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What are trace inequalities?

Trace inequalities relate traces of various products of Hermitian
matrices.

Typically, they become equalities for commuting matrices. Roughly
speaking, they allow to control non-commutative terms “on
average” (i.e., inside the trace).

Theorem (Golden and Thompson '65)
Let A, B € C™*™ be Hermitian matrices. Then

Tr[e”TB] < Tr[e?ef]

— Compare this simple form to the elaborate expansion provided
by the Baker-Campbell-Hausdorff formula.

— Lots of applications: Statistical mechanics; quantum
information theory; random matrix theory.

— Follows from the Cauchy-Schwarz inequality.



Lieb's three-matrix inequality
It is not obvious how to generalize Tr[e*T8] < Tr[e”e®] to more
than two matrices. Naive generalizations are false:

Tr[eA+B+C] « Tr[e?ePeC],
Tr[e”eB/2eCeB/?].
But:

Theorem (Lieb '76)
Let A, B, C € C™™ be Hermitian matrices. Then
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— The strange expression
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is a non-commutative analogue of X~ 1Y.
— Proof uses convex matrix functions (Léwner's theorem helps).
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A recent breakthrough
An extension of Lieb's three-matrix inequality to n > 4 matrices
was missing, until last year.
Theorem (Sutter, Berta and Tomamichel 2016)
Forn>2, let Ay,...,A, € C™™ be Hermitian matrices. Then
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where [3(t) := 5(1 + cosh(mt)) ™! is an explicit probability density.
— For n = 3, this is actually Lieb's inequality in disguise.
— Their new n = 4 inequality is useful in quantum information
theory.
— Proof uses complex interpolation (Stein-Hirschmann in
Schatten spaces).



My two cents

Q: Can the SBT inequalities be formulated in Lieb’s form (i.e., in
terms of resolvents ﬁ) for n > 37

This is not just an academic question:

The unitaries e2” appear to block other applications of the new
SBT inequalities, e.g., to random matrix theory (large deviations;
bounds on the Lyapunov exponent). If the answer is yes, then we
can use the “resolvent formalism” to remove the unitaries up to
explicit commutators.

Theorem (arXiv:1708.04836)

A: Yes. E.g., for real symmetric matrices A1, Az, As, As,

Try [eA1+A2+A3+A4]
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Thank you for your attention!



