Mandelbrot Cascades and their uses

Antti Kupiainen

joint work with J. Barral, M. Nikula, E. Saksman, C. Webb

IAS November 4 2013

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Random multifractal measures

Mandelbrot Cascades are a class of **random** measures on \mathbb{R}^n with non-trivial **multifractal** properties.

Cascade measure is a Borel measure $\mu(dx) = \mu(dx; \omega)$ on $x \in \mathbb{R}^n$, depending on $\omega \in \Omega$, a probability space.

 μ has nontrivial scaling properties: for a ball B_r

$$\mathbb{E} \ \mu(B_r)^{p} \sim r^{\alpha(p)}$$
 as $r \to 0$

うして 山田 マイボマ エリア しょうくしゃ

with $\alpha(p)$ a quadratic polynomial.

Gibbs measures

A one parameter family of cascade measures is given by

$${}^{\prime }\mu _{eta }(dx)=e^{-eta \phi (x)}dx$$
 "

 $\beta \in [0, \infty)$ "inverse temperature".

 $\phi(\mathbf{x}) = \phi(\mathbf{x}, \omega)$ is a logarithmically correlated random field

$$\mathbb{E} \ \phi(x)\phi(x') \sim \log rac{1}{|x-x'|} \quad ext{as} \ |x-x'| o 0$$

Proper definition requires a limiting process: μ_{β} is **not** continuous w.r.t. Lebesgue measure.

In 2d $\phi(x)$ is (a version) of the **Gaussian Free Field**, in 1d the 1/f noise.

うして 山田 マイボマ エリア しょうくしゃ

Phase transition

These measures exhibit a **phase transition**: $\exists \beta_c$ s.t.

- ▶ For $\beta \leq \beta_c$, μ_β is continuous, singular w.r.t. Lebesgue
- For $\beta > \beta_c$, μ_β is atomic

They provide simple models of **freezing transition** believed to occur in (spin) **glasses**.

They have also been used to shed light on

- The KPZ relation between dimensions of fractals in Euclidean and random geometry or more conjecturally critical exponents on regular and random surfaces (Duplantier and Sheffield)
- Random fractal plane curves via conformal welding (Astala, Jones, A.K. and Saksman; Sheffield)

$\beta < \beta_{\rm C}$

Rhodes and Vargas (2013)

$\beta > \beta_{\rm C}$

Rhodes and Vargas (2013)

Log correlated fields

Def. Logarithmically correlated random field ϕ in \mathbb{R}^d :

$$\mathbb{E}\phi(x)\phi(x') = \log|x-x'|^{-1} + g(x,y)$$

with g continuous.

- 2d free field with covariance $(-\Delta + 1)^{-1}$
- 1/f noise $x \in [0, 1], \alpha_n, \beta_n$ i.i.d. N(0, 1):

$$\phi(x) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (\alpha_n \cos 2\pi n x + \beta_n \sin 2\pi n x)$$

$$\mathbb{E}\phi(x)\phi(x') = \log |z - z'|^{-1}, \quad z = e^{2\pi i x}$$

うして 山田 マイボマ エリア しょうくしゃ

Decomposition to scales

Log correlated fields may be decomposed in scales

$$\phi(\mathbf{x}) = \sum_{n=0}^{\infty} \phi_n(\mathbf{x})$$

• ϕ_n independent, fluctuations at scale 2^{-n}

$$\mathbb{E} \phi_n(x)\phi_n(x') = g_n(2^n x, 2^n x')$$

• $g_n(x, y)$ smooth, fast decay in |x - y|

Define also a regularized field with short distance cutoff 2^{-N}

$$\phi_{\leq N}(x) := \sum_{n=0}^{N} \phi_n(x)$$

Hierarchical field

Let \mathcal{D} be the set of dyadic intervals $I \subset [0, 1]$ Let $\{V_I\}_{I \in \mathcal{D}}$ be i.i.d.~ N(0, 1) and set

$$\phi(\mathbf{x}) = \sum_{l \ni \mathbf{x}} V_l = \sum_{n=0}^{\infty} \phi_n(\mathbf{x})$$

where $\phi_n(x) = V_l$ for the unique *I* s.t. $|I| = 2^{-n}$ and $x \in I$. Then

$$\mathbb{E}\phi(x)\phi(x') = \sum_{l \ni x, x'} 1 = 1 + \log_2 d(x, x')^{-1}$$

d(x, x') length of shortest dyadic interval $I \ni x, x'$

Binary trees

Dyadic intervals in $[0, 1] \leftrightarrow$ binary trees $\Sigma = \bigcup_{N=0}^{\infty} \Sigma_N$

 $\Sigma_{\textit{N}} = \{0,1\}^{\textit{N}}$ lists edges (ancestors) of level N

 $\sigma = \sigma_0 \sigma_1 \dots \sigma_{n-1} \leftrightarrow \text{interval} |I_{\sigma}| = 2^{-n}$

Directed polymer and branching random walk

- On each edge σ of the tree random weights V_{σ}
- The cutoff 2^{-N} field $\phi_{\leq N}(x)$ is constant $\equiv \phi_{\leq N}(\sigma)$ on the interval corresponding to $\sigma = \sigma_0 \sigma_1 \dots \sigma_N$:

$$\phi_{\leq N}(\sigma) = V_{\sigma_0} + V_{\sigma_0\sigma_1} + \dots + V_{\sigma_0\sigma_1\dots\sigma_N}$$

• Think of $\phi_{\leq N}(\sigma)$ as the **energy** of the **directed polymer** i.e. a path on the tree of length *N* from the root to σ

• We can also think of $\phi_{\leq N}(\sigma)$ as a branching random walk: at time *N* there are 2^{*N*} particles σ at positions $\phi_{< N}(\sigma)$

Multiplicative chaos

Let

$$\mu_{\beta,N}(dx) := e^{-\beta \phi_{\leq N}(x)} dx$$

Kahane's multiplicative chaos is the random measure

$$\nu_{\beta} = \lim_{N \to \infty} z_N \mu_{\beta, N}$$

whenever the limit exists for a (deterministic) constant z_N .

Density of $\mu_{\beta,N}$ is a **product** of independent random variables

$$e^{-\beta\phi_{\leq N}(x)} = \prod_{n=0}^{N} e^{-\beta\phi_n(x)}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For hierarchical field this measure is the **Mandelbrot cascade** (1973)

It is the **Gibbs measure** of the directed polymer (Derrida-Spohn 1986):

 $\mathbb{P}(\text{path}) \propto e^{-\beta \phi_{\leq N}(\sigma)}$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~

Martingale

Let \mathcal{F}_N be the σ -algebra generated by $\{\phi_n\}_{n \leq N}$. Since $\phi_{\leq N}(x) = \phi_N(x) + \phi_{\leq N-1}(x)$ $\mathbb{E}(e^{-\beta\phi_{\leq N}(x)} | \mathcal{F}_{N-1}) = (\mathbb{E}e^{-\beta\phi_N(x)})e^{-\beta\phi_{\leq N-1}(x)}$

Normalizing the measure as

$$u_{eta,\mathbf{N}} := rac{oldsymbol{e}^{-eta\phi_{\leq \mathbf{N}}(\mathbf{x})}}{\mathbb{E}oldsymbol{e}^{-eta\phi_{\leq \mathbf{N}}(\mathbf{x})}} d\mathbf{x}$$

(i.e. Wick ordering) we obtain

$$\mathbb{E}(\nu_{\beta,N} \mid \mathcal{F}_{N-1}) = \nu_{\beta,N-1}.$$

In particular total mass

$$M_{\mathcal{N}} := \nu_{\beta,\mathcal{N}}([0,1])$$

is a martingale:

$$\mathbb{E}(M_N \mid \mathcal{F}_{N-1}) = M_{N-1}, \quad \mathbb{E}M_N = 1.$$

- M_N is a positive martingale \implies it converges a.s. to $M \ge 0$. To show M > 0 need uniform integrability, e.g. that $\mathbb{E}M_N^p$ stays bounded for some p > 1.
- Kahane (1985) showed there exists a critical value β_c so that M_N is bounded in L^p for some p > 1 if and only if $\beta < \beta_c$.

In **hierarchical model** this is very easy to see using the tree structure.

Hierarchical Recursion relation

$$M_N \cong \frac{1}{2} e^{-\beta V - \frac{1}{2}\beta^2} (M_{N-1}^{(1)} + M_{N-1}^{(2)})$$

with $V \cong N(0, 1)$, $M_{N-1}^{(i)}$ independent.

Uniform Integrability

$$\begin{split} M_N &\cong \frac{1}{2} e^{-\beta V - \frac{1}{2}\beta^2} (M_{N-1}^{(1)} + M_{N-1}^{(2)}) \\ \text{Let } p > 1. \text{ Using } (a+b)^p \geq a^p + b^p \text{ get} \\ & \mathbb{E} M_N^p \geq (\frac{1}{2})^p e^{\frac{1}{2}(p^2 - p)\beta^2} 2\mathbb{E} \ M_{N-1}^p \end{split}$$

Thus, if M_N converges in L^p then necessarily

$$(\frac{1}{2})^{p-1}e^{\frac{1}{2}(p^2-p)\beta^2} \le 1$$
 i.e. $\beta^2 \le (2\log 2)/p$

and so, if $\beta \ge \sqrt{2 \log 2}$, M_N can not converge in any L^p , p>1. Converse is not much harder.

Also, the argument extends to Kahane's log correlated chaos.

Phase transition

Kahane: $\exists \beta_c$

- M > 0 almost surely for $\beta < \beta_c$
- M = 0 almost surely for $\beta \ge \beta_c$

Moreover $\lim_{N\to\infty} \nu_{\beta,N} = \nu_{\beta}$ almost surely and

• $\nu_{\beta} \neq 0$, (singular) continuous for $\beta < \beta_{c}$

•
$$\nu_{\beta} = 0$$
 for $\beta \geq \beta_{c}$

• We have also $M \in L^p(\Omega)$ for $p < (\beta_c/\beta)^2$ and

 $\mathbb{E}\nu(I)^{p} \sim C|I|^{\phi(p)}$

(日本本語を本面を本面を入口を)

with $\phi(p) = p - (\frac{\beta}{\beta_c})^2 (p - p^2)$ Is it possible to obtain a nontrivial measure ν_β for $\beta \ge \beta_c$? Is it continuous? Atomic?

Liouville model

Find z_N s.t. the random variable

$$z_N \int_0^1 e^{-\beta \phi_{\leq N}(x)} dx$$

converges or, equivalently that its Laplace transform, i.e. the partition function of the "Liouville model"

$$F(\lambda, N) := \mathbb{E} e^{-\lambda z_N \int_0^1 e^{-eta \phi \leq N(x)} dx}$$

converges for all $\lambda \ge 0$ and is nontrivial.

We saw that for $\beta < \beta_c$ Wick ordering

$$z_N = 1/\mathbb{E}e^{-\beta\phi_{\leq N}(x)} = e^{-\frac{1}{2}\beta^2\log 2^N} = e^{-\frac{\log 2}{2}\beta^2 N}$$

works. (also, Hoegh-Krohn (1971): $\beta < \beta_c/\sqrt{2}$)

Hierarchical Recursion relation

Consider the total mass of $2^N e^{-\beta \phi \le N(x)} dx$ i.e. the partition function of the directed polymer

$$Z_{N} = \sum_{\sigma \in \Sigma_{N}} e^{-eta \phi_{\leq N}(\sigma)}.$$

It satisfies the recursion

$$Z_N \stackrel{d}{=} e^{-\beta V} (Z_{N-1}^{(1)} + Z_{N-1}^{(2)}),$$

Look at Laplace transform of Z_N in the variable $\lambda = e^{-\beta y}$, $y \in (-\infty, \infty)$:

$$G_N(y) := \mathbb{E}e^{-e^{-eta y}Z_N}$$

For $\beta < \beta_c$ we saw $2^{-N}e^{-\beta^2 N}Z_N$ converges i.e.

$$G_N(y+c_\beta N)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has a limit as $N \to \infty$ if $c_{\beta} = \frac{1}{2}\beta + \log 2/\beta$.

Recursion relation

imply

$$G_N(y) := \mathbb{E}e^{-e^{-eta Y}Z_N}, \ \ Z_N \stackrel{d}{=} e^{-eta V}(Z_{N-1}^{(1)} + Z_{N-1}^{(2)})$$

$$G_{N+1}(y) = \mathbb{E}(\exp(-e^{-\beta(y+V)}(Z_N^{(1)} + Z_N^{(2)})))$$

= $\int \rho(v) E(\exp(-e^{-\beta(y+v)}Z_N))^2 dv$
= $\int \rho(v) G_N(y+v)^2 dv.$

 $\rho(\mathbf{v})$ density of V. Continuum limit $N \to \infty$ by iteration, initial data

$$G_0(y) = \exp(-e^{-eta y})
ightarrow \left\{ egin{array}{cc} 0 & ext{if } y
ightarrow -\infty \ 1 & ext{if } y
ightarrow \infty \end{array}
ight.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Traveling wave

$$G_{N+1}(y) = \int \rho(v) G_N(y+v)^2 dv.$$

- $G_N \equiv 0$ is a linearly stable solution
- $G_N \equiv 1$ is a linearly unstable solution
- $G_N(y) = w_c(y cN)$ traveling wave solutions

Given an initial datum G_0 , G_N tends to a traveling wave with speed $c(\beta)$ selected by asymptotics of of G_0 at ∞ i.e. by the parameter β .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Indeed, our recursion is finite time version of the Fischer-Kolmogorov PDE.

Asymptotics

Recall

$$G_N(x) = \mathbb{E} \exp(-e^{-\beta y}Z_N)$$

Following Bramson's analysis for the PDE (1983) one gets

Theorem (C.Webb 2011)

$$\lim_{N\to\infty}G_N(y+m_{\beta,N})\to g(y)$$

with $(\beta_c = \sqrt{2 \log 2})$ $m_{\beta,N} = \begin{cases} \beta N & \text{if } \beta < \beta_c \\ \beta_c N - \frac{1}{2\beta_c} \log N & \text{if } \beta = \beta_c \\ \beta_c N - \frac{3}{2\beta_c} \log N & \text{if } \beta > \beta_c \end{cases}$

Freezing: g(y) is **independent** of β for $\beta \ge \beta_c$ Transition from **typical** to **extreme** configurations dominating the measure.

Convergence of the total mass

This gives the desired normalization since as $N \rightarrow \infty$:

$$\mathbb{E} \; \exp(-e^{-eta(y+m_{eta,N})}Z_N) = G_N(y+m_{eta,N}) o g(y)$$

Hence

$$e^{-\beta m_{\beta,N}}Z_N \to z_\beta$$
 as $N \to \infty$

in distribution. In particular at the critical point this becomes

$$N^{rac{1}{2}}\int_{0}^{1}rac{oldsymbol{e}^{-eta\phi\leq N(x)}}{\mathbb{E}oldsymbol{e}^{-eta\phi\leq N(x)}}dx
ightarrow Z_{eta c}$$

うして 山田 マイボマ エリア しょうくしゃ

i.e. the martingale is renormalized by $N^{\frac{1}{2}}$.

Similar results by Aïdekon & Shi, Madaule (2012).

Critical point and low temperature

Consequences of $N^{\frac{1}{2}}$ (J. Barral, A.K, M. Nikula, E. Saksman, C. Webb):

- $\nu_{\beta c}$ is a.s. continuous, Hausdorff dimension zero
- ► Logarithmic modulus of continuity: for $\gamma < \frac{1}{2}$, almost surely

$$u_{eta_{c}}(I) \leq C(\omega) |\log |I||^{-\gamma}$$

Consequence of freezing (Barral, Rhodes, Vargas):

• ν_{β} purely atomic for $\beta > \beta_c$.

Law of the low temperature measures

Recall the (renormalized) total mass has the law

$$\mathbb{E} \exp(-e^{-eta \mathbf{y}} z_{eta}) = g(\mathbf{y}) \ \forall eta \geq eta_c.$$

Put $t = e^{-\beta y}$. Then $t^{\frac{\beta c}{\beta}} = e^{-\beta_c y}$ and thus $\mathbb{E} \exp(-tz_{\beta}) = \mathbb{E} \exp(-t^{\frac{\beta c}{\beta}} z_{\beta_c}) \quad \forall \beta \ge \beta_c.$

Let for $\alpha \in (0, 1)$ $L_{\alpha}(s)$, $s \geq 0$, be the stable Lévy process

$$\mathbb{E} e^{-tL_{lpha}(s)} = e^{-st^{lpha}}$$

independent on z_{β_c} . Then

$$z_{\beta} \stackrel{d}{=} L_{\frac{\beta_c}{\beta}}(z_{\beta_c})$$

Law of the low temperature measures

Extends to measures (Barral, Rhodes and Vargas):

$$\nu_{\beta}([0,t]) \stackrel{d}{=} L_{\frac{\beta_{c}}{\beta}}(\nu_{\beta_{c}}([0,t])) \quad \text{for all } t \in [0,1]$$

 $L_{\frac{\beta c}{\beta}}$ pure jump process $\implies \nu_{\beta}, \beta > \beta_{c}$, **a.s. purely atomic**. The critical measure determines the low temperature one.

うしん 山田 ・山田・山田・山田・

Exponential of the Free field

In multiplicative chaos the renormalization group becomes non-local. However much can be done using convexity and the fact that the covariances of cascade and chaos are comparable.

• $\beta < \beta_c$: Martingale normalization gives nontrivial limit (Kahane, Bacry & Muzy)

• $\beta = \beta_c$: $N^{\frac{1}{2}} \times$ martingale normalization gives continuous measure (Duplantier, Rhodes, Sheffield, Vargas) of zero dimension (Barral, A.K., Nikula, Saksman, Webb).

• $\beta > \beta_c$: Normalization, freezing, atomicity (Madaule, Rhodes and Vargas)

• $\beta = \infty$ Let M_N be the maximum of $\phi_{\leq N}(x)$. Then $m_N - \mathbb{E}m_N$ converges in distribution (Bolthausen, Bramson, Zeitouni, Ding)

Random Geometry: KPZ

KPZ formula relates Hausdorff dimension of fractals in the Euclidean metric and their dimension in a random metric. Define on [0, 1] random metric

$$\rho_{\beta}(\boldsymbol{x},\boldsymbol{y}) = \nu_{\beta}([\boldsymbol{x},\boldsymbol{y}])$$

Let K ⊂ [0, 1]

- ζ_0 Hausdorff dimension of K w.r.t. Euclidean metric
- ζ_{β} Hausdorff dimension of K w.r.t. random metric ρ_{β}

Then

For
$$\beta \leq \beta_c$$
, $\zeta_0 = \zeta + (\frac{\beta}{\beta_c})^2 \zeta(1-\zeta)$

• For
$$\beta > \beta_c$$
, $\zeta_\beta = \frac{\beta_c}{\beta} \zeta_{\beta_c}$

Duplantier and Sheffield, Benjamini and Schramm: $\beta < \beta_c$

Random Curves and Surfaces

Conformally invariant random plane curves

- Glueing discs with the random metric ν_β produces random curves, loop version of SLE_{κ(β)}, κ(β) < 4 if β < β_c (Astala, Jones, A.K. Saksman; Sheffield).
- How about $\beta \geq \beta_c$?

Random surfaces

- Riemannian metric $e^{-\beta\phi_N(z)}(dz)^2$ on a domain or S^2 .
- Do we get as $N \to \infty$ a random metric space \mathcal{M}_{β} ?
- What is the Hausdorff dimension of \mathcal{M}_{β} ? ($\stackrel{?}{=}$ 4 for $\beta = 8/3$)?
- Is it a scaling limit of random triangulations weighted with Potts or O(N) models?

Critical random band matrices

Critical random band matrices

$$\mathbb{E}|H_{ij}|^2 = (1 + |i - j|/b)^{-2}$$

Inverse participation rates

$$P_q = \sum_i |\psi_i|^q$$

expected to scale with volume as

$$P_q \propto N^{- au(q)}$$

with (localized) 0 < $\tau(q)$ < q-1 (extended). Let

$$H_{ij}(n) := H_{ij}\mathbf{1}_{|i-j| \le n}$$

For *b* small (small off-diagonal terms) Levitov derived a renormalization group equation for $P_q(n)$:

$$P_q(n+1) \stackrel{d}{=} \xi P_q^{(1)}(n) + (1-\xi)P_q^{(2)}(n)$$

 ξ certain random variable on [0, 1].

Freezing transition

Mirlin and Evers used this to compute

$$\mathbb{E} P_q(N) \sim N^{- ilde{ au}(q)}$$

with

$$ilde{ au}(q) = rac{2\Gamma(q-1)}{\sqrt{\pi}\Gamma(q-rac{1}{2})}$$

Moreover, studying the tail of the pdf of P_q they concluded a transition at $q^* = 2.405..$:

$$au(\boldsymbol{q}) = ilde{ au}(\boldsymbol{q}), \ \ \boldsymbol{q} \leq \boldsymbol{q}^*, \ \ au(\boldsymbol{q}) = lpha \boldsymbol{q}, \ \ \boldsymbol{q} \geq \boldsymbol{q}^*$$

Looks like a freezing transition as in cascade with logarithmic corrections at $q \ge q^*$ (Fyodorov).

Real challenge is to justify the RG!

Characteristic polynomial

Characteristic polynomial of $N \times N$ unitary matrix

$$p_N(x) := \det(1 - e^{-2\pi i x} U_N)$$

where $x \in [0, 1]$, Then

$$\log |p_N(x)| = -\frac{1}{2} \sum_{n=1}^{\infty} (e^{2\pi i n x} \operatorname{tr} U_N^n + e^{-2\pi i n x} \operatorname{tr} U_N^{-n})$$

Diaconis and Shahshahani: if U_N is CUE then for any M

$$\{\sqrt{n}\operatorname{tr} U_N^n\}_{n\leq M} \to \{\frac{1}{\sqrt{2}}(a_n+ib_n)\}_{n\leq M} \text{ as } N\to\infty$$

with a_n, b_n i.i.d. N(0, 1). Thus, formally

$$-\sqrt{2}\log|p_N(x)|
ightarrow \sum_{n=1}^\infty rac{1}{\sqrt{n}}(a_n\cos 2\pi nx + b_n\sin 2\pi nx)$$

the 1/f noise.

Characteristic polynomial

Does the limit

$$\lim_{N\to\infty} z_N |p_N(x)|^\beta dx = \nu_\beta(dx)$$

うして 山田 マイボマ エリア しょうくしゃ

exist? Can it be realized as a martingale in N? (Bourgade, Hughes, Nikeghbali, Yor, showed for fixed x)

Does it exhibit a freezing transition?

Applications to ζ -function: (Fyodorov and Keating)

Conformal Welding

Conformal welding gives a correspondence between: **Closed curves** in $\hat{\mathbb{C}} \leftrightarrow$ **Homeomorphisms** $\phi : S^1 \rightarrow S^1$

Jordan curve $\Gamma \subset \hat{\mathbb{C}}$ splits plane $\hat{\mathbb{C}}$ to inside *R* and outside *R*^c. Riemann mappings

 $f_+: \mathbb{D} \to R$ and $f_-: \mathbb{D}^c \to R^c$

 f_- and f_+ extend continuously to $S^1 = \partial \mathbb{D} = \partial \mathbb{D}^c \implies$

 $\phi = (f_+)^{-1} \circ f_- : S^1 \to S^1$ Homeomorphism

Welding problem: invert this:

Given $\phi : S^1 \to S^1$, find Γ and f_{\pm} .

Continuity

Continuity follows from

$$\nu_{\beta_c}(I_{\sigma}) \stackrel{d}{=} e^{-\beta_c \phi_{\leq N}(\sigma)} Z_{\beta_c},$$

for
$$\sigma \in \Sigma_n$$
 and $n^{rac{1}{2}} \sum_{\sigma \in \Sigma_n} e^{-\beta_c \phi_{\leq N}(\sigma)} o z_{\beta_c}$

and a tail estimate for $z_{\beta c}$.

Proof of KPZ

For the upper bound need to control 1-point functions

$$\mathbb{E}\left(
ho_{eta}(\mathbf{x},\mathbf{y})
ight)^{\mathbf{s}}\sim|\mathbf{x}-\mathbf{y}|^{\phi(\mathbf{s})}$$

where the multi-fractal exponent is explicit:

$$\phi(s) = s - (rac{eta}{eta_c})^2 (s - s^2)$$

For the lower bound need to estimate the 2-point function

$$\mathbb{E}\left(d\nu_{\beta}(\boldsymbol{x})d\nu_{\beta}(\boldsymbol{y})\right)$$

using hierarchical structure and scale invariance.

In low temperatures the Levy process induces a natural scaling.

うして 山田 マイボマ エリア しょうくしゃ