Lifting Galois representations

Daniel Le

IAS, 2016

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Let X be a smooth projective variety over \mathbb{Q} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let X be a smooth projective variety over $\mathbb{Q}.$ The Hodge filtration gives

$$H^{i}_{\operatorname{sing}}(X(\mathbb{C})^{\operatorname{an}},\mathbb{C})\cong \bigoplus_{p+q=i} H^{p}(X,\Omega^{q}).$$

Let X be a smooth projective variety over \mathbb{Q} . The Hodge filtration gives

$$H^{i}_{\operatorname{sing}}(X(\mathbb{C})^{\operatorname{an}},\mathbb{C})\cong \bigoplus_{p+q=i} H^{p}(X,\Omega^{q}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q).$

Let X be a smooth projective variety over \mathbb{Q} . The Hodge filtration gives

$$H^{i}_{\operatorname{sing}}(X(\mathbb{C})^{\operatorname{an}},\mathbb{C})\cong \bigoplus_{p+q=i} H^{p}(X,\Omega^{q}).$$

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q)$.

(Riemann) If X is an abelian variety of dimension g, then $H^1(X, \mathcal{O})$ and $H^0(X, \Omega^1)$ are g-dimensional

Let X be a smooth projective variety over \mathbb{Q} . The Hodge filtration gives

$$H^{i}_{\operatorname{sing}}(X(\mathbb{C})^{\operatorname{an}},\mathbb{C})\cong \bigoplus_{p+q=i} H^{p}(X,\Omega^{q}).$$

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q)$.

(Riemann) If X is an abelian variety of dimension g, then $H^1(X, \mathcal{O})$ and $H^0(X, \Omega^1)$ are g-dimensional and the Hodge filtration (with rational structure) determines X up to isogeny.

<ロト (個) (目) (目) (目) (0) (0)</p>

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p).$

Let $H^i = H^i_{\mathrm{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i .

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz: $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ .

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck-Lefschetz: $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ . Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$.

Let
$$H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$$
. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz:
 $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ .
Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$.
Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong igoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

<□ > < @ > < E > < E > E のQ @

Let
$$H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$$
. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz:
 $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ .
Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$.
Faltings:

$$H^i\otimes_{\mathbb{Q}_p}\mathbb{C}_{p}\cong igoplus_{p+q=i} H^p(X_{\mathbb{Q}_p},\Omega^q)\otimes_{\mathbb{Q}_p}\mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$ -equivariant, so $h^{p,q}$ are determined.

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz: $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ . Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$. Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong igoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$ -equivariant, so $h^{p,q}$ are determined. λ (= HT weights of H^i) is the multiset with -q appearing $h^{p,q}$ times.

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz: $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ . Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$. Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong igoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$ -equivariant, so $h^{p,q}$ are determined. λ (= HT weights of H^i) is the multiset with -q appearing $h^{p,q}$ times.

X has good reduction at $p \implies H^i$ is crystalline.

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i . Grothendieck–Lefschetz: $\#X(\mathbb{F}_{\ell}) = \sum_i (-1)^i \text{Tr}(\text{Frob}_{\ell}, H^i)$ for almost all ℓ . Let $\mathbb{Z}_p(1) \stackrel{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$. Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong igoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$ -equivariant, so $h^{p,q}$ are determined. λ (= HT weights of H^i) is the multiset with -q appearing $h^{p,q}$ times.

X has good reduction at $p \implies H^i$ is crystalline.

If X is an abelian variety, then H^1 determines X up to isogeny.

◆□ → < 個 → < Ξ → < Ξ → < Ξ → の < ⊙</p>

Let
$$\overline{\rho}: G_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let
$$\overline{\rho}: G_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$$

Let $X^{\lambda}(\overline{\rho})$ be



$$\begin{array}{l} {\sf Let} \ \overline{\rho}: {\cal G}_{\mathbb{Q}_p} \to {\sf GL}_n(\overline{\mathbb{F}}_p).\\ {\sf Let} \ X^\lambda(\overline{\rho}) \ {\sf be} \end{array}$$

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

Let $\overline{\rho}: G_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$ Let $X^{\lambda}(\overline{\rho})$ be

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

• How many connected components does $X^{\lambda}(\overline{\rho})$ have?

$$\begin{array}{l} {\sf Let} \ \overline{\rho}: {\it G}_{\mathbb{Q}_p} \to {\sf GL}_n(\overline{\mathbb{F}}_p). \\ {\sf Let} \ X^\lambda(\overline{\rho}) \ {\sf be} \end{array}$$

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

How many connected components does X^λ(p̄) have?
 Is X^λ(p̄) nonempty?

$$\begin{array}{l} {\sf Let} \ \overline{\rho}: {\it G}_{\mathbb{Q}_p} \to {\sf GL}_n(\overline{\mathbb{F}}_p). \\ {\sf Let} \ X^\lambda(\overline{\rho}) \ {\sf be} \end{array}$$

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

How many connected components does X^λ(ρ) have?
Is X^λ(ρ) nonempty?

Let $\overline{\rho} = \mathbb{F}_p(a) \cong \mu_p^{\otimes a}$.

Let
$$\overline{
ho}: G_{\mathbb{Q}_p} o \operatorname{GL}_n(\overline{\mathbb{F}}_p).$$

Let $X^{\lambda}(\overline{
ho})$ be

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

How many connected components does X^λ(ρ̄) have?
 Is X^λ(ρ̄) nonempty?

$$\begin{array}{l} {\sf Let} \ \overline{\rho} = \mathbb{F}_p(a) \cong \mu_p^{\otimes a}. \\ {\sf Note \ that} \ \mathbb{F}_p(a) \cong \mathbb{F}_p(b) \ \Longleftrightarrow \ a \equiv b \mod p-1 \end{array}$$

Let
$$\overline{
ho}: \mathcal{G}_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$$

Let $X^{\lambda}(\overline{
ho})$ be

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

How many connected components does X^λ(p̄) have?
 Is X^λ(p̄) nonempty?

Let
$$\overline{\rho} = \mathbb{F}_p(a) \cong \mu_p^{\otimes a}$$
.
Note that $\mathbb{F}_p(a) \cong \mathbb{F}_p(b) \iff a \equiv b \mod p-1$.

$$\lambda\equiv a \mod p-1 \iff X^\lambda(\mathbb{F}_p(a))
eq \emptyset \ (\mathbb{Q}_p(\lambda) ext{ is a lift})$$

Let
$$\overline{
ho}: \mathcal{G}_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$$

Let $X^{\lambda}(\overline{
ho})$ be

 $\{\rho: \mathcal{G}_{\mathbb{Q}_p} \to \mathsf{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \overline{\rho} = \rho \mod \mathfrak{m} \}$

► How many connected components does $X^{\lambda}(\overline{\rho})$ have?

ls
$$X^{\wedge}(\overline{\rho})$$
 nonempty?

$$\begin{array}{l} {\rm Let} \ \overline{\rho} = \mathbb{F}_p(a) \cong \mu_p^{\otimes a}. \\ {\rm Note \ that} \ \mathbb{F}_p(a) \cong \mathbb{F}_p(b) \ \Longleftrightarrow \ a \equiv b \mod p-1 \end{array}$$

 $\lambda \equiv a \mod p - 1 \iff X^{\lambda}(\mathbb{F}_{p}(a)) \neq \emptyset \ (\mathbb{Q}_{p}(\lambda) \text{ is a lift}) \text{ in which} \\ \text{case } X^{\lambda}(\mathbb{F}_{p}(a)) \cong \overline{\mathbb{Z}}_{p}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition

A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$ -representation of $GL_n \mathbb{F}_p$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$ -representation of $GL_n \mathbb{F}_p$.

If n = 1, the Serre weights are *a*-th powers of St.

Definition

A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$ -representation of $GL_n \mathbb{F}_p$.

If n = 1, the Serre weights are *a*-th powers of St. St^{*a*} \cong St^{*b*} \iff $a \equiv b \mod p - 1$.

Definition

A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$ -representation of $GL_n \mathbb{F}_p$.

If n = 1, the Serre weights are *a*-th powers of St. St^{*a*} \cong St^{*b*} \iff $a \equiv b \mod p - 1$.

 $X^{\lambda}(\mathbb{F}_{p}(a)) \neq \emptyset \iff \operatorname{St}^{\lambda} \cong \operatorname{St}^{a}.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p,q.

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p, q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$.

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p,q. Let $\eta = (n-1, n-2, \dots, 1, 0)$. $\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n .

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p,q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$. $\lambda \rightsquigarrow \text{alg. rep. } V(\lambda - \eta) \text{ of } \operatorname{GL}_n$.

Conjecture

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p, q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$. $\lambda \rightsquigarrow \text{alg. rep. } V(\lambda - \eta) \text{ of } GL_n$.

Conjecture

Let $\overline{\rho}: G_{\mathbb{Q}_p} \to \mathrm{GL}_n(\overline{\mathbb{F}}_p).$

Assume that
$$\lambda$$
 is *regular*, i.e. $h^{p,q} \leq 1$ for all p, q .
Let $\eta = (n - 1, n - 2, ..., 1, 0)$.
 $\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n .

Conjecture

Let $\overline{\rho}: G_{\mathbb{Q}_p} \to GL_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\overline{\rho})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p,q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$. $\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n .

Conjecture

Let $\overline{\rho} : G_{\mathbb{Q}_p} \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\overline{\rho})$ such that $X^{\lambda}(\overline{\rho}) \neq \emptyset \iff W(\overline{\rho}) \cap \operatorname{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p, q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$. $\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n .

Conjecture

Let $\overline{\rho} : G_{\mathbb{Q}_p} \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\overline{\rho})$ such that $X^{\lambda}(\overline{\rho}) \neq \emptyset \iff W(\overline{\rho}) \cap \operatorname{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for n = 1: If $\overline{\rho} = \overline{\mathbb{F}}_p(a)$, then $W(\overline{\rho}) = \operatorname{St}^a$.

Assume that λ is *regular*, i.e. $h^{p,q} \leq 1$ for all p, q. Let $\eta = (n - 1, n - 2, ..., 1, 0)$. $\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n .

Conjecture

Let $\overline{\rho} : G_{\mathbb{Q}_p} \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\overline{\rho})$ such that $X^{\lambda}(\overline{\rho}) \neq \emptyset \iff W(\overline{\rho}) \cap \operatorname{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for n = 1: If $\overline{\rho} = \overline{\mathbb{F}}_{\rho}(a)$, then $W(\overline{\rho}) = \mathrm{St}^{a}$.

The conjecture holds for n = 2 using the *p*-adic Langlands correspondence of Colmez.

Theorem (L., Le Hung, Levin, Morra)

Theorem (L., Le Hung, Levin, Morra) If n = 3 and $\overline{\rho}$ is generic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (L., Le Hung, Levin, Morra) If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_{\rho})) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset.$

Theorem (L., Le Hung, Levin, Morra) If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let $\overline{\rho}$ be semisimple and generic (n is arbitrary).

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let $\overline{\rho}$ be semisimple and generic (n is arbitrary). Then $\exists W^{?}(\overline{\rho})$ such that the conjecture (with $W^{?}(\overline{\rho})$ replacing $W(\overline{\rho})$) holds in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin, Morra)

If n = 3 and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that $W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let $\overline{\rho}$ be semisimple and generic (*n* is arbitrary). Then $\exists W^{?}(\overline{\rho})$ such that the conjecture (with $W^{?}(\overline{\rho})$ replacing $W(\overline{\rho})$) holds in the tamely potentially crystalline case when $\lambda = \eta$.

What if λ is not regular?