イロン イヨン イヨン イヨン

æ

Projective Dehn twist

Cheuk Yu Mak

Institute for Advanced Study

September 23, 2016

(4回) (4回) (4回)

æ

Symplectic manifolds

A symplectic manifold (M^{2n}, ω) is

- a smooth manifold M
- equipped with $\omega \in \Omega^2(M)$ such that $d\omega = 0$, ω^n nowhere vanishing

eg.
$$(\mathbb{R}^{2n},\sum_{i=1}^n dx_i\wedge dy_i)$$
, (T^*Q,ω_{can}) , etc

<回と < 目と < 目と

Symplectomorphism

A symplectomorphism $\phi : (M, \omega_M) \to (N, \omega_N)$ is

• a diffeomorphism $\phi: M \to N$, such that

•
$$\phi^* \omega_N = \omega_M$$

eg. when $(M, \omega_M) = (N, \omega_N)$ compact, time 1 flow along a vector field X on M such that $\mathcal{L}_X \omega_M = 0$

< 🗇 > < 🖃 >

Dehn twist

Given a Lagrangian sphere $S \subset (M, \omega)$, one can perform Dehn twist $\tau_S : (M, \omega) \to (M, \omega)$ which is a symplectomorphism

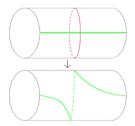


Figure : S is purple, L and $\tau_S(L)$ are green

→ 御 → → 注 → → 注 注

Fukaya category

Fukaya category $\mathcal{F}uk(M,\omega)$ is an A_{∞} category

- objects: Lagrangians submanifolds L (with additional structures/restrictions)
- morphism: $hom(L_0, L_1) = \oplus_{p \in L_0 \cap L_1} \mathbb{K}$
- A_{∞} operations $\mu_k : hom(L_{k-1}, L_k) \otimes \cdots \otimes hom(L_0, L_1) \rightarrow hom(L_0, L_k)$

Quasi-equivalence

Given an A_{∞} category A, one can take its cohomological category H(A).

An A_{∞} functor $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ is a quasi-equivalence if the induced functor on the cohomological category is an equivalence.

・ 同 ト ・ 三 ト

Seidel's exact triangle

Theorem (Seidel)

For any graded compact exact Lagrangian L, there is an exact triangle in $D^{\pi}\mathcal{F}uk(M,\omega)$ $HF(S,L)\otimes S \rightarrow L \rightarrow \tau_{S}(L) \rightarrow HF(S,L)\otimes S[1]$

The induced autoequivalence $T_S: D^{\pi} \mathcal{F}uk(M, \omega) \rightarrow D^{\pi} \mathcal{F}uk(M, \omega)$ by τ_S can be formulated purely algebraically.

・同・ ・ヨ・ ・ヨ・

Spherical twist

Let X be a smooth projective variety. An object \mathcal{E} in $D^b(X)$ is spherical if

- $\mathcal{E}\otimes\omega_X\simeq\mathcal{E}$, and
- $Ext^*(\mathcal{E}, \mathcal{E}) = H^*(S^{dim(X)})$

A spherical object determines an autoequivalence $T_{\mathcal{E}}$ on $D^b(X)$.

イロン イヨン イヨン イヨン

æ

Table : From symplectomorphism to autoequivalence

(M,ω)	$D^{\pi}\mathcal{F}uk(M,\omega)$	$D^b(X)$
S	S	E
τ_{S}	T_S	$T_{\mathcal{E}}$

< 🗇 > < 🖃 >

- Are there other symplectomorphisms supported near Lagrangian submanifolds?
- What can one say about the induced auto-equivalences?

< 同 > < 臣 > < 臣 >

Projective Dehn twist

A parallel story for projective space:

Table : From symplectomorphism to autoequivalence

(M,ω)	$D^{\pi}\mathcal{F}uk(M,\omega)$	$D^b(X)$
Р	Р	\mathcal{P}
$ au_P$	T _P	$T_{\mathcal{P}}$

Here, P is a Lagrangian (real/complex) projective space and \mathcal{P} is a \mathbb{P} -object in $D^b(X)$.

< 🗇 > < 🖃 >

Projective Dehn twist

The definition of \mathbb{P} -object and \mathbb{P} -twist is due to Huybrechts-Thomas and is motivated by the symplectomorphism τ_P . However, the relation between τ_P and T_P is still conjectural.

Conjecture (Huybrechts-Thomas)

The induced autoequivalence on $D^{\pi}\mathcal{F}uk(M,\omega)$ by τ_P is T_P .

(4回) (4回) (4回)

Partial result

In monotone setting, using Mau-Wehrheim-Woodward functor and Biran-Cornea Lagrangian cobordism theory, we have

Theorem (M-Wu)

In $Tw\mathcal{F}uk(M, \omega)$, there is a natural quasi-isomorphism of objects $\tau_P(L) = Cone(Cone(hom(P, L) \otimes P[-2] \rightarrow hom(P, L) \otimes P) \rightarrow L)$ for every L

It looks similar to $T_P(L)$ but the morphisms in the theorem are not explicitly determined.

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Are spherical twists and \mathbb{P} -twists related?

Cheuk Yu Mak Projective Dehn twist

(4回) (1日) (日)

æ

A hybrid

A Lagrangian $S^2 = \mathbb{CP}^1$ in $D^{\pi}\mathcal{F}uk(M, \omega)$ is both spherical and projective (similarly $S^1 = \mathbb{RP}^1$)

Table : From symplectomorphism to autoequivalence

(M,ω)	$D^{\pi}\mathcal{F}uk(M,\omega)$	$D^b(X)$
S = P	S = P	$\mathcal{S} = \mathcal{P}$
$\tau_S^2 = \tau_P$	$T_S^2 = T_P$	$T_{S}^{2} = T_{P}$

<回と < 目と < 目と

Another hybrid

- A Lagrangian $P = \mathbb{RP}^{2n+1}$ is
 - a $\mathbb{P}\text{-object}$ when $\textit{char}(\mathbb{K})=2$
 - a spherical object when $char(\mathbb{K})
 eq 2$

Question

What is the induced autoequivalence of τ_P on $D^{\pi} \mathcal{F}uk(M, \omega)$ when $char(\mathbb{K}) \neq 2$?

A (1) > (1) > (1)

When $char(\mathbb{K}) \neq 2$, the induced autoequivalence by τ_P on $D^{\pi}\mathcal{F}uk(M,\omega)$ is

- well-defined when P is (relatively) spin
- not a projective twist
- not a spherical twist
- not a square of a spherical twist

Work in progress

Theorem (M-Wu)

Let $P = \mathbb{RP}^{4n+3}$ be a monotone Lagrangian in a close monotone (M, ω) . The induced autoequivalence by τ_P is a simultaneous spherical twist by two spherical objects when char $(\mathbb{K}) \neq 2$.

Goal:

- Explain to you autoequivalences obtained by S^n/Γ twists in various characteristic
- Observe new phenomena of autoequivalences of $D^b(X)$

<ロ> <同> <同> <同> < 同>

イロン イヨン イヨン イヨン

æ

Thank you very much for your attention !