Life in characteristic \boldsymbol{p}

(and how to escape it)

Remy van Dobben de Bruyn

Princeton University & Institute for Advanced Study

Number Theory

Number Theory

 \mathbf{Z}

$\mathbf{Z} \longrightarrow \mathbf{F}_p[x]$

net flow of ideas

Some things are different:

Some things are different:

• In characteristic 0, we have $\pi_1(\mathbf{A}^1) = 0$.

Some things are different:

- In characteristic 0, we have $\pi_1(\mathbf{A}^1) = 0$.
- In characteristic p, the group $\pi_1(\mathbf{A}^1)$ is huge! (Poorly understood.)

Life in characteristic \boldsymbol{p}

Some things are different:

- In characteristic 0, we have $\pi_1(\mathbf{A}^1) = 0$.
- In characteristic p, the group $\pi_1(\mathbf{A}^1)$ is huge! (Poorly understood.)

Example	
Consider the map	
	$f \colon \mathbf{A}^1 o \mathbf{A}^1$
	$x \mapsto x^p - x.$

Some things are different:

- In characteristic 0, we have $\pi_1(\mathbf{A}^1) = 0$.
- In characteristic p, the group $\pi_1(\mathbf{A}^1)$ is huge! (Poorly understood.)

Example

Consider the map

$$f \colon \mathbf{A}^1 \to \mathbf{A}^1$$
$$x \mapsto x^p - x$$

Then

$$\frac{\mathrm{d}f}{\mathrm{d}x} = px^{p-1} - 1 = -1.$$

Some things are different:

- In characteristic 0, we have $\pi_1(\mathbf{A}^1) = 0$.
- In characteristic p, the group $\pi_1(\mathbf{A}^1)$ is huge! (Poorly understood.)

Example

Consider the map

$$f \colon \mathbf{A}^1 \to \mathbf{A}^1$$
$$x \mapsto x^p - x$$

Then

$$\frac{\mathrm{d}f}{\mathrm{d}x} = px^{p-1} - 1 = -1.$$

This is never 0, so f is a covering space ("local diffeomorphism").

Given a variety over C, reducing mod p gives a variety over $\bar{\mathbf{F}}_p$.

Given a variety over \mathbf{C} , reducing mod p gives a variety over $\bar{\mathbf{F}}_p$.

Example

If $X = \{x^2 + 17y^2 = z^2\} \subseteq \mathbf{P}^2$, then its reduction modulo 5 is $\{x^2 + 2y^2 = z^2\} \subseteq \mathbf{P}^2_{\mathbf{F}_5}.$

Given a variety over \mathbf{C} , reducing mod p gives a variety over $\bar{\mathbf{F}}_p$.

Example

If
$$X = \{x^2 + 17y^2 = z^2\} \subseteq \mathbf{P}^2$$
, then its reduction modulo 5 is $\{x^2 + 2y^2 = z^2\} \subseteq \mathbf{P}^2_{\bar{\mathbf{F}}_5}.$

Avoid finitely many bad primes: 2 and 17.

From characteristic p to characteristic 0

Question. Conversely, given a variety over $\bar{\mathbf{F}}_p$, does it lift to characteristic 0?

Lifting the equations is not enough: this might change the dimension.

Lifting the equations is not enough: this might change the dimension.

Example

Let $X \subseteq \mathbf{P}_{\bar{\mathbf{F}}_p}^{100}$ be a codimension 5 variety cut out by 7 polynomials $\tilde{f}_1, \ldots, \tilde{f}_7$.

Lifting the equations is not enough: this might change the dimension.

Example

Let $X \subseteq \mathbf{P}_{\overline{\mathbf{F}}_p}^{100}$ be a codimension 5 variety cut out by 7 polynomials $\tilde{f}_1, \ldots, \tilde{f}_7$. Let f_i be a lift of \tilde{f}_i for each i.

Lifting the equations is not enough: this might change the dimension.

Example

Let $X \subseteq \mathbf{P}_{\mathbf{F}_p}^{100}$ be a codimension 5 variety cut out by 7 polynomials $\tilde{f}_1, \ldots, \tilde{f}_7$. Let f_i be a lift of \tilde{f}_i for each i.

Then typically the variety $\tilde{X} \subseteq \mathbf{P}^{100}_{\bar{\mathbf{O}}}$ cut out by the \tilde{f}_i has codimension 7.

Lifting the equations is not enough: this might change the dimension.

Example

Let $X \subseteq \mathbf{P}_{\mathbf{F}_p}^{100}$ be a codimension 5 variety cut out by 7 polynomials $\tilde{f}_1, \ldots, \tilde{f}_7$. Let f_i be a lift of \tilde{f}_i for each i.

Then typically the variety $\tilde{X} \subseteq \mathbf{P}_{\bar{\mathbf{O}}}^{100}$ cut out by the \tilde{f}_i has codimension 7.

This does not deserve to be called a lift.

Do you even lift?

Question. Given a smooth projective variety over $\bar{\mathbf{F}}_p$, does it always lift to characteristic 0?

Do you even lift?

Question. Given a smooth projective variety over $\bar{\mathbf{F}}_p$, does it always lift to characteristic 0?

Theorem (Serre, 1961, 2 pages)

There exists a smooth projective threefold that cannot be lifted to characteristic 0.

Do you even lift?

Question. Given a smooth projective variety over $\bar{\mathbf{F}}_p$, does it always lift to characteristic 0?

Theorem (Serre, 1961, 2 pages)

There exists a smooth projective threefold that cannot be lifted to characteristic 0.

It is a quotient of a variety that lifts by an action that doesn't lift.

Dominating varieties by liftable ones

Question. Given X, can you at least lift some variety related to X?

(Hope: use this to answer questions currently only known in characteristic 0.)

(Hope: use this to answer questions currently only known in characteristic 0.)

This is analogous to Chow's lemma and resolution of singularities:

(Hope: use this to answer questions currently only known in characteristic 0.)

This is analogous to Chow's lemma and resolution of singularities:

Question. Given bad X, does there exist good Y with $Y \rightarrow X$?

Result

Question. Given X, does there exist $Y \twoheadrightarrow X$ such that Y lifts?

Result

Question. Given X, does there exist $Y \rightarrow X$ such that Y lifts?

Theorem (vDdB)

For any prime p, there exists a smooth projective surface X over $\overline{\mathbf{F}}_p$ such that no smooth projective variety Y admitting a surjection $Y \twoheadrightarrow X$ can be lifted to characteristic 0.

Result

Question. Given X, does there exist $Y \rightarrow X$ such that Y lifts?

Theorem (vDdB)

For any prime p, there exists a smooth projective surface X over $\overline{\mathbf{F}}_p$ such that no smooth projective variety Y admitting a surjection $Y \twoheadrightarrow X$ can be lifted to characteristic 0.

It is a general divisor $X \subseteq C \times C \times C$ for any supersingular curve C with $g \ge 2$.

How to escape

How to escape

You can't!