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Symplectic manifolds

A symplectic manifold (M2n, ω) is

a smooth manifold M

equipped with ω ∈ Ω2(M) such that dω = 0, ωn nowhere
vanishing

eg. (R2n,
∑n

i=1 dxi ∧ dyi ), (T ∗Q, ωcan), etc
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Symplectomorphism

A symplectomorphism φ : (M, ωM)→ (N, ωN) is

a diffeomorphism φ : M → N, such that

φ∗ωN = ωM

eg. when (M, ωM) = (N, ωN) compact, time 1 flow along a vector
field X on M such that LXωM = 0
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Dehn twist

Given a Lagrangian sphere S ⊂ (M, ω), one can perform Dehn
twist τS : (M, ω)→ (M, ω) which is a symplectomorphism

Figure : S is purple, L and τS(L) are green
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Fukaya category

Fukaya category Fuk(M, ω) is an A∞ category

objects: Lagrangians submanifolds L (with additional
structures/restrictions)

morphism: hom(L0, L1) = ⊕p∈L0∩L1K < p >

A∞ operations
µk : hom(Lk−1, Lk)⊗ · · · ⊗ hom(L0, L1)→ hom(L0, Lk)
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Quasi-equivalence

Given an A∞ category A, one can take its cohomological category
H(A).
An A∞ functor F : A → B is a quasi-equivalence if the induced
functor on the cohomological category is an equivalence.
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Seidel’s exact triangle

Theorem (Seidel)

For any graded compact exact Lagrangian L, there is an exact
triangle in DπFuk(M, ω)
HF (S , L)⊗ S → L→ τS(L)→ HF (S , L)⊗ S [1]

The induced autoequivalence
TS : DπFuk(M, ω)→ DπFuk(M, ω) by τS can be formulated
purely algebraically.
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Spherical twist

Let X be a smooth projective variety. An object E in Db(X ) is
spherical if

E ⊗ ωX ' E , and

Ext∗(E , E) = H∗(Sdim(X ))

A spherical object determines an autoequivalence TE on Db(X ).
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Summary

Table : From symplectomorphism to autoequivalence

(M, ω) DπFuk(M, ω) Db(X )

S S E
τS TS TE

Cheuk Yu Mak Projective Dehn twist



Spherical Dehn twist Projective Dehn twist Spherical vs Projective and more

Questions

Are there other symplectomorphisms supported near
Lagrangian submanifolds?

What can one say about the induced auto-equivalences?
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Projective Dehn twist

A parallel story for projective space:

Table : From symplectomorphism to autoequivalence

(M, ω) DπFuk(M, ω) Db(X )

P P P
τP TP TP

Here, P is a Lagrangian (real/complex) projective space and P is a
P-object in Db(X ).
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Projective Dehn twist

The definition of P-object and P-twist is due to
Huybrechts-Thomas and is motivated by the symplectomorphism
τP . However, the relation between τP and TP is still conjectural.

Conjecture (Huybrechts-Thomas)

The induced autoequivalence on DπFuk(M, ω) by τP is TP .
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Partial result

In monotone setting, using Mau-Wehrheim-Woodward functor and
Biran-Cornea Lagrangian cobordism theory, we have

Theorem (M-Wu)

In TwFuk(M, ω), there is a natural quasi-isomorphism of objects
τP(L) = Cone(Cone(hom(P, L)⊗ P[−2]→ hom(P, L)⊗ P)→ L)
for every L

It looks similar to TP(L) but the morphisms in the theorem are not
explicitly determined.
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Question

Are spherical twists and P-twists related?

Cheuk Yu Mak Projective Dehn twist



Spherical Dehn twist Projective Dehn twist Spherical vs Projective and more

A hybrid

A Lagrangian S2 = CP1 in DπFuk(M, ω) is both spherical and
projective (similarly S1 = RP1)

Table : From symplectomorphism to autoequivalence

(M, ω) DπFuk(M, ω) Db(X )

S = P S = P S = P
τ2S = τP T 2

S = TP T 2
S = TP
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Another hybrid

A Lagrangian P = RP2n+1 is

a P-object when char(K) = 2

a spherical object when char(K) 6= 2

Question

What is the induced autoequivalence of τP on DπFuk(M, ω) when
char(K) 6= 2?
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Hints

When char(K) 6= 2, the induced autoequivalence by τP on
DπFuk(M, ω) is

well-defined when P is (relatively) spin

not a projective twist

not a spherical twist

not a square of a spherical twist
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Work in progress

Theorem (M-Wu)

Let P = RP4n+3 be a monotone Lagrangian in a close monotone
(M, ω). The induced autoequivalence by τP is a simultaneous
spherical twist by two spherical objects when char(K) 6= 2.

Goal:

Explain to you autoequivalences obtained by Sn/Γ twists in
various characteristic

Observe new phenomena of autoequivalences of Db(X )
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THANK YOU

Thank you very much for your attention !
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