Lifting Galois representations

Daniel Le

IAS, 2016

Cohomology with \mathbb{C}-coefficients

Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}.

Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$
H_{\text {sing }}^{i}\left(X(\mathbb{C})^{\mathrm{an}}, \mathbb{C}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \Omega^{q}\right)
$$

Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$
H_{\text {sing }}^{i}\left(X(\mathbb{C})^{\mathrm{an}}, \mathbb{C}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \Omega^{q}\right)
$$

Let $h^{p, q}=\operatorname{dim}_{\mathbb{C}} H^{p}\left(X, \Omega^{q}\right)$.

Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$
H_{\text {sing }}^{i}\left(X(\mathbb{C})^{\mathrm{an}}, \mathbb{C}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \Omega^{q}\right)
$$

Let $h^{p, q}=\operatorname{dim}_{\mathbb{C}} H^{p}\left(X, \Omega^{q}\right)$.
(Riemann) If X is an abelian variety of dimension g, then $H^{1}(X, \mathcal{O})$ and $H^{0}\left(X, \Omega^{1}\right)$ are g-dimensional

Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$
H_{\text {sing }}^{i}\left(X(\mathbb{C})^{\mathrm{an}}, \mathbb{C}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \Omega^{q}\right)
$$

Let $h^{p, q}=\operatorname{dim}_{\mathbb{C}} H^{p}\left(X, \Omega^{q}\right)$.
(Riemann) If X is an abelian variety of dimension g, then $H^{1}(X, \mathcal{O})$ and $H^{0}\left(X, \Omega^{1}\right)$ are g-dimensional and the Hodge filtration (with rational structure) determines X up to isogeny.

Cohomology with \mathbb{Q}_{p}-coefficients

Cohomology with \mathbb{Q}_{p}-coefficients

$$
\text { Let } H^{i}=H_{\text {et }}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{\mathrm{p}}\right) .
$$

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\text {et }}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}.

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \mathbb{\mathbb { Q }}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.
Faltings:

$$
H^{i} \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{p+q=i} H^{p}\left(X_{\mathbb{Q}_{p}}, \Omega^{q}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(-q)
$$

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.
Faltings:

$$
H^{i} \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{p+q=i} H^{p}\left(X_{\mathbb{Q}_{p}}, \Omega^{q}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(-q)
$$

This is $G_{\mathbb{Q}_{p}}$-equivariant, so $h^{p, q}$ are determined.

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.
Faltings:

$$
H^{i} \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{p+q=i} H^{p}\left(X_{\mathbb{Q}_{p}}, \Omega^{q}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(-q)
$$

This is $G_{\mathbb{Q}_{p}}$-equivariant, so $h^{p, q}$ are determined.
$\lambda\left(=\mathrm{HT}\right.$ weights of $\left.H^{i}\right)$ is the multiset with $-q$ appearing $h^{p, q}$ times.

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.
Faltings:

$$
H^{i} \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{p+q=i} H^{p}\left(X_{\mathbb{Q}_{p}}, \Omega^{q}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(-q)
$$

This is $G_{\mathbb{Q}_{p}}$-equivariant, so $h^{p, q}$ are determined.
$\lambda\left(=\mathrm{HT}\right.$ weights of $\left.H^{i}\right)$ is the multiset with $-q$ appearing $h^{p, q}$ times.
X has good reduction at $p \Longrightarrow H^{i}$ is crystalline.

Cohomology with \mathbb{Q}_{p}-coefficients

Let $H^{i}=H_{\mathrm{et}}^{i}\left(X_{/ \overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right) . G_{\mathbb{Q}}$ acts on H^{i}. Grothendieck-Lefschetz:

$$
\# X\left(\mathbb{F}_{\ell}\right)=\sum_{i}(-1)^{i} \operatorname{Tr}\left(\operatorname{Frob}_{\ell}, H^{i}\right) \text { for almost all } \ell
$$

Let $\mathbb{Z}_{p}(1) \stackrel{\text { def }}{=} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p^{\infty}}\right)$.
Faltings:

$$
H^{i} \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{p+q=i} H^{p}\left(X_{\mathbb{Q}_{p}}, \Omega^{q}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p}(-q)
$$

This is $G_{\mathbb{Q}_{p}}$-equivariant, so $h^{p, q}$ are determined.
$\lambda\left(=\mathrm{HT}\right.$ weights of $\left.H^{i}\right)$ is the multiset with $-q$ appearing $h^{p, q}$ times.
X has good reduction at $p \Longrightarrow H^{i}$ is crystalline.
If X is an abelian variety, then H^{1} determines X up to isogeny.

Galois deformations

Galois deformations

$$
\text { Let } \bar{\rho}: G_{\mathbb{Q}_{\rho}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right) \text {. }
$$

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?
- Is $X^{\lambda}(\bar{\rho})$ nonempty?

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?
- Is $X^{\lambda}(\bar{\rho})$ nonempty?

Let $\bar{\rho}=\mathbb{F}_{p}(a) \cong \mu_{p}^{\otimes a}$.

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?
- Is $X^{\lambda}(\bar{\rho})$ nonempty?

Let $\bar{\rho}=\mathbb{F}_{p}(a) \cong \mu_{p}^{\otimes a}$.
Note that $\mathbb{F}_{p}(a) \cong \mathbb{F}_{p}(b) \Longleftrightarrow a \equiv b \bmod p-1$.

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?
- Is $X^{\lambda}(\bar{\rho})$ nonempty?

Let $\bar{\rho}=\mathbb{F}_{p}(a) \cong \mu_{p}^{\otimes a}$.
Note that $\mathbb{F}_{p}(a) \cong \mathbb{F}_{p}(b) \Longleftrightarrow a \equiv b \bmod p-1$.
$\lambda \equiv a \bmod p-1 \Longleftrightarrow X^{\lambda}\left(\mathbb{F}_{p}(a)\right) \neq \emptyset\left(\mathbb{Q}_{p}(\lambda)\right.$ is a lift $)$

Galois deformations

Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.
Let $X^{\lambda}(\bar{\rho})$ be
$\left\{\rho: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)\right.$ crystalline of HT weights $\left.\lambda \mid \bar{\rho}=\rho \bmod \mathfrak{m}\right\}$

- How many connected components does $X^{\lambda}(\bar{\rho})$ have?
- Is $X^{\lambda}(\bar{\rho})$ nonempty?

Let $\bar{\rho}=\mathbb{F}_{p}(a) \cong \mu_{p}^{\otimes a}$.
Note that $\mathbb{F}_{p}(a) \cong \mathbb{F}_{p}(b) \Longleftrightarrow a \equiv b \bmod p-1$.
$\lambda \equiv a \bmod p-1 \Longleftrightarrow X^{\lambda}\left(\mathbb{F}_{p}(a)\right) \neq \emptyset\left(\mathbb{Q}_{p}(\lambda)\right.$ is a lift $)$ in which case $X^{\lambda}\left(\mathbb{F}_{p}(a)\right) \cong \overline{\mathbb{Z}}_{p}$.

$\bmod p$ weights

$\bmod p$ weights

Definition
A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_{p}$-representation of $\mathrm{GL}_{n} \mathbb{F}_{p}$.

$\bmod p$ weights

Definition
A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_{p}$-representation of $\mathrm{GL}_{n} \mathbb{F}_{p}$.

If $n=1$, the Serre weights are a-th powers of St .

$\bmod p$ weights

Definition
A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_{p}$-representation of $\mathrm{GL}_{n} \mathbb{F}_{p}$.

If $n=1$, the Serre weights are a-th powers of St .
$\mathrm{St}^{a} \cong \mathrm{St}^{b} \Longleftrightarrow a \equiv b \bmod p-1$.

$\bmod p$ weights

Definition
A Serre weight is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_{p}$-representation of $\mathrm{GL}_{n} \mathbb{F}_{p}$.

If $n=1$, the Serre weights are a-th powers of St . $\mathrm{St}^{a} \cong \mathrm{St}^{b} \Longleftrightarrow a \equiv b \bmod p-1$.
$X^{\lambda}\left(\mathbb{F}_{p}(a)\right) \neq \emptyset \Longleftrightarrow \mathrm{St}^{\lambda} \cong \mathrm{St}^{a}$.

Compatibility of weights

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture
Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture
Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right) . \exists$ a set of Serre weights $W(\bar{\rho})$

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture
Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$. \exists a set of Serre weights $W(\bar{\rho})$ such that $X^{\lambda}(\bar{\rho}) \neq \emptyset \Longleftrightarrow W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset$.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture
Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$. \exists a set of Serre weights $W(\bar{\rho})$ such that $X^{\lambda}(\bar{\rho}) \neq \emptyset \Longleftrightarrow W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset$.

The conjecture holds for $n=1$: If $\bar{\rho}=\overline{\mathbb{F}}_{p}(a)$, then $W(\bar{\rho})=\mathrm{St}^{a}$.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p, q} \leq 1$ for all p, q.
Let $\eta=(n-1, n-2, \ldots, 1,0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda-\eta)$ of GL_{n}.
Conjecture
Let $\bar{\rho}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$. \exists a set of Serre weights $W(\bar{\rho})$ such that $X^{\lambda}(\bar{\rho}) \neq \emptyset \Longleftrightarrow W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset$.

The conjecture holds for $n=1$: If $\bar{\rho}=\overline{\mathbb{F}}_{p}(a)$, then $W(\bar{\rho})=\mathrm{St}^{a}$.

The conjecture holds for $n=2$ using the p-adic Langlands correspondence of Colmez.

Partial results in higher dimensions

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$.

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda=\eta$.

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda=\eta$.

Theorem (L., Le Hung, Levin)

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda=\eta$.

Theorem (L., Le Hung, Levin)
Let $\bar{\rho}$ be semisimple and generic (n is arbitrary).

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda=\eta$.

Theorem (L., Le Hung, Levin)
Let $\bar{\rho}$ be semisimple and generic (n is arbitrary). Then $\exists W^{?}(\bar{\rho})$ such that the conjecture (with $W^{?}(\bar{\rho})$ replacing $W(\bar{\rho})$) holds in the tamely potentially crystalline case when $\lambda=\eta$.

Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n=3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that
$W(\bar{\rho}) \cap \mathrm{JH}\left(V(\lambda-\eta)\left(\mathbb{F}_{p}\right)\right) \neq \emptyset \Longrightarrow X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda=\eta$.

Theorem (L., Le Hung, Levin)
Let $\bar{\rho}$ be semisimple and generic (n is arbitrary). Then $\exists W^{?}(\bar{\rho})$ such that the conjecture (with $W^{?}(\bar{\rho})$ replacing $W(\bar{\rho})$) holds in the tamely potentially crystalline case when $\lambda=\eta$.

What if λ is not regular?

