Spectral geometry on metric graphs

Lior Alon

IAS school of mathematics

September 2020

Outline

Introduction

Results in the field

Quantum chaos

Table of Contents

Introduction

Results in the field

Quantum chaos

Spectral geometry

Say that (M,g) is a compact Riemannian manifold and Δ_g is its Laplace-Baltrami operator. Then Δ_g is self adjoint with a complete set of eigenfunctions $\{f_n\}_{n\in\mathbb{N}}$ with real non-negative eigenvalues

$$0 = \lambda_1 \le \lambda_2 \le \lambda_3 \dots \nearrow \infty.$$

Introduction

- Given such (M, g) can we compute the spectrum (eigenvalues)? Explicitly? Implicitly?
- Can we describe the dependence of the spectrum in g? in M?
- Are there properties of the eigenfunctions that we can measure and relate to g or to M? For example, nodal count.
- Kac 66' "Can one hear the shape of a drum?". Can we deduce M or g from the spectrum?
- Can we deduce M and g using information obtained from $\{f_n\}_{n\in\mathbb{N}}$?

Given a finite (discrete) graph $\Gamma(\mathcal{E}, \mathcal{V})$, and a choice of $\vec{l} \in \mathbb{R}_+^E$ we denote the metric graph $\Gamma_{\vec{l}}$, such that every edge e has length l_e .

Given a finite (discrete) graph $\Gamma(\mathcal{E}, \mathcal{V})$, and a choice of $\vec{l} \in \mathbb{R}_+^E$ we denote the metric graph $\Gamma_{\vec{l}}$, such that every edge e has length l_e .

What is the difference between a metric graph and a weighted discrete graph?

The **Laplacian** Δ on $\Gamma_{\vec{l}}$ is defined, edgewise, by:

$$(\Delta f)|_e = -\left(\frac{d}{dx}\right)^2 f|_e.$$

The **Laplacian** Δ on $\Gamma_{\vec{l}}$ is defined, edgewise, by:

$$(\Delta f)|_e = -\left(\frac{d}{dx}\right)^2 f|_e.$$

Neumann (Kirchhoff) vertex conditions at a vertex v:

- 1. Continuity of f at v.
- 2. $\sum_{e \sim v} \partial_e f(v) = 0.$

Spectral geometry on metric graphs

Given $\Gamma_{\vec{l}}$ with Δ and Neumann vertex conditions we get a complete family of eigenfunctions $\{f_n\}_{n\in\mathbb{N}}$ and their eigenvalues

$$0 = k_0^2 \le k_1^2 \le k_2^2 \dots \nearrow \infty.$$

Spectral geometry on metric graphs

Given $\Gamma_{\vec{l}}$ with Δ and Neumann vertex conditions we get a complete family of eigenfunctions $\{f_n\}_{n\in\mathbb{N}}$ and their eigenvalues

$$0 = k_0^2 \le k_1^2 \le k_2^2 \dots \nearrow \infty.$$

We refer to these as the spectrum and eigenfunctions of $\Gamma_{\vec{l}}$. We may now ask about their Γ and \vec{l} dependence.

Table of Contents

Introduction

Results in the field

Quantum chaos

Examples for spectral results

Implicit calculation of the spectrum:

- von Below 85': Secular function F(k) whose zeros are the spectrum of $\Gamma_{\vec{l}}$.
- Kottos, Smilansky 97': Exact trace formula for the spectral density

$$\sum_{n \in \mathbb{N}} \delta_{k_n} + \delta_{-k_n} = \frac{L}{\pi} + \lim_{\epsilon \to +0} \sum_{p} \sum_{r=1}^{\infty} \frac{L_p}{\pi} A_p^r \cos\left(kL_p + \phi_p\right) e^{-L_p \epsilon}.$$

Implicit calculation of the spectrum:

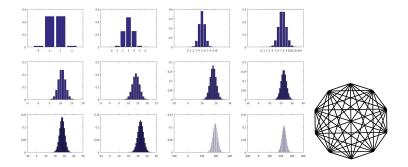
- von Below 85': Secular function F(k) whose zeros are the spectrum of $\Gamma_{\vec{l}}$.
- Kottos, Smilansky 97': Exact trace formula for the spectral density

$$\sum_{n \in \mathbb{N}} \delta_{k_n} + \delta_{-k_n} = \frac{L}{\pi} + \lim_{\epsilon \to +0} \sum_{p} \sum_{r=1}^{\infty} \frac{L_p}{\pi} A_p^r \cos(kL_p + \phi_p) e^{-L_p \epsilon}.$$

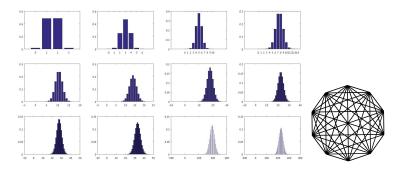
Recent result:

• Kurasov, Sarnak (2020):
The spectral density of a metric graph with incommensurate lengths is an exotic positive crystalline measure. It is a Fourier quasi-crystal which does not contain any Dirac comb.
They answered several open questions.

Results regarding eigenfunctions



Results regarding eigenfunctions



On a universal behaviour of the nodal and Neumann counts for metric graphs - $\,$

IAS Analysis seminar, October 12th at 16:30.

Table of Contents

Introduction

Results in the field

Quantum chaos

Introduction Results in the field **Quantum chaos** The Secular Manifold

Quantum graphs and quantum chaos

In their 97' paper, kottos and Smilansky named the model of a metric graph equipped with Δ - $\bf quantum~graph.$

Introduction Results in the field Quantum chaos The Secular Manifold

Quantum graphs and quantum chaos

In their 97' paper, kottos and Smilansky named the model of a metric graph equipped with Δ - quantum graph.

They argued that quantum graphs with incommensurate edge lengths exhibit chaotic properties.

In particular, they conjectured that this model will have level spacing statistics such as that of a GOE ensemble (Wigner-Dyson-Gaudin-Mehta distribution).

Quantum graphs and quantum chaos

In their 97' paper, kottos and Smilansky named the model of a metric graph equipped with Δ - **quantum graph.**

They argued that quantum graphs with incommensurate edge lengths exhibit chaotic properties.

In particular, they conjectured that this model will have level spacing statistics such as that of a GOE ensemble

(Wigner-Dyson-Gaudin-Mehta distribution).

Barra and Gaspard (2000) showed a deviation from the GOE level spacing statistics, but conjectured that for large enough graphs, this deviation should vanish.

Introduction Results in the field Quantum chaos The Secular Manifold

Quantum graphs and quantum chaos

In their 97' paper, kottos and Smilansky named the model of a metric graph equipped with Δ - quantum graph.

They argued that quantum graphs with incommensurate edge lengths exhibit chaotic properties.

In particular, they conjectured that this model will have level spacing statistics such as that of a GOE ensemble

(Wigner-Dyson-Gaudin-Mehta distribution).

Barra and Gaspard (2000) showed a deviation from the GOE level spacing statistics, but conjectured that for large enough graphs, this deviation should vanish.

I intend to work on this conjecture during my IAS period.

Table of Contents

Introduction

Results in the field

Quantum chaos

The secular equation

Given a (discrete) graph Γ with E edges, there is a corresponding polynomial $P_{\Gamma}: \mathbb{C}^E \to \mathbb{C}$ such that for any choice of edge lengths $\vec{l} = (l_1, l_2...l_E)$,

$$k^2$$
 is an eigenvalue of $\Gamma_{\vec{l}} \iff P_{\Gamma}\left(e^{ikl_1}, e^{ikl_2}, ..., e^{ikl_E}\right) = 0$

The secular equation

Given a (discrete) graph Γ with E edges, there is a corresponding polynomial $P_{\Gamma}: \mathbb{C}^E \to \mathbb{C}$ such that for any choice of edge lengths $\vec{l} = (l_1, l_2...l_E)$,

$$k^2$$
 is an eigenvalue of $\Gamma_{\vec{l}} \iff P_{\Gamma}\left(e^{ikl_1}, e^{ikl_2}, ..., e^{ikl_E}\right) = 0$

Consider the torus $\mathbb{T}^E := \mathbb{R}^E/2\pi\mathbb{Z}^E$. The **Secular manifold** of Γ is the zero set

$$\Sigma := \left\{ \vec{\kappa} \in \mathbb{T}^E : P_{\Gamma} \left(e^{i\kappa_1}, e^{i\kappa_2}, ..., e^{i\kappa_E} \right) = 0 \right\}.$$

The secular equation

Given a (discrete) graph Γ with E edges, there is a corresponding polynomial $P_{\Gamma}: \mathbb{C}^E \to \mathbb{C}$ such that for any choice of edge lengths $\vec{l} = (l_1, l_2...l_E)$,

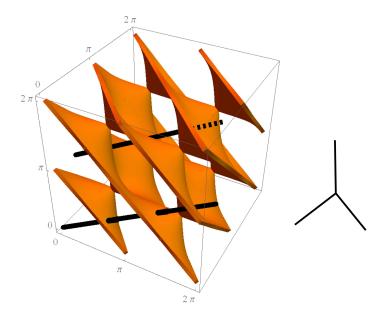
$$k^2$$
 is an eigenvalue of $\Gamma_{\vec{l}} \iff P_{\Gamma}\left(e^{ikl_1}, e^{ikl_2}, ..., e^{ikl_E}\right) = 0$

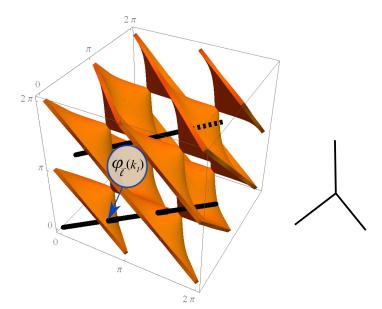
Consider the torus $\mathbb{T}^E := \mathbb{R}^E/2\pi\mathbb{Z}^E$. The **Secular manifold** of Γ is the zero set

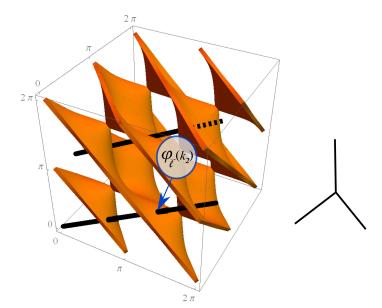
$$\Sigma := \left\{ \vec{\kappa} \in \mathbb{T}^E : P_{\Gamma} \left(e^{i\kappa_1}, e^{i\kappa_2}, ..., e^{i\kappa_E} \right) = 0 \right\}.$$

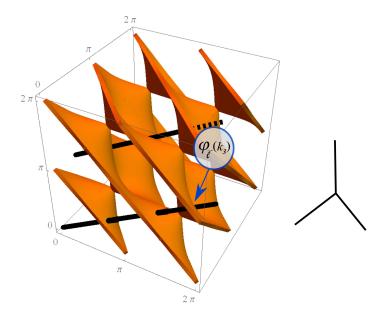
Consider the linear flow $\varphi_{\vec{l}}: \mathbb{R} \to \mathbb{T}^E$ given by $k \mapsto k\vec{l} \mod 2\pi$. Then the secular equation is

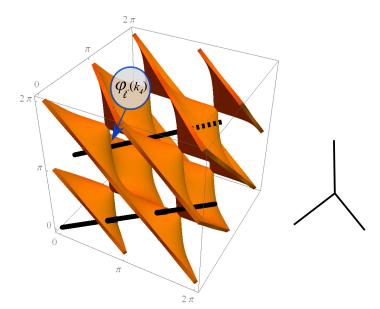
$$k^2$$
 is an eigenvalue of $\Gamma_{\vec{l}} \iff \varphi_{\vec{l}}(k) \in \Sigma$











Ergodicity

Theorem (Barra, Gaspard '00; Berkolaiko, Winn '10; Colin de Verdière '15)

Let $\Gamma_{\vec{l}}$ be a metric graph with incommensurate edge lengths and let $\{k_n^2\}_{n\in\mathbb{N}}$ be its spectrum. Then the sequence $\varphi_{\vec{l}}(k_n)$ is equidistributed on Σ according to a given measure $\mu_{\vec{l}}$.

Ergodicity

Theorem (Barra, Gaspard '00; Berkolaiko, Winn '10; Colin de Verdière '15)

Let $\Gamma_{\vec{l}}$ be a metric graph with incommensurate edge lengths and let $\{k_n^2\}_{n\in\mathbb{N}}$ be its spectrum. Then the sequence $\varphi_{\vec{l}}(k_n)$ is equidistributed on Σ according to a given measure $\mu_{\vec{l}}$.

This is the tool to replace spectral averages, like level spacing statistics, with integration over Σ .

Ergodicity

Theorem (Barra, Gaspard '00; Berkolaiko, Winn '10; Colin de Verdière '15)

Let $\Gamma_{\vec{l}}$ be a metric graph with incommensurate edge lengths and let $\{k_n^2\}_{n\in\mathbb{N}}$ be its spectrum. Then the sequence $\varphi_{\vec{l}}(k_n)$ is equidistributed on Σ according to a given measure $\mu_{\vec{l}}$.

This is the tool to replace spectral averages, like level spacing statistics, with integration over Σ .

The geometry of Σ now plays an important role.

The geometry of Σ

- Berkolaiko and Liu 17', A. (PhD thesis) On the number of connected components of the regular part of Σ.
- Colin de Verdière 15' A conjecture regarding the irreducibility of Σ.

 Proven by Kurasov and Sarnak (yet to be published).

The geometry of Σ

- Berkolaiko and Liu 17', A. (PhD thesis) On the number of connected components of the regular part of Σ.
- Colin de Verdière 15' A conjecture regarding the irreducibility of Σ.

 Proven by Kurasov and Sarnak (yet to be published).

Open question -

What can we say about Σ in the limit of large graphs? Is it becomes "flat" and in what rate?

- Quantum unique ergodicity.
- Level spacing statistics.

Spectral geometry on metric graphs

Lior Alon

IAS school of mathematics

September 2020