{g \circ f}$ look like?
- Recall: $g \circ f$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

KRW and KW

- Can we use KW relations to attack the KRW conjecture?
- How does $R_{q\circ f}$ look like?
- Recall: $g \circ f$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.

• KRW conjecture: the trivial protocol is essentially optimal.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation R_{U_n} is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0, 1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation R_{U_n} is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0,1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.
- Every KW relation reduces to R_{U_n} .

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation R_{U_n} is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0, 1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.
- Every KW relation reduces to R_{U_n} .
- Easy to prove: $C(R_{U_n}) \ge n$.

- The KRW conjecture is hard.
- [KRW91] suggested a starting point.
- The universal relation R_{U_n} is:
 - Alice gets $x \in \{0,1\}^n$.
 - Bob gets $y \in \{0, 1\}^n$.
 - $x \neq y$.
 - Wish to find i s.t. $x_i \neq y_i$.
- Every KW relation reduces to R_{U_n} .
- Easy to prove: $C(R_{U_n}) \ge n$.
- [KRW91] suggested to study $R_{U_m \circ U_n}$.

• [KRW91] suggested to study the composition $R_{U_m \circ U_n}$.

• [KRW91] suggested to study the composition $R_{U_m \circ U_n}$.

• [KRW91] suggested to study the composition $R_{U_m \circ U_n}$.

• [KRW91] suggested to study the composition $R_{U_m \circ U_n}$.

• [KRW91] suggested to study the composition $R_{U_m \circ U_n}$.

• If $a_j \neq b_j$ then $X_j \neq Y_j$.

• Every KW relation $R_{g \circ f}$ reduces to $R_{U_m \circ U_n}$.

- Goal: $C(R_{U_m \circ U_n}) \ge m + n$.
- Challenge was met by [EIRS91] and [HW93].
- To this end, they developed new techniques.

• We analyze $R_{g \circ U_n}$ for $g : \{0, 1\}^m \to \{0, 1\}$.

글 🖌 🖌 글 🕨

э

- We analyze $R_{g \circ U_n}$ for $g : \{0, 1\}^m \to \{0, 1\}$.
- Wish: $C(R_{g \circ U_n}) = C(R_g) + n$.

∃ ► < ∃ ►</p>

э

• We analyze $R_{g \circ U_n}$ for $g : \{0, 1\}^m \to \{0, 1\}$.

• Wish:
$$C(R_{g \circ U_n}) = C(R_g) + n$$
.

• Our result: $C(R_{g \circ U_n}) \ge \Omega(C(R_g)) + n - O\left(\frac{m \cdot \log m}{n}\right)$.

• We analyze $R_{g \circ U_n}$ for $g : \{0, 1\}^m \to \{0, 1\}$.

• Wish:
$$C(R_{g \circ U_n}) = C(R_g) + n$$
.

- Our result: $C(R_{g \circ U_n}) \ge \Omega(C(R_g)) + n O\left(\frac{m \cdot \log m}{n}\right)$.
- Actually: $C(R_{g \circ U_n}) \ge \log L(g) + n O\left(\frac{m \cdot \log m}{n}\right)$.

• If $a_j \neq b_j$ then $X_j \neq Y_j$.

∃ >

∃ >

- If $a_j \neq b_j$ then $X_j \neq Y_j$.
- Every KW game $R_{q \circ f}$ reduces to $R_{g \circ U_n}$.

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.
- $\log L(g)$ can be viewed as information complexity of R_g .
- This is why we have $\log L(g)$ in our bound.

- Our approach is based on information complexity [CSWY01, BBCR10].
- Lower bound communication complexity by analyzing the information that protocol gives on players' inputs.
- $\log L(g)$ can be viewed as information complexity of R_g .
- This is why we have $\log L(g)$ in our bound.
- Maybe "correct" KRW conjecture is $L(g \circ f) \approx L(g) \cdot L(f)$.

• Wish to prove: $C(R_{g \circ U_n}) = C(R_g) + C(R_{U_n})$.

글 🖌 🖌 글 🕨

э

- Wish to prove: $C(R_{g \circ U_n}) = C(R_g) + C(R_{U_n})$.
- Would like:
 - Must speak $C(R_g)$ bits about R_g .
 - Must speak $C(R_{U_n})$ bits about R_{U_n} .

3 N

- Wish to prove: $C(R_{g \circ U_n}) = C(R_g) + C(R_{U_n})$.
- Would like:
 - Must speak $C(R_g)$ bits about R_g .
 - Must speak $C(R_{U_n})$ bits about R_{U_n} .
- How do we perform such a decomposition?

- Wish to prove: $C(R_{g \circ U_n}) = C(R_g) + C(R_{U_n})$.
- Would like:
 - Must speak $C(R_g)$ bits about R_g .
 - Must speak $C(R_{U_n})$ bits about R_{U_n} .
- How do we perform such a decomposition?

One key idea

When measuring information instead of communication, can use the chain rule to do the decomposition.

• Basic observations for analyzing KW relations with information complexity.

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $\oplus_m \circ f$?

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $\oplus_m \circ f$?
 - Constructing a candidate hard distribution.

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $\oplus_m \circ f$?
 - Constructing a candidate hard distribution.
 - Almost tight result for $R_{\bigoplus_m \circ U_n}$.

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $\oplus_m \circ f$?
 - Constructing a candidate hard distribution.
 - Almost tight result for $R_{\bigoplus_m \circ U_n}$.
- Alternative proof for main result using a counting argument.

- Basic observations for analyzing KW relations with information complexity.
- Next milestone $\oplus_m \circ f$?
 - Constructing a candidate hard distribution.
 - Almost tight result for $R_{\bigoplus_m \circ U_n}$.
- Alternative proof for main result using a counting argument.
- Another open problem: What about $R_{U_m \circ f}$?