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Motivation: Quantum B-model

A-model (symplectic) oo
mirror // B-model (complex)

Gromov-Witten type theory Hodge type theory

counting genus zero curves Variation of Hodge structures

counting higher genus curves ?

Question

What is the geometry of higher genus B-model? In other words,
what is the quantization of VHS on CY geometry?
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Motivation: Integrable hierarchy

Consider

eu/t = 1 +
u

t
+
∑
k≥1

1

(k + 1)!

uk+1

tk+1
.

Promote u to be a field u(x), introduce the Poisson bracket

{u(x), u(y)} = ∂xδ(x − y).

Then we find infinite number of pairwise commuting Hamiltonians

hk =
1

(k + 1)!

∮
dxuk+1, k ≥ 1.

This is the dispersionless KdV integrable hierarchy.

Question

Why integrable hierarchies in topological string? Is the exponential
map eu/t universal?
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Topological B-model

We will be focused on the B-twisted topological string.

[Bershadsky-Cecotti-Ooguri-Vafa, 1994]: B-model on CY
three-fold can be described by a gauge theory

→ Kodaira-Spencer gauge theory.

This describes the leading cubic vertex of Zwiebach’s string
field action in the topological B-model.

[Costello-L, 2012]: The full description of Zwiebach’s string
field action in the B-model on arbitrary CY geometry

→ BCOV theory.
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Motivation revisited

1 Higher genus B-model is described by the quantization of
BCOV theory in the Batalin-Vilkovisky formalism.

2 Let X be a CY geometry. Consider the fibration

X × Σ→ Σ, Σ = C,C∗, or E .

Start with B-model on X × Σ, and compactify along X

=⇒ effective 2d chiral QFT on Σ.

BV master equation on Σ =⇒ integrability.
The leading effective action is computed by Saito’s primitive
form/Barannikov-Kontsevich’s semi-infinite period map, which
is the analogue of eu/t .
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Differential Batalin-Vilkovisky algebra

BV-formalism is a general method to quantize gauge theory.

Definition

A differential BV algebra is a triple (A,Q,∆) where

A is a graded commutative algebra.

Q is a derivation such that deg(Q) = 1,Q2 = 0.

∆ : A → A is a second order operator such that
deg(∆) = 1,∆2 = 0. The failure of being a derivation defines
the BV-bracket:

{a, b} = ∆(ab)− (∆a)b ∓ a∆b, ∀a, b ∈ A.

Q and ∆ are compatible: Q∆ + ∆Q = 0.
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A toy model of differential BV structure

Let (V ,Q, ω) be a (-1)-symplectic dg vector space

ω ∈ ∧2V ∗, Q(ω) = 0, deg(ω) = −1.

It identifies
V ∗ ' V [1].

Let K = ω−1 ∈ Sym2(V ) be the Poisson kernel under

∧2V ∗ ' Sym2(V )[2]

ω K

Let O(V ) := Ŝym(V ∗) =
∏

n Symn(V ∗). Then (O(V ),Q) is a
commutative dga.
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A toy model of differential BV structure

The degree 1 Poisson kernel K defines a BV operator

∆K : O(V )→ O(V ) by

∆K (ϕ1 · · ·ϕn) =
∑
i ,j

±(K , ϕi⊗ϕj)ϕ1 · · · ϕ̂i · · · ϕ̂j · · ·ϕn, ϕi ∈ V ∗.

Then (O(V ),Q,∆K ) defines a differential BV algebra. We have

(−1)-shifted dg symplectic =⇒ differential BV.

Remark: this process is well-defined for Poisson instead of
symplectic. In fact, as we will see, the Poisson kernel for
topological B-model is degenerate.
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BV-master equation

Let (A,Q,∆) be differential BV. Let I = I0 + I1~ + · · · ∈ A[[~]].

Definition

I is said to satisfy quantum BV-master equation(QME) if

(Q + ~∆)e I/~ = 0 .

This is equivalent to

QI + ~∆I +
1

2
{I , I} = 0.

The leading ~-order I0 satisfies

QI0 +
1

2
{I0, I0} = 0

which is called the classical BV-master equation(CME).
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BV-master equation

Quantum master equation arises as the quantum consistency
condition for quantum field theory with gauge symmetries. At the
classical level, classical master equation says that

Q + {I0,−}

squares zero, which describes the infinitesimal gauge
transformations. In mathematical terminology, this defines an
L∞-algebra.
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QFT case

QFT deals with infinite dimensional geometry. Typically the toy
model (V ,Q, ω) is modified to (E ,Q, ω) as follows:

V E = Γ(X ,E •)

Q : V → V elliptic complex: · · ·E−1 Q→ E 0 Q→ E 1 · · ·

ω ∈ ∧2V ∗ ω(s1, s2) =
∫
X (s1, s2)

where (−,−) : E • ⊗ E • → DensX
V ∗ E∗: distributions on X

(V ∗)⊗n (E∗)⊗n: distributions on X n

K0 = ω−1
K0 is δ-function, which is a distribution

on X × X supported on the diagonal

The serious problem (UV-divergence) is that

∆K0 : O(E)→ O(E)

is ill-defined since we can not pair two distributions.
Renormalization is required!
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Costello’s homotopic renormalization

The basic idea is

H∗(distribution,Q) = H∗(smooth,Q).

Therefore we can replace K0 by something smooth, and remember
the original theory in a homotopic way.
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Effective BV-formalism

Since Q(K0) = 0, we can find Pr such that

K0 = Kr + Q(Pr )

and Kr is smooth. Therefore ∆Kr : O(E)→ O(E) is well-defined.

The triple (O(E),Q,∆Kr ) is a differential BV-algebra.

Different choices of Kr leads to homotopic equivalent
structures. The connecting homotopy will be called

homotopic RG flow

BV master equation is formulated homotopically.
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Effective BV quantization

homotopic RG

BV[r1] BV[r2] 

r1 r2

r=0 (unrenormalized)

Definition

We say the theory is UV finite if lim
r→0

BV[r ] exists.
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2d Chiral QFT

Some examples of free CFT in 2d

free boson:
∫
∂φ ∧ ∂̄φ.

bc-system:
∫
b ∧ ∂̄c .

βγ-system:
∫
β ∧ ∂̄γ.

We will study effective BV quantization in 2d for chiral
deformation of free CFT’s of the form:

S = free CFT’s + I .

Here

I =

∫
d2zLhol(∂zφ, b, c , β, γ)

where Lhol is a lagragian density involving only holomorphic
derivatives of ∂zφ, b, c , β, γ.
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Vertex algebras

A vertex algebra is a vector space V with structures

state-field correspondence

V → End(V)[[z , z−1]]

A→ A(z) =
∑
n

A(n)z
−n−1

vacuum: |0〉 → 1.

translation operator, locality, etc.
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Operator expansion product (OPE)

We can define OPE’s of fields by

A(z)B(w) =
∑
n∈Z

(A(n) · B)(w)

(z − w)n+1

or simply the singular part

A(z)B(w) ∼
∑
n≥0

(A(n) · B)(w)

(z − w)n+1
.

A(z)

B(w)

{A(n) B}

17/33



Lie algebra of Fourier modes

Vertex algebra V ⇒ Lie algebra

∮
V .

As a vector space, the Lie algebra
∮
V has a basis given by A(k)’s∮

V := SpanC

{∮
dzzkA(z) := A(k)

}
A∈V,k∈Z

.

The Lie bracket is determined by the OPE

[
A(m),B(n)

]
=
∑
j≥0

(
m

j

)(
A(j)B

)
m+n−j .
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Example

Let h be a graded vector space with deg = 0 symplectic pairing

〈−,−〉 : ∧2h→ C.

We obtain a vertex algebra structure on the free differential ring

V[h] = C[∂kai ], {ai} is a basis of h, k ≥ 0.

(or V[[h]] = C[[∂kai ]]).

The OPE’s are generated by

a(z)b(w) ∼
(
i~
π

)
〈a, b〉
z − w

, ∀, a, b ∈ h.

⇒ V[h] is a combination of bc and βγ systems.
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2d Chiral QFT

We consider QFT on Σ where

Σ = (C, z), (C∗, e2πiz), or (Eτ = C/(Z⊕ Zτ), z)

with volume form dz . Let h be a graded symplectic space as
above. We obtain the following BV triple (E ,Q, ω)

1 space of fields: E = Ω0,∗(Σ)⊗ h.

2 differential: Q = ∂̄ + δ, where δ ∈ C
[
∂
∂z

]
⊗ End(h).

3 (-1)-sympletic pairing

ω(ϕ1, ϕ2) :=

∫
dz ∧ 〈ϕ1, ϕ2〉 , ϕi ∈ E .

⇒ effective BV formalism
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Chiral interaction

Let h∨ be the linear dual of h. There is a natural map∮
V[[h∨]]→ chiral local functional on E .

Given

I =
∑∮

∂k1a1 · · · ∂knan ∈ V[[h∨]], where ai ∈ h∨,

it is mapped to

Î [ϕ] :=
∑∫

dz∂k1z a1(ϕ) · · · ∂knz an(ϕ)

for ϕ ∈ E = Ω0,∗(Σ)⊗ h.

Lemma

The triple
(∮
V[[h∨]], δ, [−,−]

)
defines a dgLa.
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Main Theorem

Theorem (L)

We consider the following 2d chiral QFT

S = free CFT + Î , I ∈
∮
V[h∨][[~]].

1 The theory is UV-finite.

2 Solutions of (homotopic) effective BV master equations

⇔ δI +
1

2

(
i~
π

)−1
[I , I ] = 0, I ∈

∮
V[[h∨]][[~]].

In other words, I is a MC element of the dgLa
∮
V[[h∨]][[~]].

3 The generating functions are almost holomorphic modular

forms, i.e., modular of the form
N∑

k=0

fk (τ)
(im τ)k

.
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Example: UV-finiteness and modularity

Consider the following chiral deformation of free boson on the
elliptic curve Eτ

S =
1

2

∫
Eτ

∂φ ∧ ∂̄φ+
1

3!

∫
Eτ

d2z

im τ
(∂zφ)3.

Let’s look at a two-loop diagram

P

P

P

=

∫
Eτ

d2z

im τ
P(z; τ)3.

Here the propagator is P(z ; τ) = P(z , τ) + π2

3 E
∗
2 where

P Weierstrass P-function, E ∗2 = E2 −
3

π

1

im τ
.
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Geometric interpretation (joint in progress with Jie Zhou)

Naively P has a second order pole and
∫
Eτ
P3 would be divergent.

However, in the sense of homotopic renormalization, its
renormalized value has a well-defined limit r → 0, whose value can
be computed as follows:

consider the exact sequence

0→ C ∂→M
∂→ ΩII → 0

where M is the sheaf of meromorphic functions, and ΩII is the
sheaf of abelian differentials of second kind. Then[

P3 dz

im τ
∧ dz̄

]
∈ H1(Eτ ,Ω

II)→ H2(Eτ ,C)

∫
→ C.

represents the renormalized integral.
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0→ C ∂→M
∂→ ΩII → 0

where M is the sheaf of meromorphic functions, and ΩII is the
sheaf of abelian differentials of second kind. Then[

P3 dz

im τ
∧ dz̄

]
∈ H1(Eτ ,Ω

II)→ H2(Eτ ,C)

∫
→ C.

represents the renormalized integral.
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Geometric interpretation (joint in progress with Jie Zhou)

We find the following expression

1

π6

∫
Eτ

d2z

im τ
P3 =

22

335
E6 +

2

325
E4E

∗
2 −

2

33
(E ∗2 )3

Under the τ̄ →∞ limit, which amounts to replace E ∗2 → E2,

⇒ 1

π6

∮
A
dzP3 =

22

335
E6 +

2

325
E4E2 −

2

33
(E2)3.

reducing to the A-cycle integral as computed by M.Douglas.
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Application: Quantum B-model on elliptic curves

Let X be a CY. The field content of BCOV theory (in the
generalized sense of [Costello-L]) is given by the complex

E = PV(X )[[t]],Q = ∂̄ + t∂

where PV(X ) = Ω0,∗(X ,∧∗TX ) and ∂ is the divergence operator
w.r.t. the CY volume form.
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BCOV theory on elliptic curve

We specialize to the elliptic curve Eτ = C/(Z⊕ Zτ)

E = Ω0,∗(Eτ )[[t]]⊕ Ω0,∗(Eτ ,TEτ [1])[[t]]

= Ω0,∗(Eτ )⊗ h.

where h = C[[t, θ]], deg(t) = 0, deg(θ) = −1.

Via our 2d set-up,

Q = ∂̄ + tδ, where δ = ∂
∂z ⊗

∂
∂θ .

The Poisson kernel is degenerate. If we represent ϕ ∈ E by

ϕ =
∑
k≥0

bkt
k + ηkθt

k ,

then the OPE’s are generated by

b0(z)b0(w) ∼ 1

(z − w)2
, others ∼ 0.

b0 is dynamnical, while b>0, η• are background fields.
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Quantum B-model on elliptic curves

Theorem (L)

There exists a canonical solution of quantum master equation for
BCOV theory on elliptic curves.

This is proved by analyzing the deformation obstruction complex of
the dgLa for the relevant vertex algebra under the boson-fermion
corresondence.
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Stationary sector

Since the theory is UV-finite, we can express the solution of
homotopic BV master equation via quantum corrected local
functions. We give some explicit description in the so-called
stationary sector (which amounts to freeze the background fields):

b>0 = 0, η• = constants.

The quantum corrected action in the stationary sector is

S =

∫
∂φ ∧ ∂̄φ+

∑
k≥0

∫
ηk

W (k+2)(b0)

k + 2
, b0 = ∂zφ.

where

W (k)(b0) =
∑

∑
i≥1 iki=k

ki !∏
i
ki !

(∏
i

1

i !
(
√
~∂z)i−1b0

)ki

= bk0 + O(~).

are the bosonic realization of the W1+∞-algebra.
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Quantization in stationary sector

In the stationary sector, the BV quantum master equation is
equivalent to [∮

W (k),

∮
W (m)

]
= 0, ∀k ,m ≥ 0,

representing ∞ many commutating vertex operators.

Its classical limit is{∮
bk0 ,

∮
bm0

}
= 0, ∀k,m ≥ 0,

for the Poisson bracket {b0(z), b0(w)} = ∂zδ(z − w) that we
observe in the beginning.
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Generating function

The generating functions of the quantum BCOV theory are
almost holomorphic modular forms. The τ̄ -dependence is the
famous holomorphic anomaly.

In the stationary sector, the τ̄ →∞ limit of the generating
function can be computed by

Tr qL0−
1
24 e

1
~

∑
k≥0

∮
A ηk

W (k+2)

k+2

which coincides with the stationary GW-invariants on the
mirror elliptic curve computed by Okounkov-Pandharipande,

⇒ higher genus mirror symmetry.

This generalizes the work of Dijkgraaf on the cubic
interaction.
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Remarks

One way to understand the interaction of B-model on E is via

pt × E → E .

In general, we consider X × E → E , whose compactifiation
along X gives rise to an effective 2d chiral theory on E . Then
similarly we will find ∞ commutating Hamiltonians, which
turns out to be Dubrovin-Zhang’s Principal integrable
hierarchy (in progress with Weiqiang He and Philsang Yoo).

Landau-Ginzburg twisting. Classical BCOV theory is
equivalent to Saito’s theory of primitive forms. The classical
commuting hamiltonians can be computed by replacing eu/t

with the so-called primitive form.

Couple BCOV theory with Witten’s HCS [Costello-L, 2016].
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Thank You!
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