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Let X be a smooth projective variety over Q. The Hodge filtration
gives
Hsling(X((C)anv C) = @ HP(X7 Qq)
pta=i

Let hP9 = dime HP(X, Q9).

(Riemann) If X is an abelian variety of dimension g, then
H(X,0) and H(X, Q') are g-dimensional and the Hodge
filtration (with rational structure) determines X up to isogeny.
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Let H = Hét(X/@,Qp). Gg acts on H'. Grothendieck—Lefschetz:

#X(Fy) = Z(—l)iTr(Frobg, H') for almost all /.

def

Let Zp(1) = Hom(Qp/Zp, p1p== ).
Faltings:

H ®g, Co = P HP(Xgy,, Q%) ®g, Co(—q)
p+q=i

This is GQp—equivariant, so hP9 are determined.

A (= HT weights of H') is the multiset with —q appearing hP-9
times.

X has good reduction at p = H' is crystalline.

If X is an abelian variety, then H! determines X up to isogeny.
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Galois deformations

Let 5 : Gg, — GLa(Fp).
Let X*(p) be

{p: Gg, = GLA(Q,) crystalline of HT weights A|p = p mod m}

» How many connected components does X*(p) have?

» Is X*(5) nonempty?

Let p =Fp(a)

= iy
Note that Fy(a )%

p(b) <= a=b mod p—1.

A=a mod p—1 <= XNF,(a)) # 0 (Qp()) is a lift) in which
case X*(Fp(a)) 2 Zp.
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mod p weights

Definition
A Serre weight is (an isomorphism class of) an irreducible
[Fp-representation of GL,Fp.

If n =1, the Serre weights are a-th powers of St.
St? ~ St «—= a=b mod p—1.

XANFp(a)) # 0 <= St* = St
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Compatibility of weights

Assume that \ is regular, i.e. h?9 <1 for all p, q.
Letn=(n—1,n—2,...,1,0).

A~ alg. rep. V(A —n) of GL,,.

Conjecture

Let p: Gg, — GLn(Fp). 3 a set of Serre weights W(p) such that
XNp) #0 = W(p)NIH(V(A = n)(Fp)) # 0.

The conjecture holds for n = 1: If p = Fp(a), then W(p) = St°.

The conjecture holds for n = 2 using the p-adic Langlands
correspondence of Colmez.
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Theorem (L., Le Hung, Levin, Morra)

If n =3 and p is generic, IW (p) such that

W(p) NIH(V(A —n)(Fp)) # 0 = X*(p) # 0. Moreover, the
converse holds in the potentially diagonalizable case and in the
tamely potentially crystalline case when A = 1.

Theorem (L., Le Hung, Levin)

Let p be semisimple and generic (n is arbitrary). Then AW’ (p)
such that the conjecture (with W’ (p) replacing W(p)) holds in
the tamely potentially crystalline case when A = 7).

What if X is not regular?



