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Random multifractal measures

Mandelbrot Cascades are a class of random measures on Rn

with non-trivial multifractal properties.

Cascade measure is a Borel measure µ(dx) = µ(dx ;ω) on
x ∈ Rn, depending on ω ∈ Ω, a probability space.

µ has nontrivial scaling properties: for a ball Br

E µ(Br )p ∼ rα(p) as r → 0

with α(p) a quadratic polynomial.



Gibbs measures

A one parameter family of cascade measures is given by

”µβ(dx) = e−βφ(x)dx ”

β ∈ [0,∞) "inverse temperature".

φ(x) = φ(x , ω) is a logarithmically correlated random field

E φ(x)φ(x ′) ∼ log
1

|x − x ′|
as |x − x ′| → 0

Proper definition requires a limiting process: µβ is not
continuous w.r.t. Lebesgue measure.

In 2d φ(x) is (a version) of the Gaussian Free Field, in 1d the
1/f noise.



Phase transition

These measures exhibit a phase transition: ∃βc s.t.
I For β ≤ βc , µβ is continuous, singular w.r.t. Lebesgue
I For β > βc , µβ is atomic

They provide simple models of freezing transition believed to
occur in (spin) glasses.

They have also been used to shed light on
I The KPZ relation between dimensions of fractals in

Euclidean and random geometry or more conjecturally
critical exponents on regular and random surfaces
(Duplantier and Sheffield)

I Random fractal plane curves via conformal welding
(Astala, Jones, A.K. and Saksman; Sheffield)



β < βc

Rhodes and Vargas (2013)



β > βc

Rhodes and Vargas (2013)



Log correlated fields

Def. Logarithmically correlated random field φ in Rd :

Eφ(x)φ(x ′) = log |x − x ′|−1 + g(x , y)

with g continuous.
I 2d free field with covariance (−∆ + 1)−1

I 1/f noise x ∈ [0,1], αn, βn i.i.d. N(0,1):

φ(x) =
∞∑

n=1

1√
n

(αn cos 2πnx + βn sin 2πnx)

Eφ(x)φ(x ′) = log |z − z ′|−1, z = e2πix



Decomposition to scales

Log correlated fields may be decomposed in scales

φ(x) =
∞∑

n=0

φn(x)

I φn independent, fluctuations at scale 2−n

E φn(x)φn(x ′) = gn(2nx ,2nx ′)

I gn(x , y) smooth, fast decay in |x − y |

Define also a regularized field with short distance cutoff 2−N

φ≤N(x) :=
N∑

n=0

φn(x)



Hierarchical field

Let D be the set of dyadic intervals I ⊂ [0,1]

Let {VI}I∈D be i.i.d.∼ N(0,1) and set

φ(x) =
∑
I3x

VI =
∞∑

n=0

φn(x)

where φn(x) = VI for the unique I s.t. |I| = 2−n and x ∈ I. Then

Eφ(x)φ(x ′) =
∑

I3x ,x ′
1 = 1 + log2 d(x , x ′)−1

d(x , x ′) length of shortest dyadic interval I 3 x , x ′



Binary trees
Dyadic intervals in [0,1]↔ binary trees Σ = ∪∞N=0ΣN

ΣN = {0,1}N lists edges (ancestors) of level N

σ = σ0σ1 . . . σn−1 ↔ interval |Iσ| = 2−n



Directed polymer and branching random walk

• On each edge σ of the tree random weights Vσ

• The cutoff 2−N field φ≤N(x) is constant ≡ φ≤N(σ) on the
interval corresponding to σ = σ0σ1 . . . σN :

φ≤N(σ) = Vσ0 + Vσ0σ1 + · · ·+ Vσ0σ1...σN

• Think of φ≤N(σ) as the energy of the directed polymer i.e. a
path on the tree of length N from the root to σ

•We can also think of φ≤N(σ) as a branching random walk:
at time N there are 2N particles σ at positions φ≤N(σ)



Multiplicative chaos

Let
µβ,N(dx) := e−βφ≤N (x)dx

Kahane’s multiplicative chaos is the random measure

νβ = lim
N→∞

zNµβ,N

whenever the limit exists for a (deterministic) constant zN .

Density of µβ,N is a product of independent random variables

e−βφ≤N (x) =
N∏

n=0

e−βφn(x)



Mandelbrot cascade

For hierarchical field this measure is the Mandelbrot cascade
(1973)

It is the Gibbs measure of the directed polymer
(Derrida-Spohn 1986):

P(path) ∝ e−βφ≤N (σ)



Martingale
Let FN be the σ-algebra generated by {φn}n≤N .
Since φ≤N(x) = φN(x) + φ≤N−1(x)

E(e−βφ≤N (x) | FN−1) = (Ee−βφN (x))e−βφ≤N−1(x)

Normalizing the measure as

νβ,N :=
e−βφ≤N (x)

Ee−βφ≤N (x)
dx

(i.e. Wick ordering) we obtain

E(νβ,N | FN−1) = νβ,N−1.

In particular total mass

MN := νβ,N([0,1])

is a martingale:

E(MN | FN−1) = MN−1, EMN = 1.



Uniform Integrability

MN is a positive martingale =⇒ it converges a.s. to M ≥ 0.

To show M > 0 need uniform integrability, e.g. that EMp
N stays

bounded for some p > 1.

Kahane (1985) showed there exists a critical value βc so that
MN is bounded in Lp for some p > 1 if and only if β < βc .

In hierarchical model this is very easy to see using the tree
structure.



Hierarchical Recursion relation

MN
∼= 1

2 e−βV− 1
2 β

2
(M(1)

N−1 + M(2)
N−1)

with V ∼= N(0,1), M(i)
N−1 independent.



Uniform Integrability

MN
∼= 1

2 e−βV− 1
2 β

2
(M(1)

N−1 + M(2)
N−1)

Let p > 1. Using (a + b)p ≥ ap + bp get

EMp
N ≥ (1

2 )pe
1
2 (p2−p)β2

2E Mp
N−1

Thus, if MN converges in Lp then necessarily

(1
2 )p−1e

1
2 (p2−p)β2

≤ 1 i.e. β2 ≤ (2 log 2)/p

and so, if β ≥
√

2 log 2, MN can not converge in any Lp , p>1.

Converse is not much harder.

Also, the argument extends to Kahane’s log correlated chaos.



Phase transition

Kahane: ∃βc

I M > 0 almost surely for β < βc

I M = 0 almost surely for β ≥ βc

Moreover limN→∞ νβ,N = νβ almost surely and
I νβ 6= 0, (singular) continuous for β < βc

I νβ = 0 for β ≥ βc

I We have also M ∈ Lp(Ω) for p < (βc/β)2 and

Eν(I)p ∼ C|I|φ(p)

with φ(p) = p − ( ββc
)2(p − p2)

Is it possible to obtain a nontrivial measure νβ for β ≥ βc?

Is it continuous? Atomic?



Liouville model

Find zN s.t. the random variable

zN

∫ 1

0
e−βφ≤N (x)dx

converges or, equivalently that its Laplace transform, i.e. the
partition function of the "Liouville model"

F (λ,N) := E e−λzN
∫ 1

0 e−βφ≤N (x)dx

converges for all λ ≥ 0 and is nontrivial.

We saw that for β < βc Wick ordering

zN = 1/Ee−βφ≤N (x) = e−
1
2 β

2 log 2N
= e−

log 2
2 β2N

works. (also, Hoegh-Krohn (1971): β < βc/
√

2)



Hierarchical Recursion relation
Consider the total mass of 2Ne−βφ≤N (x)dx i.e. the partition
function of the directed polymer

ZN =
∑
σ∈ΣN

e−βφ≤N (σ).

It satisfies the recursion

ZN
d
= e−βV (Z (1)

N−1 + Z (2)
N−1),

Look at Laplace transform of ZN in the variable λ = e−βy ,
y ∈ (−∞,∞):

GN(y) := Ee−e−βy ZN

For β < βc we saw 2−Ne−β
2NZN converges i.e.

GN(y + cβN)

has a limit as N →∞ if cβ = 1
2β + log 2/β.



Recursion relation

GN(y) := Ee−e−βy ZN , ZN
d
= e−βV (Z (1)

N−1 + Z (2)
N−1)

imply

GN+1(y) = E(exp(−e−β(y+V )(Z (1)
N + Z (2)

N )))

=

∫
ρ(v)E(exp(−e−β(y+v)ZN))2dv

=

∫
ρ(v)GN(y + v)2dv .

ρ(v) density of V . Continuum limit N →∞ by iteration, initial
data

G0(y) = exp(−e−βy )→
{

0 if y → −∞
1 if y →∞



Traveling wave

GN+1(y) =

∫
ρ(v)GN(y + v)2dv .

I GN ≡ 0 is a linearly stable solution
I GN ≡ 1 is a linearly unstable solution
I GN(y) = wc(y − cN) traveling wave solutions

Given an initial datum G0, GN tends to a traveling wave with
speed c(β) selected by asymptotics of of G0 at∞ i.e. by the
parameter β.

Indeed, our recursion is finite time version of the
Fischer-Kolmogorov PDE.



Asymptotics
Recall

GN(x) = E exp(−e−βyZN)

Following Bramson’s analysis for the PDE (1983) one gets

Theorem (C.Webb 2011)

lim
N→∞

GN(y + mβ,N)→ g(y)

with (βc =
√

2 log 2)

mβ,N =


βN if β < βc

βcN − 1
2βc

log N if β = βc

βcN − 3
2βc

log N if β > βc

Freezing: g(y) is independent of β for β ≥ βc

Transition from typical to extreme configurations dominating
the measure.



Convergence of the total mass

This gives the desired normalization since as N →∞:

E exp(−e−β(y+mβ,N )ZN) = GN(y + mβ,N)→ g(y)

Hence
e−βmβ,N ZN → zβ as N →∞

in distribution. In particular at the critical point this becomes

N
1
2

∫ 1

0

e−βφ≤N (x)

Ee−βφ≤N (x)
dx → zβc

i.e. the martingale is renormalized by N
1
2 .

Similar results by Aïdekon & Shi, Madaule (2012).



Critical point and low temperature

Consequences of N
1
2 (J. Barral, A.K, M. Nikula, E. Saksman, C.

Webb):
I νβc is a.s. continuous, Hausdorff dimension zero
I Logarithmic modulus of continuity: for γ < 1

2 , almost surely

νβc (I) ≤ C(ω)| log |I||−γ

Consequence of freezing (Barral, Rhodes, Vargas):
I νβ purely atomic for β > βc .



Law of the low temperature measures

Recall the (renormalized) total mass has the law

Eexp(−e−βyzβ) = g(y) ∀β ≥ βc .

Put t = e−βy . Then t
βc
β = e−βcy and thus

Eexp(−tzβ) = Eexp(−t
βc
β zβc ) ∀β ≥ βc .

Let for α ∈ (0,1) Lα(s), s ≥ 0, be the stable Lévy process

Ee−tLα(s) = e−stα .

independent on zβc . Then

zβ
d
= Lβc

β
(zβc )



Law of the low temperature measures

Extends to measures (Barral, Rhodes and Vargas):

νβ([0, t ]) d
= Lβc

β
(νβc ([0, t ])) for all t ∈ [0,1]

Lβc
β

pure jump process =⇒ νβ, β > βc , a.s. purely atomic.

The critical measure determines the low temperature one.



Exponential of the Free field

In multiplicative chaos the renormalization group becomes
non-local. However much can be done using convexity and the
fact that the covariances of cascade and chaos are comparable.

• β < βc : Martingale normalization gives nontrivial limit
(Kahane, Bacry & Muzy)

• β = βc : N
1
2× martingale normalization gives continuous

measure (Duplantier, Rhodes, Sheffield, Vargas) of zero
dimension (Barral, A.K., Nikula, Saksman,Webb).

• β > βc : Normalization, freezing, atomicity (Madaule, Rhodes
and Vargas)

• β =∞ Let MN be the maximum of φ≤N(x). Then mN − EmN
converges in distribution (Bolthausen, Bramson, Zeitouni, Ding)



Random Geometry: KPZ

KPZ formula relates Hausdorff dimension of fractals in the
Euclidean metric and their dimension in a random metric.

Define on [0,1] random metric

ρβ(x , y) = νβ([x , y ])

I Let K ⊂ [0,1]

I ζ0 Hausdorff dimension of K w.r.t. Euclidean metric
I ζβ Hausdorff dimension of K w.r.t. random metric ρβ

Then
I For β ≤ βc , ζ0 = ζ + ( ββc

)2ζ(1− ζ)

I For β > βc , ζβ = βc
β ζβc

Duplantier and Sheffield, Benjamini and Schramm: β < βc



Random Curves and Surfaces

Conformally invariant random plane curves
I Glueing discs with the random metric νβ produces random

curves, loop version of SLEκ(β), κ(β) < 4 if β < βc (Astala,
Jones, A.K. Saksman; Sheffield).

I How about β ≥ βc?

Random surfaces

I Riemannian metric e−βφN (z)(dz)2 on a domain or S2.
I Do we get as N →∞ a random metric spaceMβ?

I What is the Hausdorff dimension ofMβ? ( ?
= 4 for

β = 8/3)?
I Is it a scaling limit of random triangulations weighted with

Potts or O(N) models?



Critical random band matrices
Critical random band matrices

E|Hij |2 = (1 + |i − j |/b)−2

Inverse participation rates

Pq =
∑

i

|ψi |q

expected to scale with volume as

Pq ∝ N−τ(q)

with (localized) 0 < τ(q) < q − 1 (extended). Let

Hij(n) := Hij1|i−j|≤n

For b small (small off-diagonal terms) Levitov derived a
renormalization group equation for Pq(n):

Pq(n + 1)
d
= ξP(1)

q (n) + (1− ξ)P(2)
q (n)

ξ certain random variable on [0,1].



Freezing transition

Mirlin and Evers used this to compute

EPq(N) ∼ N−τ̃(q)

with
τ̃(q) =

2Γ(q − 1)√
πΓ(q − 1

2 )

Moreover, studying the tail of the pdf of Pq they concluded a
transition at q∗ = 2.405..:

τ(q) = τ̃(q), q ≤ q∗, τ(q) = αq, q ≥ q∗

Looks like a freezing transition as in cascade with logarithmic
corrections at q ≥ q∗ (Fyodorov).

Real challenge is to justify the RG!



Characteristic polynomial
Characteristic polynomial of N × N unitary matrix

pN(x) := det(1− e−2πixUN)

where x ∈ [0,1], Then

log |pN(x)| = −1
2

∞∑
n=1

(e2πinx trUn
N + e−2πinx trU−n

N )

Diaconis and Shahshahani: if UN is CUE then for any M

{
√

ntrUn
N }n≤M → { 1√

2
(an + ibn)}n≤M as N →∞

with an,bn i.i.d. N(0,1). Thus, formally

−
√

2 log |pN(x)| →
∞∑

n=1

1√
n

(an cos 2πnx + bn sin 2πnx)

the 1/f noise.



Characteristic polynomial

Does the limit

lim
N→∞

zN |pN(x)|βdx = νβ(dx)

exist? Can it be realized as a martingale in N? (Bourgade,
Hughes, Nikeghbali, Yor, showed for fixed x)

Does it exhibit a freezing transition?

Applications to ζ-function: (Fyodorov and Keating)



Conformal Welding

Conformal welding gives a correspondence between:

Closed curves in Ĉ ↔ Homeomorphisms φ : S1 → S1

Jordan curve Γ ⊂ Ĉ splits plane Ĉ to inside R and outside Rc .
Riemann mappings

f+ : D→ R and f− : Dc → Rc

f− and f+ extend continuously to S1 = ∂D = ∂Dc =⇒

φ = (f+)−1 ◦ f− : S1 → S1 Homeomorphism

Welding problem: invert this:

Given φ : S1 → S1, find Γ and f±.



Continuity

Continuity follows from

νβc (Iσ)
d
= e−βcφ≤N (σ)zβc ,

for σ ∈ Σn and
n

1
2
∑
σ∈Σn

e−βcφ≤N (σ) → zβc

and a tail estimate for zβc .



Proof of KPZ

For the upper bound need to control 1-point functions

E (ρβ(x , y))s ∼ |x − y |φ(s)

where the multi-fractal exponent is explicit:

φ(s) = s − (
β

βc
)2(s − s2)

For the lower bound need to estimate the 2-point function

E (dνβ(x)dνβ(y))

using hierarchical structure and scale invariance.

In low temperatures the Levy process induces a natural scaling.
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