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I. Truncated moment problem : One random variable x ∈ K

I start with the following question :

given an n-tuple of real numbers (m1,m2 · · · ,mn),

does there exist a probability measure

µ(dt) on K ⊂ R such that m0 = 1 and

∫
K
tkµ(dt) = mk, k = 1,2 · · ·n (1)
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Examples of necessary and sufficient conditions for (1)
to hold with m1,m2,m3 given are

1. K = R+ = [0,∞) :
m1 ≥ 0,m2 −m2

1 ≥ 0, m3
m1
− (m2

m1
)2 ≥ 0, and

m2 = m2
1 ⇒ mk = mk

1

2. K = N = 0,1,2, · · ·
m1 ≥ 0, m2 −m2

1 ≥ θ1(1− θ1)

m3
m1
− (m2

m1
)2 ≥ θ2(1− θ2)

where θ1, θ2 ∈ [0,1) are the fractional parts of m1 and
m2/m1, respectively.

3



Case 1, is part of the standard truncated moment prob-

lem considered by many. There are known conditions

for realizability (consistency) in terms of positivity of

some Hankel matrices for all n.

Case 2, which corresponds, for example, to the statis-

tics of the number of particles (or people) in a given

region, is less well studied and much more complicated.

There is no explicit formula for necessary and sufficient

conditions when n ≥ 4.

For n = 2 the condition m2 − m2
1 ≥ θ1(1 − θ1) is due

to Percus and Yamada and goes, in the classical fluids

literature under the name of Yamada condition. The

proof is straightforward.
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To minimize the variance m2 −m2
1, when m1 = k + θ1

the measure has to be concentrated on k and k+1 with

probabilities (1− θ1) and θ1 respectively.

This gives m2 −m2
1 = θ1(1− θ1).

For n = 3, the situation is a bit more complicated but

in the end the minimal values are obtained

if the measure is concentrated on three points 0, k1, k2.
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For n = 4, all we have explicitly are lower and upper

bounds; m4 has to be greater than it is for R+ where,

the positivity of the Hankel matrix m0 m1 m2
m1 m2 m3
m2 m3 m4


gives

m4 −m2
2 ≥

(m3 −m2m1)2

(m2 −m2
1)

We also have an upper bound µ4, such that m4 >

µ4(m1,m2,m3) is sufficient for realizability but no ex-

plicit necessary and sufficient condition. One can, in

principle compute such a condition for each m1, . . . ,mn,

but the complexity grows exponentially (?) in n.
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More generally; let t = (t1, . . . , tN) ∈ K ⊂ RN . Then

given

m1,m2, . . . ,mn

where ml = {ml1,l2,...,lN
}, lj ≥ 0,

∑N
j=1 lj = l, we ask,

does there exist µ(dt1, . . . , dtN) such that

ml =
∫∫
K
t
l1
1 . . . t

lN
N µ(dt)

We know very little about this for N > 1, so let us go

on to the case N =∞.
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II. Point Processes with Specified Low Order Correlations
This is a generalization of the truncated moment prob-
lem, which arises naturally in statistical mechanics. In
fact this was the origin of our interest in these problems.

Let η(r), r ∈ Ω, be a random empirical field describing
a point process in a domain Ω ⊂ Zd or Rd. Then

η(r) =
∑
i

δ(r− xi),

where the xi are the positions of the points of the pro-
cess, with xi 6= xj for i 6= j, distributed according to
some measure µ defined on the family of all locally fi-
nite collections of points in Ω.

Here δ is either the Dirac or the Kronecker delta func-
tion, depending on whether we are in the continuum or
on the lattice; in the latter case η(r) has value 0 or 1.
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Depending on context the xi can represent the positions

of particles in a fluid or of the stars in the sky, the

occurrence times of members of a train of neural spikes,

or more generally the space-time locations of the events

of some specified physical process.
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The correlation functions ρk(r1, ..., rk) are defined via

averages, with respect to µ, of products of η(r)’s in-

volving distinct particles:

ρ1(r1) = 〈η(r1)〉, (2)

ρ2(r1, r2) = 〈η(r1)η(r2)〉 − ρ1(r1)δ(r1 − r2), (3)

and in general

ρk(r1, . . . , rk) =

〈 ∑
i1 6=i2 6=···6=ik

k∏
j=1

δ(rj − xij)

〉
. (4)

Note that on the lattice ρk(r1, ..., rk) vanishes when ri =

rj.
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For translation invariant processes, we shall write

ρ1(r1) = ρ, ρ2(r1, r2) = ρ2g(r2 − r1),

ρ3(r1, r2, r3) = ρ3g3(r2 − r1, r3 − r1), etc.

The function g(r) is known in the fluids literature, where

it is additionally assumed that g is a function only of |r|,
as the radial distribution function. We shall also assume

generally that ρk(r1, . . . , rk)→ ρk when |ri− rj| → ∞ for

all i, j with 1 ≤ i < j ≤ k.

We study the following infinite dimensional truncated

moment problem.

Suppose we are given functions, say

f1(r1), f2(r1, r2) . . . fn(r1, . . . , rn) does there exist an un-

derlying point process with correlations ρj = fj, j =

1, . . . n, and, if so, what can we say about it?
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The given putative correlations fj may come from av-

eraging and smoothing of observations, as in the study

of neural spike trains, or from some approximate the-

ory, such as the Percus-Yevick equation for the radial

distribution function of a classical fluid. They may also

just express target correlations for a material or process

with certain desired properties .
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We observe that if the correlations ρj = fj can be real-
ized for some density ρ, then they can also be realized,
for the same functions g2, . . . , gk, for any ρ′, 0 ≤ ρ′ < ρ.
To see this, the new measure is constructed by inde-
pendently choosing to delete or retain each point in a
configuration, keeping a point with probability ρ′/ρ.

In this light it is thus natural to pose the realizability
problem in the following form: given the gj, j = 2, . . . , k,
what is the least upper bound ρ̄ of the densities for
which they can be realized? It is of course possible
in the continuum case to have ρ̄ = ∞; for example, if
gj = 1 for j ≤ 2 ≤ k then for any density ρ > 0 a Pois-
son process realizes the correlations. For the lattice
systems considered here, on the other hand, we always
have ρ̄ ≤ 1.

13



Lacking a full answer to this question, one may of

course ask rather for upper and lower bounds on ρ̄.

A lower bound ρ̄ ≥ ρ0 may be obtained as we will show

by the construction of a process at a density ρ0 > 0.

Upper bounds on ρ̄ may be obtained from necessary

conditions for realizability, some of which are described

below.
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Necessary Conditions

Clearly, from (4), realizability requires that

ρj(r1, . . . , rj) ≥ 0, j = 1, . . . , k. (5)

We also know that the covariance matrix of the field

η(r),

S(r1, r2) = 〈η(r1)η(r2)〉 − 〈η(r1〉〈η(r2)〉 (6)

= ρ2(r1, r2) + ρ1(r1)δ(r1 − r2)− ρ1(r1)ρ1(r2)

must be positive semi-definite, which implies that:∫
Λ
ρ1(r1) dr1 +

∫
Λ

∫
Λ
eik·(r1−r2) [ρ2(r1, r2)− ρ1(r1)ρ1(r2)] dr1dr2 ≥ 0;

(7)

for any Λ ⊂ Rd(Zd)
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In the translation invariant case we must have the non-

negativity of the infinite volume structure function Ŝ(k):

Ŝ(k) ≡ ρ+ ρ2
∫
Rd
eik·r [g(r)− 1] dr ≥ 0. (8)

Here I assume
∫
Rd |g(r)− 1| dr <∞; otherwise (8) holds

in the sense of generalized functions. There are corre-

sponding conditions on the torus Td, the lattice Zd, and

the periodic lattice.
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There are also necessary conditions corresponding to

case 2 above: if NΛ denotes the number of particles

in a region Λ ⊂ Ω, then the variance VΛ of NΛ,

VΛ ≡
∫

Λ

∫
Λ
S(r1, r2)dr1dr2

=

∫
Λ
ρ1(r1) dr1 +

∫
Λ

∫
Λ

[ρ2(r1, r2)− ρ1(r1)ρ1(r2)] dr1dr2, (9)

must satisfy the previous case (2) Yamada condition

VΛ ≥ θ(1− θ), (10)
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The above conditions follow from the more general un-

countable number of necessary conditions. In summary

these say that, given any functions f2(r1, r2), f1(r) and

constant f0 such that, for any n points r1, . . . , rn in Λ,∑
i 6=j

f2(ri, rj) +
∑
i

f1(ri) + f0 ≥ 0,

then we must have∫ ∫
Λ×Λ

ρ2(r1, r2)f2(r1, r2)dr1dr2 +
∫

Λ
ρ1(r)f1(r)dr + f0 ≥ 0,

(11)

for all Λ ⊂ Rd.
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We prove in fact that in the case k = 2, i.e. for the case

that only ρ1 and ρ2 are given, (11) is also a sufficient

condition for realizability under some assumptions on

the point process, e.g, existence of a hard core.

This has been extended recently by Raphaël Lachièze-

Rey and Ilya Molchanov to a weaker condition on g(r)→
0 as r → 0.
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When there are no restrictions on the number of par-

ticles in a given region sufficiency only holds under

some additional restriction. There are similar results

for k > 2.

Note that in the case k = 2 all restrictions on ρ and g

beyond those arising from nonnegativity of ρ and of the

covariance matrix S of (6) are due to the fact that we

want η(r) to be a point process, since we can always

find a Gaussian process realizing any ρ1, ρ2 with S > 0.
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We also note that for g(r) ≤ 1 one has

Ŝ(k) ≥ Ŝ(0) = lim
Λ→∞

1

|Λ|
VΛ. (12)

In general Ŝ(0) = 0 implies that the variance VΛ is

growing slower than the volume. Processes with this

property are called superhomogeneous and are of inde-

pendent interest.
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To prove the realizability of a given translation invari-

ant ρ and g(r), r ∈ Rd, for sufficiently small ρ we extend

results given by Ambartzumian and Sukiasian. Given ρ

and g(r) they generated higher order correlation func-

tions ρn, n = 1,2,3, . . .. via the following ansatz.

ρn(r1, . . . , rn) = ρn
∏

1≤i<j≤n
g(ri − rj), (13)

This solves the realization problem for ρ and g iff one

can show that these ρn actually realize a point pro-

cess in Rd(Zd). To do this requires some manipulations

involving Ruelle’s and Penrose’s conditions for conver-

gence of the fugacity expansion for a system with pair

potential φ(r) = − log g(r).
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The end result is that this construction works whenever

ρ ≤ (eΦ+1B)−1 (14)

where

B =
∫
Rd
|g(r)− 1|dr

and Φ is the Ruelle stability condition

N∑
i=1

(− log g(x0 − xi)) ≥ −NΦ (15)

whenever

g(xi − xj) > 0, i, j = 0, . . . , N (16)

Note that if g(r) ≤ 1 then (15) is automatically sat-

isfied with Φ = 0. This was the case considered by

Ambartzumian and Sukiasian.
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Many will recognize (14) as the lower-bound on the ra-

dius of convergence of the Mayer fugacity expansion,

which is indeed where it comes from.

The result also holds for Zd. It has also been extended

by us to the case where one also specifies g3 and when

ρ1, ρ2, ρ3 are not translation invariant. The value of ρ

is much smaller then. The existence of such extensions

show that, if there exists a realizable measure for a set

of correlations there will in general be an infinite, in

fact uncountable number of realizations.
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Gibbs measures

The next question we ask is whether a specified set

of correlation functions ρj, j = 1, . . . , k, which can be

realized by at least one point process, can also be re-

alized by a Gibbs measure involving at most k-particle

potentials. We show that for the case in which our sys-

tem lives on a finite set Λ, e.g., a subset of the lattice

this is possible whenever ρ1(x) satisfies ρ1(x) < ρ̄1(x)

for all x ∈ Λ. We call such a measure k-Gibbsian.
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The key ingredient in the argument is the fact that

Gibbs measures are those which maximize the Gibbs-

Shannon entropy of the measure µ,

S(µ) ≡ −
∑
η
µ(η) logµ(η) (17)

subject to some specified constraints. In particular,

we use the method of Lagrange multipliers to find a

measure which maximizes the entropy, subject to the

constraint of a given ρ1 and ρ2, then the maximizing

measure will be 2-Gibbsian and the Lagrange multipliers

obtained in this way will be the desired one body and

pair potentials. The requirement that ρ1(x) < ρ̄1(x)

assures us that we are in the ”interior” of the permis-

sible set of measures and so the method of Lagrange

multipliers is applicable.
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The extension of the result to Zd when ρ1 and ρ2 are

translation invariant and to continuum systems is some-

thing we are still working on. The problem here is that

we have an infinite number of constraints while the

cases treated in the literature involve only a finite num-

ber of constraints.

27



A simple example

Determine for which densities ρ there exists a trans-

lation invariant point process on Rd with

g(r) =

0, if |r| ≤ 1,

1, if |r| > 1.
(18)

Condition (8) implies that (ρ, g) can only be realized if

ρ ≤ (vd2
d)−1, where vd is the volume of the ball with

diameter 1 in Rd (v1 = 1, v2 = π/4, etc.).
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In the other direction, (14) implies that for general d

these correlations are indeed realizable if ρ ≤ e−1v−1
d 2−d.

Thus the maximum density ρ̄(d) for which g is realizable

satisfies

e−1 ≤ 2dvdρ̄(d) ≤ 1. (19)
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In one dimension: a simple construction shows realiz-

ability by a renewal process if ρ ≤ 1/e. More compli-

cated analysis gives

0.395 ≤ ρ̄(1) < 0.5

The gap between these upper and lower bounds remains

as a challenge to further rigorous analysis.

On Z with nearest neighbor exclusion

ρ ≥
1

4
= max

ρ∈[0,1]
ρ(1− ρ)

Proof: Start with Bernoulli measure with density ρ then

eliminate any occupied site whose nearest neighbor to

the right is also occupied.
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III. Extension of Measures

Suppose that instead of being given translation invari-

ant low order correlations on all of Ω = Zd (Rd), we are

given a measure µ on some finite subset Λ ⊂ Ω. We

then ask: can this measure be extended to a translation

invariant µ on all of Ω?

Clearly a necessary requirement is that the marginal

of µΛ on any subset A ⊂ Λ, be the same as that of

B = TA, a translate of A, whenever TA ⊂ Λ. We call

this property of µΛ, pre-translation invariance (PTI).

31



Remark

It is sometimes convenient to use spin notation rather

than particle (i.e., lattice gas) notation in describing

configurations in Λ ⊂ Z. As usual if η is a particle vari-

able taking values in {0,1} we introduce a correspond-

ing spin variable σ = 2η − 1 taking values in {+1,−1}.
This is convenient in particular because it permits us

to write a measure µΛ directly in terms of the corre-

sponding spin correslations:

µk(σΛ) = 2−|Λ|(1 +
∑

A⊂Λ,A 6=0

〈σA〉σA),

where as usual σA =
∏
i∈A σi and the spin correlation

〈σA〉 denotes the expectation µΛ(σA) of σA in the mea-

sure µΛ.
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One may think of the expectations 〈σA〉 as parameters

which determine the measure; the condition that µΛ

be PTI is simply that 〈σB〉 = 〈σA〉 whenever B is a

translate of A, with A,B ⊂ Λ. Note, however, that in

using the above form to construct a measure µΛ with

given 〈σA〉 one must check that it assigns a nonnegative

probability to each configuration, σ in Λ.
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Assume now that µΛ is indeed PTI. Then, the possibil-

ity of extension depends on the dimension. We show

by explicit construction, for the case Ω = Z (and ex-

pect also for R) that all PTI measures are extendable.

In higher dimensions, on the contrary, it is possible to

construct PTI measures, e.g. on the unit square in Z2,

which are not extendable.

Let me describe our explicit construction in Z, where

Λ = {0,1, . . . , k} and µΛ = µk(η0, . . . , ηk), ηj = {0,1}
{η0, . . . , ηk} ∈ Xk = {0,1}k+1.
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We define µk−1 on Xk−1 to be the marginal of µk:

µk−1(η0, . . . , ηk−1) =
∑

ξ=0,1

µk(ξ, η0, . . . , ηk−1)

=
∑

ξ=0,1

µk(η0, . . . , ηk−1, ξ),(20)

where the equality of the two expressions in (20) ex-

presses the PTI property of µk.
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For (η0, . . . , ηk+1) ∈ Xk+1 one defines

µk+1(η0, η1, . . . , ηk+1) =
µk(η0, η1, . . . , ηk)µk(η1, η2, . . . , ηk+1)

µk−1(η1, . . . , ηk)
(21)

Checking that µ is PTI and gives the correct marginal

on Xk is straightforward.

It is now easy to see, by repeated application of the

construction that if µk is a PTI measure on Xk then

there exists a TI measure µ on X which extends µk.

Another way of writing (21) is

µk+1(ηk+1|η0, η1, . . . ηk) = µk(ηk+1|η1, . . . ηk)
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In fact for any j > k, we get

µj(η0, η1, . . . , ηj) = µk(η0, . . . ηk)
j−k∏
i=1

µk(ηi+k | ηi, . . . ηi+k−1).

(22)

Eq. (22) says that we may regard the extension proce-

dure as defining a Markov chain having finite memory,

for which the transition probabilities depend on states

at the previous k time steps. The TI extension µ of µk
is then just the invariant measure on sample paths for

this chain.
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Maximal Entropy Extension: Gibbs Measures

The construction we have given for extending a PTI

µk to µk+1 is, as you may have recognized already, one

that maximizes the Gibbs-Shannon entropy of the mea-

sure µk+1.

S(k+1) = −
∑

µk+1(η0, . . . , ηk+1) logµk+1(η0, . . . , ηk+1)

(23)

subject to the constraints that the projection of µk+1

on the {η0, . . . ηk} and on the set {η1, . . . ηk+1} be given.
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This follows from the general fact that given a mea-

sure µ(A,B) on A∪B and another measure µ(B,C) on

B ∪ C which agree in their projections on B, then any

extension to a measure on A ∪B ∪ C, µ(A,B,C) which

agrees with µ(A,B) and µ(A,C) has the property that

S(A,B,C) ≤ S(A,B) + S(B,C)− S(B) (24)

Equality in (24) is achieved when

µ(A,B,C) = µ(A,B)µ(B,C)/µ(B) (25)

(with the obvious caveat that if the denominator van-

ishes so does the numerator) This is exactly the form of

extension we have made from µk to µk+1. With some

abuse of notation:

A = {0}, B = {1, . . . , k}, C = {k + 1} (26)
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It is also easy to see that the translation invariant mea-

sure we get this way will be “Gibbs” with “interaction

potentials” which involve at most k+ 1 sites, i.e., they

will have a range at most k. The interesting part is

that this entropy maximizing extension is automatically

TI on Z.

Since entropy maximizing measures are “generally” Gibb-

sian we have that, in d = 1 the restriction of a Gibbs

measure with TI length k-interactions on j > k sites is

the entropy maximizing PTI measure µj obtained from

µk by our construction.
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Our one dimensional construction also gives an expres-

sion for the entropy of any block of length k+j obtained

from a translation invariant Gibbs measure on Z with

interaction of range k or less. This is just

S(k + j) = S(k) + j[S(k)− S(k − 1)] (27)

This implies that the specific entropy, s(µ), i.e., the

entropy per site of the TI maximal entropy extension is

equal to [S(k)− S(k − 1)].
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When S(k) = S(k − 1) then one can show that the

measure µ lives on periodic configuration of length L,

L ≤ 2k.

To see this note that S(k) = S(k − 1) implies that

the configuration at site k is fully determined by the

configuration at sites {0,1 . . . , k− 1} which means that

the process is deterministic after k sites. This implies

that there are at most only 2k configurations with non

zero probability.
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Remark

Everything said above extends immediately to measures

defined on SΛk. As an example, take S = {0,1}Λm so

that SΛk may be identified with the space {0,1}Λk×Λm

of particle configurations on a k ×m rectangle. If such

a measure is PTI under translations in the first compo-

nent then it may be extended to a measure on configu-

rations on Λ×Λm, where Λ is any interval containing Λk,

and hence to a measure on configurations on Z × Λm.

Unfortunately, however, this extension procedure need

not maintain the PTI property for translations in the

second component.
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Thus if we start with a measure on a strip of Z2 of

height h and length k which is PTI in both directions we

can extend it to either an infinite horizontal or vertical

measures, but not necessarily to a TI measure in both

directions.

An example of a non-extendable PTI in Z2 is to take for

Λ the unit square and assign the following probabilities

to the 16 possible configurations: probability 1/4 to the

following four configurations(
0 0
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
0 1
0 1

)
and probability zero to all other (12) configurations. It

is simple to check that this increase is PTI but has no

PTI extension to a 3 by 3 square.
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What is still true however is the following (still needs

some checking for precise condition). Given a TI mea-

sure µ on Zd there exists a unique Gibbs measure µG on

Zd with TI interactions of range less than or equal to L

such that the projection of µ and µG agree on any set

Λ ⊂ Zd, with diameter of Λ, D(Λ) ≤ L.
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Periodic Extensions

It is possible to show that among the TI extensions of
PTI µk there will always be measures supported on pe-
riodic configurations of finite length. These measures
are superpositions of measures concentrated on “min-
imal” periodic configurations of length p. They give
weight 1/p to each of the p translates of the p-periodic
configurations.

Example: Suppose µ1(η0, η1) gives weight α1,1 to (1,1),
α0,0 to (0,0) and α0,1 = (1−α1,1−α0,0)/2 to (1,0) and
to (0,1), then we can obtain a TI measure by giving
weight α1,1 to configurations (. . . ,1,1,1, . . . ), α0,0 to
(. . . ,0,0,0, . . . ), α0,1 to those which consist of
(. . . ,0,1,0,1, . . . ) and α1,0 = α0,1 to (. . . ,1,0,1,0, . . . ).
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The proof of this statement for general k is based on

the use of De Bruijn graphs.

The (binary) De Bruijn graph of order k (or sometimes

dimension k), Gk, is the directed graph with 2k vertices

and 2k+1 edges, labeled respectively by all binary strings

of length k and length k + 1, in which for any binary

digits a and b and binary string θ of length k − 1 the

edge aθb runs from vertex aθ to vertex θb (see Figure

1).
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Figure 1: The first three De Bruijn graphs
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Note in particular that Gk contains two loops, labeled

respectively by 00 . . .0 and 11 . . .1, but no multiple

edges. Since the edges of Gk are labled by the ele-

ments of Xk, it is clear that any probability measure

µk on Xk corresponds to an assignment of a nonneg-

ative current jη to each edge η of Gk in such a way

that
∑
η jη = 1; the correspondence is of course via

jη = µk({η}). The terminology ”current” is appropri-

ate because one checks easily that µk is PTI if and only

if the current is conserved at each vertex of Gk, that is,

if for each vertex ξ the sum of the currents on the two

edges entering ξ is equal to the sum of the currents on

the two edges leaving ξ.
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Suppose that P is a closed path in Gk, that is, a se-
quence of |P| edges η(1), . . . , η(|P|) in that order (pos-
sibly with repetitions), and that P is minimal in the
sense that there is no shorter path P ′ such that P is
obtained by tracing P ′ several times. With ηj = η

j
0 . . . η

j
k

we let νP denote the measure corresponding to the peri-

odic configuration . . . η
(|P|)
0 η

(1)
0 . . . η

(|P|)
0 η

(1)
0 · · · ∈ X; this

is clearly a bijective correspondence between minimal
closed paths and measures on ”primitive” periodic con-
figurations.

It follows then that every PTI measure µk on Xk is the
marginal of a TI measure ν with ν a (finite) convex
combination of the k-primitive periodic measures νC.
In particular, every such µk has an extension to a TI
measure supported on periodic configurations of finite
length.
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Entropy Minimizing Measures

It seems natural to ask which of the TI extensions of

µk minimizes the Gibbs-Shannon entropy. It is clear

from the above that these measures, which due to the

concavity of the entropy will be at the boundary of

the permitted set and need not be unique, will have

finite entropy. Indeed we can prove that any entropy

minimizing measure will be a finite superposition of the

periodic measures discussed above.
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IV. Density Matrices

The question we ask for quantum systems is similar

to the one we asked for classical systems: Given den-

sity matrices ρ(1,2) and ρ(2,3) on the Hilbert spaces

H1 ⊗H2 and H2 ⊗H3 such that

tr1ρ(1,2) = tr3ρ(2,3) = ρ(2),

is there a density matrix ρ(1,2,3) acting on H1⊗H2⊗H3

such that

tr1ρ(1,2,3) = ρ(2,3), tr3ρ(1,2,3) = ρ(1,2)

Remember that in the classical case this was always

possible: we simply set µ(1,2,3) = µ(1,2)µ(2,3)/µ(2)

and that this gave in fact the maximal entropy exten-

sion.
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This no longer works for density matrices due to entan-

glement. It is easy to give examples, e.g., suppose both

ρ(1,2) and ρ(2,3) correspond to pure states (which

are not themselves direct products of pure states for

ρ(1), ρ(2), ρ(3)) then there is no way to extend ρ(1,2)

and ρ(2,3) to ρ(1,2,3). An easy way to see this is to

note that the strong subadditivity for the von Neumann

entropy, S(ρ) = −trρ log ρ

says that just like in the classical case

S(ρ123) ≤ S(ρ12) + S(ρ23)− S(ρ2) (28)

so if S(ρ12) = S(ρ23) = 0, the inequality cannot hold

unless S(ρ2) = 0.
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The inequality (28)goes under the name of strong sub-

additivity (SSA) and was proven by Lieb and Ruskai in

the 70’s. It is a hard theorem and is of central impor-

tance in quantum information.

The only positive result we have in the direction of ex-

tension is when both ρ(1,2) and ρ(2,3) are a convex

combination of direct products

ρ(1,2) =
∑
j

λjσ
(j)
1 ⊗ σ(j)

2

ρ(2,3) =
∑

λjσ
(j)
2 ⊗ σ(j)

3

 λj > 0,
∑
j

λj = 1

with the σ
(j)
2 the same in both representations.
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When there exists an extension to ρ(1,2,3) there will
also be a maximal entropy extension by concavity of the
entropy. It seems however that even in that case the
maximal entropy extension will in general not saturate
the SSA to an equality.

This means that all the relations we derived for the
entropies of Gibbs measures on Z in the classical case
do not extend in general to quantum systems.

So to conclude: what, if any, are the necessary and
sufficient conditions for extension of density matrices.
A solution gets a bottle of good wine and a list of open
problems.

THANK YOU
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