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Cohomology with C-coefficients

Let X be a smooth projective variety over Q. The Hodge filtration
gives

H i
sing(X (C)an,C) ∼=

⊕
p+q=i

Hp(X ,Ωq).

Let hp,q = dimCHp(X ,Ωq).

(Riemann) If X is an abelian variety of dimension g , then
H1(X ,O) and H0(X ,Ω1) are g -dimensional and the Hodge
filtration (with rational structure) determines X up to isogeny.
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Cohomology with Qp-coefficients

Let H i = H i
et(X/Q,Qp). GQ acts on H i . Grothendieck–Lefschetz:

#X (F`) =
∑
i

(−1)iTr(Frob`,H
i ) for almost all `.

Let Zp(1)
def
= Hom(Qp/Zp, µp∞).

Faltings:

H i ⊗Qp Cp
∼=

⊕
p+q=i

Hp(XQp ,Ω
q)⊗Qp Cp(−q)

This is GQp -equivariant, so hp,q are determined.
λ (= HT weights of H i ) is the multiset with −q appearing hp,q

times.
X has good reduction at p =⇒ H i is crystalline.

If X is an abelian variety, then H1 determines X up to isogeny.
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Galois deformations

Let ρ : GQp → GLn(Fp).
Let Xλ(ρ) be

{ρ : GQp → GLn(Qp) crystalline of HT weights λ|ρ = ρ mod m}

I How many connected components does Xλ(ρ) have?

I Is Xλ(ρ) nonempty?

Let ρ = Fp(a) ∼= µ⊗a
p .

Note that Fp(a) ∼= Fp(b) ⇐⇒ a ≡ b mod p − 1.

λ ≡ a mod p − 1 ⇐⇒ Xλ(Fp(a)) 6= ∅ (Qp(λ) is a lift) in which
case Xλ(Fp(a)) ∼= Zp.
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mod p weights

Definition
A Serre weight is (an isomorphism class of) an irreducible
Fp-representation of GLn Fp.

If n = 1, the Serre weights are a-th powers of St.
Sta ∼= Stb ⇐⇒ a ≡ b mod p − 1.

Xλ(Fp(a)) 6= ∅ ⇐⇒ Stλ ∼= Sta.
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Compatibility of weights

Assume that λ is regular, i.e. hp,q ≤ 1 for all p, q.
Let η = (n − 1, n − 2, . . . , 1, 0).
λ alg. rep. V (λ− η) of GLn.

Conjecture

Let ρ : GQp → GLn(Fp). ∃ a set of Serre weights W (ρ) such that
Xλ(ρ) 6= ∅ ⇐⇒ W (ρ) ∩ JH(V (λ− η)(Fp)) 6= ∅.

The conjecture holds for n = 1: If ρ = Fp(a), then W (ρ) = Sta.

The conjecture holds for n = 2 using the p-adic Langlands
correspondence of Colmez.
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Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and ρ is generic, ∃W (ρ) such that
W (ρ) ∩ JH(V (λ− η)(Fp)) 6= ∅ =⇒ Xλ(ρ) 6= ∅. Moreover, the
converse holds in the potentially diagonalizable case and in the
tamely potentially crystalline case when λ = η.

Theorem (L., Le Hung, Levin)

Let ρ be semisimple and generic (n is arbitrary). Then ∃W ?(ρ)
such that the conjecture (with W ?(ρ) replacing W (ρ)) holds in
the tamely potentially crystalline case when λ = η.

What if λ is not regular?
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