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INTRODUCTION

Universality conjecture for disordered quantum systems:

A disordered quantum systems with sufficient complexity exhibits

one of the following two behaviors:

A) Localized evectors, lack of transport, and Poisson local spectral

statistics (strong disorder)

B) Delocalization, quantum diffusion and random matrix (RMT)

local statistics (weak disorder).

At first sight, localization is surprising (Anderson). Still, mathe-

matically it is much more accessible (Fröhlich-Spencer, Aizenman-

Molchanov, Minami, ...).
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Two popular models to study the dichotomy

(1) Random Schrödinger operators: in lattice box Λ := [1, L]d ∩ Zd

In d = 1 it corresponds to a narrow band matrix with i.i.d. diagonal:

H = −∆ +
∑
x
vx =


v1 1
1 v2 1

1 .. . 1
1 vL−1 1

1 vL


Follows behavior (A) [Localization, Poisson]
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(2) Wigner random matrices:

H = (Hxy), H = H∗ EHxy = 0.

entries are identically distributed and independent up to symmetry.

H models a mean-field hopping mechanism with random quantum

transition rates. No spatial structure (dim is irrelevant or d = 0).

Follows behavior (B) [Delocalization, RMT]

Random band matrices: intermediate model that interpolates be-

tween (1) and (2).

They can be used to probe the transition between (A) and (B).

They also model quantum diffusion (today’s focus)
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Random band matrices (RBM)

Λ := [1, L]d ∩ Zd lattice box represents the configuration space.

H = (Hxy)x,y∈Λ, H = H∗ EHxy = 0.

Entries are independent but no longer identically distributed. Vari-
ance is given by a band profile f (even function,

∫
Rd f = 1)

sxy := E|Hxy|2 =
1

W d
f

(|x− y|
W

)

Key parameter: Band width W ∈ [1, L] (range of interaction).

Nontrivial spatial structure like RS, but technically more accessible
[Disertori, Pinson, Spencer, Zirnbauer, Shcherbina, Schenker...]

Normalization: Level spacing around energy E is

∆ =
1

Ld%
, % =

1

2π

√
4− E2
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Linear statistics of eigenvalues in disordered systems

Y
η
φ (E) :=

∑
j

φη(λj − E), with φη(e) := η−1φ(e/η),

Eigenvalue density at energy E on scale η (smoothed by testfn φ)

Question: Joint statistics of Y ηφ (E1), Y ηφ (E2), . . .

Microscopic scale: η ∼∆: Poisson vs. RMT (GUE, GOE)

Macroscopic scale: η ∼ 1: No universality, model dependent

Mesoscopic scale: ∆� η � 1: Universalities with a phase transition.

Special physical motivation: fluctuation of conductance comes (partly)
from the fluctuation of the number of states in a mesoscopic window
around the Fermi level E [Thouless]
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The correlations of Y ηφ (E1), Y ηφ (E2), . . . , Y ηφ (Ek) are equivalent to the
truncated correlation functions smoothed on scale η, e.g.〈
Y
η
φ (E−

ω

2
) ; Y ηφ (E+

ω

2
)
〉

=
∫∫

φη(x−E+
ω

2
)φη(y−E−

ω

2
)p(2)(x, y)dxdy

E.g. for GUE, if the sine-kernel held on any scale, we had

∼
∫
|e−ω|≤η

(
sin e/∆

e/∆

)2
de ∼

1

ω2
if ∆� η � ω � 1 (∗)

Looks easy, by extrapolation: For GUE, (*) was indeed proved by
Boutet de Monvel and Khorunzhy [1999]. However:

• Asymptotics (∗) does not hold for general delocalized systems: the
sine-kernel fails on mesoscopic scale. Instead: Altshuler-Shklovskii
formulas (1986 in physics, now we proved it at least for RBM).

• Sine kernel in (∗) may fail to predict the subleading term – New
observation, contradicting to several physics predictions
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Mesoscopic phase transition occurs at the Thouless energy

η0 = (time for diffusion to reach the boundary)−1 =
diff coeff

L2

For RBM: η0 ∼W2/L2 [E-Knowles, 2011]

Altshuler-Shklovskii (AS) formulas

(1) In the diffusion regime, η � η0

VarY η ∼ (η/η0)d/2 (d = 1,2,3)

〈
Y
η
φ (E −

ω

2
) ; Y ηφ (E +

ω

2
)
〉
∼ ωd/2−2 (d = 1,3)

(2) In the mean field regime, η � η0 , the same holds with d = 0.

• Compare with Poisson: Var [ ηY η] ∼ [ηY η]. Predicts the Ander-
son transition in d = 1 at ` ∼W2 via the crossover at η ∼W−2.

• d = 2: critical case, leading term vanishes. Subleading terms?
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Theorem (Mesoscopic Universality for RBM) [E-Knowles, 2013].

Suppose diffusive regime η � η0 =
(
W
L

)2
, and assume η � W−d/3.

Away from the spectral edges, we have for the density correlator〈
Y
η
φ1

(E1) ; Y ηφ2
(E2)

〉
〈
Y
η
φ1

(E1)
〉 〈
Y
η
φ2

(E2)
〉 =

1

(LW )d
Θη
φ1,φ2

(E1, E2)
(

1 +O(W−ε)
)
,

where Θ(E1, E2) is an explicit formula, depending only on the band
profile f but independent of the distribution of the matrix elements.

• The technical bound η � W−d/3 is needed for the box band
profile. For general f we need η >W−%d with some % > 0.

• Θ = “one-loop diagrams after self-energy renormalization”.

• Leading term is a higher order effect (cancellation in correlation)
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Computation of the leading term Θ (for ω � η)

++ + + + =...

Self-energy renormalization of a single propagator

Leading term:

One-loop diagram

with two interparticle

and two intraparticle ladders

• = traces in 〈Tr ImG ; Tr ImG〉

Interparticle ladders summed up as a geometric series:

Θ ≈
1

βL2d
ReTr

S

(1− ei(E1−E2)S)2
∗ φη1(E1) ∗ φη2(E2)

(β = 1,2 depending on the symmetry)
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In F-space, with ω := E2−E1 and f̂(q) ≈ 1− q ·Dq+O(q4) for q ≈ 0,

1

L2d
Re Tr

S

(1− ei(E1−E2)S)2
≈

1

(LW )d
Re

∫
Rd

f̂(q)

(1− ei(E1−E2)f̂(q))2
dq

≈
1

(LW )d
Re

∫
Rd

1 +O(q2)

(iω + q ·Dq)2
dq

≈
1

(LW )d
1√

detD
· ωd/2−2 ·Re

∫
Rd

dx

(i+ x2)2︸ ︷︷ ︸
=:Kd

with K1 < 0, K2 = 0, K3 > 0.

d = 4: Log-divergence

d > 5: Main part comes from |q| & 1; it depends on the details of f .

d = 2: Expand f̂ up to fourth order and get

Θ ∼
Q− 1

β(LW )d

(
0 · ω−1 + | logω|

)
with a coefficient Q :=

∫
|D−1/2x|4f(x)dx
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Weak localization correction in d = 2

Prediction [Kravtsov-Lerner, 1995]:

Θ ∼
1

(LW )d
·

W−2ω−1 if β = 1

W−4ω−1 if β = 2

arises from the “two-loop” (figure-eight, or Hikami boxes) diagrams.

= + +

Hikami box

where

Main claim: There is a cancellation among these three diagrams.

Our rigorous result (comes from the first diag., no cancellation)

Θ ∼
1

(LW )d
· | logω|
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Mesoscopic correlations for Wigner matrices

Density-density correlator and its F.transform (called form factor)

RE(s) :=

〈
Y
η
φ (E − s

2∆) ; Y ηφ (E + s
2∆)

〉
〈
Y
η
φ (E − s

2∆)
〉 〈
Y
η
φ (E + s

2∆)
〉, K(τ) :=

∫
e−iτsR(s)ds

Wigner-Dyson statistics predicts (with Hikami correction )

R(s) =
1

(is)2β
·

1 + 1
is + . . .

1
K(τ) =

2τ − 2τ2 + . . . if β = 1

τ if β = 2

Theorem [E-Knowles, 2013] For L× L (Bernoulli) Wigner matrices

in the regime ω � η > L−1/2 we have

R(s) =
1

(is)2β

[
1+

(Lη)2

s2
+
s2

L2
. . .+

L

s2
·δ1,β+. . .

]
(s := Lω � L1/2)

Blue: corrections to the usual one-loop diagram

Red: Uncancelled term from the Hikami box.
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R(s)
(WD)

=
1

(is)2

[
1 +

1

is
+ . . .

]
, R(s)

(Thm)
=

1

(is)2

[
1 +

L

s2
+ . . .

]
There are at least three “folkore” physics arguments for (WD):

(1) Diagrammatic resolvent perturbation [Kravtsov, Lerner etc.]
(2) Semiclassical periodic orbit theory [Müller, Haake etc.]
(3) Sigma-model calculations [Efetov, Altland etc]

(1) and (2) are potentially unstable for s � L (exponentially many
diagrams/periodic orbits). But: they reproduce WD for s ∼ O(1)
[“worst case”] =⇒ “no doubt” about their applicability through the
whole mesoscopic range 1� s� L. Generalizations to higher order.

(1) and (2) rely on the same figure-eight diagram (Hikami box)
albeit with a very different interpretation

(3) is exact for s = 0 and deteriorates as s gets larger. Seems to
break down once s & L1/2. [joint with A. Altland, in prep.]
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Culprit: The first diagram in

the Hikami box that is larger

than the other two, so there is

no cancellation for s� L1/2.

x x

z

z z

z

yy

Power counting:

Each interparticle ladder = 1
L(1 + eiω + e2iω + . . .) ∼ 1

iLω = 1
is

Each interparticle ladder = 1
L (strong oscillation)

4 interparticle ladders: (is)−4 and 3 different vertex labels: L3

Total size R(s) ∼ L−2 · L3(is)−4 ∼ L/s4

Other diagrams in the Hikami term have an intraparticle ladder:

L−2
(
L3 1

L

1

s4
+ L2 1

L

1

s3
+ L

1

L

1

s2

)
�

L

s4
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Further results

• Joint law of the mesoscopic densities (Y ηφ1
(E1), . . . Y ηφk

(Ek)) is

asymptotically Gaussian with covariance Θη
φi,φj

(Ei, Ej).

For Ei = E, the covariance is the Ḣα scalar product, α = 1
2 −

d
2

• Critical band matrix in d = 1: Sxy ∼ |x− y|−2 behaves as d = 2.

• At criticality, for the number of states N (I) in I, we prove

Var N (I) ∼W−d EN (I)

– Asymptotic independence of N (I), N (I ′) if I ∩ I ′.

– Coeff. W−d (compressibility) is predicted by [Chalker-Kravtsov-
Lerner] and is in accordance with multifractality exponents.
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• Generalized hermitian RBM with complex variances:

E|Hxy|2 = W−df(u), u =
x− y
W

EH2
xy = W−df(u)(1− h(u))eig(u)

where the real functions f ≥ 0, 0 ≤ h ≤ 1 are even and g is odd.

Crossover from β = 1 (g = h = 0) to β = 2 is determined by

σ := inf
q

∫
Rd

(x · q − g(x))2f(x)dx+
∫
h(x)f(x)dx

(σ = 0 means trivial phase and h = 0, i.e. E|Hxy|2 = EH2
xy)
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Some ideas about the proof

Y
η
φ (E) = Tr φη(H − E) = Tr

∫ ∞
0

φ̂(ηt)eitEe−itH

Step 1. Chebyshev-Fourier expansion

e−itH =
∞∑
n=0

an(t)H(n)

in terms of non-backtracking powers [Feldheim-Sodin]

H
(n)
x0xn =

∑
xj 6=xj+2

Hx0x1Hx1x2 . . . Hxn−1xn

• More stable than Taylor,
∑
|an(t)|2 = 1

• Algebraic self-energy renormalization

• Exact only for |Hxy| = 1, estimates otherwise.
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Step 2. Subladder resummation with oscillations, even in the regime

where the sum is smaller than the summands. Random walk with

phases. Unlike in our quantum diffusion work, here the phase can-

cellations need to be computed exactly since AS formula itself arises

from a higher order term.

Resummation of ladders yields the skeleton of a graph
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Step 3. Exponentially many error terms: classification of all graphs

according to their size vs. complexity. Bound the number of labels

in skeletons: 2/3 rule

x

y z

y z

x x

x x

Ladder: each label may occur

only twice. Number of labels

may be n (= no. of red lines)

Skeleton: each label occurs at

least three times. There are at

most 2n/3 labels.

Step 4. Going from η � W−d/3 to η � W−d/2 (to reach the pre-

sumed optimal scale) requires to distinguish between inter/intraparticle

ladders. This improves the previous 2/3-rule. Phases eliminate our

previous “critical pairing” that saturated the 2/3-rule.
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SUMMARY

• Proof of the AS formulas for RBM: mesoscopic universality

• Rigorous weak localization corrections at criticality differ from
previous physics predictions.

• New subleading term in the form factor for (Bernoulli) Wigner
matrices on larger scales η � L−1/2 (s� L1/2).

• Physics predictions based upon Hikami boxes (diagrammatic or
semiclassical orbit theory) are incorrect for larger scales. It seems
more accurate for small scales despite that many more diagrams
are neglected. How come?
Threshold η � L−1/2 for σ-model calculations.

• Open problem: similar analysis for random Schrödinger?
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