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Conventions

In this talk, I will (hopefully) stick to the following conventions:

1 u, v ,w : vector

2 A,B,C : matrix

3 û, v̂ , ŵ : random vector

4 Â, B̂, Ĉ : random matrix

Warning: I will say things that involve probability.

This is NOT a talk about probability.

This is a talk about the combinatorics/geometry of vector spaces.

“Random matrix” will always mean there are finitely many possibilities,
each with some nonzero probability.
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Problem

For Â1, . . . Ân independent, random, self adjoint matrices, let

θ(Â1, . . . , Ân) = min
Ai∈supp(Âi )

λmax

(∑
i

Âi

)

where λmax(X ) is the largest eigenvalue of matrix X :

λmax(X ) = max
v

v∗Xv

‖v‖2
= max

v :‖v‖=1
v∗Xv .

Such a quantity appears in numerous contexts (as we will see).

Much of my recent work has concerned finding upper bounds for θ.
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Example: Graphs
Let G1 and G2 be graphs with adjacency matrices A1 and A2.

⋃
=

Can treat Â2 = PTA2P as a random matrix with support size |V |!.

If A1,A2 are regular bipartite graphs, then

θ(Π⊥~1(A1),Π⊥~1(Â2))

gives the best spectral gap.

Motivation 5/60
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Example: Spectral discrepancy

For positive semidefinite matrices A1, . . . ,An with
∑

i Ai = I , let

Âi ∈
{

Ai 0

0 0
,

0 0

0 Ai

}
have independent, uniform distributions.

Then θ(Â1, . . . Ân) gives the “fairest partition”:

min
S⊂[n]

{∥∥∥∥∥∑
i∈S

Ai

∥∥∥∥∥ ,
∥∥∥∥∥∑
i /∈S

Ai

∥∥∥∥∥
}
.

For
∑

Ai = A 6= I , one can set Bi = A−1/2Ai (so
∑

Bi = I ).

Motivation 6/60
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Probabilistic method

One way to try to bound θ is using the probabilistic method.

If we can show that

P

[
λmax

(∑
i

Âi

)
< t

]
> 0

then certainly
θ(Â1, . . . , Ân) < t.

There are numerous techniques for bounding such quantities.
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Example: Matrix Chernoff

Theorem (Matrix Chernoff)

Let Let Â1, . . . , Ân ∈ Rm×m be positive semidefinite with

‖Âk‖ ≤ R a.s. and λmax

(∑
k

E
{
Âk

})
= µ.

Then

P

[
λmax

(∑
k

Âk

)
≥ (1 + δ)µ

]
≤ m

[
eδ

(1 + δ)1+δ

]µ/R
.
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Matrix Bernstein

Theorem (Matrix Bernstein)

Let Â1, . . . , Ân ∈ Rm×m be positive semidefinite with

λmax(Âk) ≤ R a.s.

Then for σ2 = ‖
∑

k E
{
Â2
k

}
‖.

P

[
λmax

(∑
k

Âk

)
≥ t

]
≤ me−3t

2/8σ2

for all t ≥ σ2/R.
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Matrix Hoeffding

Theorem (Matrix Hoeffding)

Let Â1, . . . , Ân ∈ Rm×m be self adjoint with

E
{
Âk

}
= 0 and E

{
Â2
k

}
� B2

k a.s.

Then for σ2 = ‖
∑

k B
2
k‖.

P

[
λmax

(∑
k

Âk

)
≥ t

]
≤ me−t

2/8σ2

for all t > 0.
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Master tail Bound

Theorem (Tropp (’10))

Let Â1, . . . , Ân ∈ Rm×m be self adjoint and let

Mk(θ) = E
{
eθÂk

}
be their moment generating functions. Then

P

[
λmax

(∑
k

Âk

)
≥ t

]
≤ e−θtTr

[
e
∑

k logMk (θ)
]

for all t ∈ R and all θ > 0.

Implies all previous bounds.
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Known tools

Theorem (Matrix Chernoff/Bernstein/Hoeffding/etc)

If Â1, . . . , Ân ∈ Rm×m are independent random self adjoint matrices then

P
[
λmax

(∑
Âi

)
> t
]
≤ m · e−f (t,Â1,...,Ân)

Similar inequalities by Rudelson (’99), Ahlswede–Winter (’02), Tropp (’10).

All such inequalities have two things in common:

1 They are all concentration bounds

2 The bounds depend on the dimension

Motivation 12/60
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The bad seed

Define Â1, . . . , Ân ∈ Rn×n to be one of the n elementary diagonal matrices
(with uniform probability).

Then this is a balls and bins problem:

θ(Â1, . . . , Ân) = 1

but

P
[
λmax

(
Âi

)
≥ Ω

(
log n

log log n

)]
≥ 1− 1/n1/3.

Master tail bound gives:

θ(Â1, . . . , Ân) ≤ O

(
log n

log log n

)
.
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Define Â1, . . . , Ân ∈ Rn×n to be one of the n elementary diagonal matrices
(with uniform probability).

Then this is a balls and bins problem:
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Want to do better

Similar examples show that any sufficiently generic bound that asserts
λmax ≥ t with “high probability” will need to depend on the dimension.

Fortunately, for our purposes, “high probability” is suboptimal.

Need to find a way to capture “low probability” events.

“Low probability” means exponentially small (but still positive).
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Key Idea

The key idea is to switch from random matrices to random polynomials.
For any self adjoint matrix A,

λmax(A) = maxroot {det [xI − A]} .

Hence for random self adjoint matrix Â,

P
[
λmax(Â) < t

]
= P

[
maxroot

{
det
[
xI − Â

]
< t
}]

This suggests studying random characteristic polynomials.

Need to have a way to compare the roots of a collection of polynomials
with the roots of the average (which in general is not possible).
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]
< t
}]

This suggests studying random characteristic polynomials.

Need to have a way to compare the roots of a collection of polynomials
with the roots of the average (which in general is not possible).

Interlacing Families 16/60



Eigenvalue bounds A. W. Marcus/Princeton

Key Idea

The key idea is to switch from random matrices to random polynomials.
For any self adjoint matrix A,

λmax(A) = maxroot {det [xI − A]} .

Hence for random self adjoint matrix Â,

P
[
λmax(Â) < t
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Main Lemma

Lemma (Separation Lemma)

Let p1, . . . , pk be polynomials and [s, t] an interval such that

Each pi (s) has the same sign (or is 0)

Each pi (t) has the same sign (or is 0)

each pi has exactly one real root in [s, t].

Then
∑

i pi has exactly one real root in [s, t] and it lies between the roots
of some pa and pb.

Proof by picture:

s
t

Interlacing Families 17/60
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Finding separation
Polynomial theory gives us a nice characterization of interlacing:

Lemma (Chudnovsky–Seymour, among others)

Let {pi} be degree d monic polynomials. The following are equivalent:

Every polynomial in the convex hull of {pi} has d real roots.

The polynomials have all d of their roots separated.

We will say that p forms an interlacing star with {qi} if
1 The {qi} are degree d monic polynomials.
2 All convex combinations of the qi are real rooted.
3 p is a convex combination of the {qi}

Corollary

If p forms an interlacing star with {qi}, then there exist i , j such that

kthroot (qi ) ≤ kthroot (p) ≤ kthroot (qj) .

Interlacing Families 18/60
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Interlacing families

To make this idea more versatile, we can iterate.

p00 p01 p10 p11

p0 p1

p∅

We will call a rooted, connected tree where each node forms an interlacing
star with its children an interlacing family.
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The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,
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Rank 1
In the rank 1 case, a bound on any root can then be obtained:

Theorem (MMS, (’13))

Let Â1, Â2, . . . Ân ∈ Rm×m be random, independent rank 1 positive
semidefinite matrices. Then the polynomials{

det

[
xI −

∑
i

Ai

]}
Ai∈supp(Âi )

form an interlacing family. In particular

p∅(x) = E

{
det

[
xI −

∑
i

Âi

]}

has only real roots, and θ(Â1, . . . , Ân) ≤ maxroot {p∅}.
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Rank-1-ification

For higher rank matrices, a bound on θ can be obtained by “rank-1-ifying”
them.

Theorem (Cohen (’16))

Let Â1, Â2, . . . Ân ∈ Rm×m be random, independent (any rank) positive
semidefinite matrices, and let B̂1, B̂2, . . . B̂n ∈ Rm×m be random rank 1

positive semidefinite matrices such that E
{
Âi

}
= E

{
B̂i

}
for all i . Then

θ(Â1, . . . , Ân) ≤ maxroot

{
E

{
det

[
xI −

∑
i

B̂i

]}}
.

Doesn’t work for other roots.
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Poisson Paradigm

“When X is the sum of many rare indicator “mostly independent” random
variables and λ = E{X}, we would like to say that X is close to a Poisson
distribution with mean λ. We call this rough statement the Poisson
Paradigm.” (Alon, Spencer)

Can we do something similar for matrices?

X =
∑

i Xi is sum of many nonnegative random variables

each Xi has small expectation

the Xi are “mostly independent”

X behaves like a Poisson distribution with mean E{X}.

Note the change of “rare, indicator” to “nonnegative, small expectation”.

Free Poisson Paradigm 24/60
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X =
∑

i Xi is sum of many nonnegative random variables
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Noncommutative probability

Translation to noncommutative probability:

Classical Noncommutative

distribution eigenvalue distribution
random variable linear operator

expectation normalized trace
nonnegative positive semidefinite

X =
∑

i Xi is sum of many random variables PSD matrices

each event matrix Xi has low probability small trace

the Xi are “mostly independent”

X behaves like a Poisson distribution with mean E{X}.

What does dependence mean?
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Free probability
For two matrices A,B, the eigenvalues of f (A,B) depend on

1 the eigenvalues of A
2 the eigenvalues of B
3 the dot product of the corresponding eigenvectors

Quick and dirty explanation of “free independence”:

classical independence: f depends only on the marginal distributions

free independence: f depends only on the eigenvalues (all dot
products are equal)

Properties:
1 the identity is freely independent from everything (in any dimension)
2 Randomly rotated matrices are “asymptotically free”
3 In some sense, “as far away from commuting as possible”.
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Back to translation

Now we have

X =
∑

i Xi is sum of many random variables PSD matrices

each event matrix Xi has low probability small trace

the Xi are “mostly independent freely independent”

X behaves like a Poisson distribution with mean E{X}.

Lastly we need to understand what Poisson would mean in this scenario.

If original variables were truly independent, then Poisson distribution
appears as “law of small numbers”.(

n

k

)
pk(1− p)n−k

n→∞−−−→
np→λ

e−λ
λk

k!
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Free convolution

So need to know the eigenvalue distribution of A + B when A and B are
freely independent.

Theorem (Voiculescu (’91))

Let An and Bn be a sequence of n × n matrices with eigenvalue
distributions converging to µA and µB (both compactly supported). Let Q
be a random unitary matrix distributed via the Haar measure.

For all k , the sequence of kth moments

E
{

(An + QBnQ
∗)k
}

converges (weakly) to some mk .

There exists a unique distribution which has E
{
X k
}

= mk .

New distribution is called the free convolution and written µA � µB .
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Free Poisson distribution

Let µ1, . . . , µn have Bernoulli(p) eigenvalue distributions.
Then the n-times free convolution

µ1 � · · ·� µn
n→∞−−−→
np→λ

µMP

converges in distribution to the “Free Poisson distribution”

µMP(t) =
1

2πt

√
4λ− (t − (1 + λ))2dt.

In particular, µMP is supported on the interval

[(1−
√
λ)2, (1 +

√
λ)2].
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More on µMP

In fact µMP was discovered long before free probability existed in the field
of Random Matrix Theory.

Theorem (Marcenko–Pastur)

Consider the random matrix

Ym,n =
1

n
XXT

where X is an m× n random matrix with i.i.d. N(0, 1) entries (often times
called a Wishart matrix).
If m, n→∞ in such a way that m/n→ λ ∈ R, then the empirical
eigenvalue distribution of Ym,n distribution converges in distribution to
µMP .

In particular, the support depends on the ratio m/n.
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Free Poisson Paradigm

Recall our inspiration:

“When X is the sum of many rare indicator “mostly independent” random
variables and λ = E{X}, we would like to say that X is close to a Poisson
distribution with mean λ. We call this rough statement the Poisson
Paradigm.” (Alon, Spencer)

This becomes:

“When X is the sum of n “mostly freely independent” positive
semidefinite m ×m random matrices, we would like to say that X is close
to a free Poisson distribution with parameter n/m. We call this rough
statement the free Poisson Paradigm.”
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Mostly freely independent

Theorem

If E
{
Âk

}
= αk I for all k, then the free Poisson paradigm holds.

Recall the bad seed:

Define Â1, . . . , Ân ∈ Rn×n to be one of the n elementary diagonal matrices
(with uniform probability).

Master tail bound gives:

θ(Â1, . . . , Ân) ≤ O

(
log n

log log n

)
.

Poisson paradigm gives:

θ(Â1, . . . , Ân) ≤ 1 +
2√
n

+
1

n
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θ(Â1, . . . , Ân) ≤ 1 +
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Outline

1 Motivation

2 Interlacing Families

3 Free Poisson Paradigm

4 Finite Free Probability
Convolutions
Root bounds

5 Conclusion
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“Bounds”

So now we have (some sort of) bounds, but...

1 How can someone actually compute them?

2 Are they any good?

Such questions prompted the development of “finite free probability.”

Can be used for arbitrary self adjoint matrices (unlike method of
interlacing polynomials).
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Finite free additive convolution

Let

p(x) =
m∏
i=1

(x − ai ) and q(x) =
m∏
i=1

(x − bi ).

The finite free additive convolution of p and q is defined to be

[p �m q](x) = Eσ

{
m∏
i=1

(x − ai − bσ(i))

}
.

Can be obtained without factoring:

[p �m q](x + y) =
m∑
i=0

p(i)(x)q(d−i)(y).
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Relation to random matrices

Let A,B be m ×m self adjoint matrices and let

p(x) = det [xI − A] and q(x) = det [xI − B] .

Then

[p �m q](x) =

∫
det [xI − A− QBQ∗] dQ.

Can take dQ to be

Haar measure over orthogonal matrices

(β = 1)

Haar measure over unitary matrices

(β = 2)

uniformly distributed signed permutation matrices

(β = 0)

Independent with respect to β.
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Relation to free probability

Theorem (M (’16))

Let A and B be m ×m self adjoint matrices and let A and B be freely
independent random variables with the same eigenvalue distributions as A
and B (respectively). Set

p(x) = det [xI − A] and q(x) = det [xI − B] .

Then the root distribution of

[pk �km qk ]

converges (in distribution, as k →∞) to the eigenvalue distribution of

A+ B.
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Relation to free probability

Theorem (MSS (’15))

Let A and B be m ×m self adjoint matrices and let A and B be freely
independent random variables with the same eigenvalue distributions as A
and B (respectively). Set

p(x) = det [xI − A] and q(x) = det [xI − B] .

Then
maxroot {[p �m q]} ≤ λsup(A+ B)

with equality if and only if A or B is the identity.

Conjecture: maxroot
{

[pk �km qk ]
}

is increasing in k.
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Sequence
The sequence [pk �km qk ] can give higher correlations as well.

-1.0 -0.5 0.5 1.0 1.5

-0.10

-0.05

0.05

0.10

0.15

Blue: [p �4 q]2

Yellow: [p2 �4 q
2]

Conjectures:

the roots of [p2 �m q2] majorize the roots of [p �m q]2

[p2 �m q2] ≤ [p �m q]2 for all x ∈ R
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Algebra

Let L =
∑

i ci∂
i be a linear differential operator. Then

L {p �m q} = L{p}�m q = p �m L{q}.

So if P and Q are linear differential operators such that

p(x) = P{xm} and q(x) = Q{xm}

then

[p �m q] = [P{xm}�m Q{xm}]
= P{Q{[xm �m xm]}}
= PQ{xm}.

Isomorphic to R[x ]/〈xm+1〉 under multiplication.
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Example: Hermite polynomials

The Hermite polynomials are defined as

Hm(x) =

bm/2c∑
k=0

m!

k!(m − 2k)!

(
−1

2

)k

xm−2k = e−∂
2/2{xm}

Hence we have

[Hm �m Hm] =
[
e−∂

2/2{xm}�m e−∂
2/2{xm}

]
= e−∂

2{[xm �m xm}

= e−∂
2{xm}

= Hm(
√

2x)

Finite Free Probability 42/60



Eigenvalue bounds A. W. Marcus/Princeton

Example: Hermite polynomials

The Hermite polynomials are defined as

Hm(x) =

bm/2c∑
k=0

m!

k!(m − 2k)!

(
−1

2

)k

xm−2k = e−∂
2/2{xm}

Hence we have

[Hm �m Hm] =
[
e−∂

2/2{xm}�m e−∂
2/2{xm}

]
= e−∂

2{[xm �m xm}

= e−∂
2{xm}

= Hm(
√

2x)

Finite Free Probability 42/60



Eigenvalue bounds A. W. Marcus/Princeton

First glimpse of free probability

Theorem (Central Limit Theorem)

Let A1, . . . ,An, . . . be m ×m real, symmetric matrices such that

1 φ [A] = 0

2 φ
[
A2
]

= 1

3 pk(x) = det [xI − Ak ]

Then the roots of

lim
n→∞

[p1(
√
nx) �m p2(

√
nx) �m · · ·�m pn(

√
nx)]

converge to the roots of
Hm(x

√
m − 1).

Note: as m→∞, root distribution approaches the semicircle law.
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Proof
For each k , we have pk(

√
nx) has the same roots as Tk{xm} where

Tk = 1− 1

2n(m − 1)
∂2 + O(n−3/2).

Then

[p1(
√
nx) �m p2(

√
nx) �m · · ·�m pn(

√
nx)] =

[
n∏

k=1

Tk

]
{xm}

where

n∏
k=1

Tk =

(
1− 1

2n(m − 1)
∂2 + O(n−3/2)

)n

→ e−∂
2/2(m−1)

So
n∏

k=1

Tk{xm} → e−∂
2/2(m−1){xm} = Hm(x

√
m − 1).
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Second glimpse of free probability
A similar computation can be used in the free Poisson Paradigm.

Theorem (Poisson Limit Theorem)

Let p(x) = xm−1(x − 1).
Then

[p �m p �m · · ·�m p︸ ︷︷ ︸
λm times

] = m!(−m)mL
((λ−1)m)
m (mx) (∗)

where L
(α)
n (x) is an associated Laguerre polynomial.

Note: as m→∞, root distribution approaches the Marcenko–Pastur law.

[Ismail, Li (’92)]

maxroot {(∗)} ≤ (1 +
√
λ)2 −

(
λ1/4 + λ−1/4

)2
m

+ O(m−2)
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Max roots

Of course we cannot hope that all polynomials have extensive literature
giving bounds on their roots.

Unfortunately, the maxroot {} operation is unstable with respect to our
convolutions (and really any operation).

Let p(x) = xm−1(x − 1) and q(x) = x(x − 1)m−1. So

maxroot {p} = maxroot {q} = 1.

But then

1 maxroot {[p �m p]} = 1 +
√

1/m

d

2 maxroot {[p �m q]} = 1 +
√

1− 1/m

u

The triangle inequality then gives an upper bound of 2.
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Max roots

Solution: use smoother version of the maxroot {} function.

Definition

For a real rooted polynomial p, we define

αmax (p) = maxroot
{
p − αp′

}
.

So α = 0 is the usual maxroot {} function (and grows with α).

Can we understand the αmax () function?
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Brief aside

If you recall the barrier function of Batson, Spielman, Srivastava.

Φp(x) = ∂ log p(x) =
p′(x)

p(x)

defined for x above the largest root of (real rooted) p.

αmax (p) = x ⇐⇒ maxroot
{
p − αp′

}
= x

⇐⇒ p(x)− αp′(x) = 0

⇐⇒ p′(x)

p(x)
=

1

α

⇐⇒ Φp(x) =
1

α

That is, we are implicitly studying the barrier function.
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Some max root results

If p is a degree m, real rooted polynomial, µp the average of its roots:

Lemma

1 ≤ ∂
∂ααmax (p) ≤ 1 + m−2

m+2

Proof uses implicit differentiation and Newton inequalities.

Lemma

αmax (p′) ≤ αmax (p)− α

Proof uses concavity of p/p′ for x ≥ maxroot {p}.

Corollary

µp ≤ αmax (p)−mα ≤ maxroot {p}

Iterate the previous lemma (m − 1) times.
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Main inequality

Theorem

Let p and q be degree m real rooted polynomials. Then

αmax (p �m q) ≤ αmax (p) + αmax (q)−mα

with equality if and only if p or q has a single distinct root.

Proof uses previous lemmas, induction on m, and “pinching”.

Applying this to p(x) = xm−1(x − 1) and q(x) = x(x − 1)m−1 gives

maxroot {·} best α in Theorem

[p mp] 1 + 1/
√
m ≈ 1 + 2/

√
m

[p mq] 1 +
√

1− 1/m 2

Multiple convolutions: keep as a function of α, then optimize at the end.
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Main inequality

Theorem

Let p and q be degree m real rooted polynomials. Then

lim
k→∞

αmax
(
pk �km qk

)
= αmax

(
pk
)

+ αmax
(
qk
)
− kmα

for all p and q.

Converges to the R-transform identity for free convolution:

RA B(x) = RA(x) + RB(x).

Implies Poisson paradigm is asymptotically sharp (for the given
information).
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Restricted Invertibility

Theorem (Bourgain, Tzafriri)

If v1, . . . , vn ∈ Rm are vectors with

n∑
i=1

viv
T
i = I

then for all k < n, there exists a set S ⊂ [n] with |S | = k such that

λk

(∑
i∈S

viv
T
i

)
≥

(
1−

√
k

m

)2 (m
n

)
.

Many applications in computer science, functional analysis, convex
geometry.
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Spectral Graph Theory

Let G1 be a d1-regular graph and G2 be a d2-regular graph with adjacency
matrices A1 and A2. Then the (random) matrices

B1 = Π⊥~1(A1) and B2 = Π⊥~1(Â2)

obey the Poisson paradigm. In particular, there exists a rotation P such
that

λ2(A1 + PTA2P) ≤ maxroot {[det [xI − B1] �n det [xI − B2]]} .

Leads to the construction of d-regular Ramanujan graphs as union of d
randomly permuted perfect matchings.
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Recap

We have a new way to capture low probability events.

Useful when “Gaussian random matrix” is the conjectured worst case
scenario.

Method of interlacing polynomials is used to show eigenvalues meet some
bound with nonzero probability.

Using finite free probability, we can explicitly calculate these bounds.

All such bounds will be asymptotically tight (example showing tightness
comes from free probability).
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Much to learn

The “furthest from freely independent” situation we know:

Theorem (MSS (’13) + Cohen (’16))

If Â1, Â2, . . . Ân ∈ Rm×m are independent random positive semidefinite
matrices with∑

i

E
{
Âi

}
= Im (∗) and E

{
Tr
[
Âi

]}
≤ ε

then
θ(Â1, . . . , Ân) ≤ (1 +

√
ε)2.

Not captured (I believe) by additive convolution — suggests need for a
multivariate extension.
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Lyapunov theorem

Example application of a stronger theory:

Theorem (Akemann–Weaver (’14) + Cohen (’16))

Let A1, . . . ,An ∈ Cm×m be positive semidefinite matrices with∑
i

Ai ≤ I and Tr [Ai ] ≤ ε

for all i . Then for all values of t1, . . . , tn ∈ [0, 1], there exists a set of
indices S ⊂ [n] such that∥∥∥∥∥∑

i∈S
Ai −

n∑
i=1

tiAi

∥∥∥∥∥ = O(ε1/8).

Applications to semidefinite programming?
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Open problems

Can we find a way to bound

min
Ai∈supp(Âi )

∥∥∥∥∥∑
i

Ai

∥∥∥∥∥
for general self adjoint matrices?

Can we get bounds in terms of norms other than the expected trace?

Bounds in terms of Frobenius norm would be particularly interesting.

Multivariate extensions?
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Open applications

Other ideas from free probability can be “finitized”.

1 Multiplicative convolution

2 Asymmetric additive convolution (singular values)

3 Additive/multiplicative brownian motion

4 Entropy

5 Fisher information

6 Combinatorial theory

Can these be used in similar ways?

(There are noticable similarities to ideas in the “discrete log gas”
literature.)
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Thanks

Thank you to the organizers for providing me the opportunity to speak to
you today.

And thank you for your attention!
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