Mandelbrot Cascades and their uses

Antti Kupiainen

joint work with J. Barral, M. Nikula, E. Saksman, C. Webb

IAS
November 42013

Random multifractal measures

Mandelbrot Cascades are a class of random measures on \mathbb{R}^{n} with non-trivial multifractal properties.
Cascade measure is a Borel measure $\mu(d x)=\mu(d x ; \omega)$ on $x \in \mathbb{R}^{n}$, depending on $\omega \in \Omega$, a probability space.
μ has nontrivial scaling properties: for a ball B_{r}

$$
\mathbb{E} \mu\left(B_{r}\right)^{p} \sim r^{\alpha(p)} \text { as } r \rightarrow 0
$$

with $\alpha(p)$ a quadratic polynomial.

Gibbs measures

A one parameter family of cascade measures is given by

$$
" \mu_{\beta}(d x)=e^{-\beta \phi(x)} d x "
$$

$\beta \in[0, \infty)$ "inverse temperature".
$\phi(x)=\phi(x, \omega)$ is a logarithmically correlated random field

$$
\mathbb{E} \phi(x) \phi\left(x^{\prime}\right) \sim \log \frac{1}{\left|x-x^{\prime}\right|} \quad \text { as }\left|x-x^{\prime}\right| \rightarrow 0
$$

Proper definition requires a limiting process: μ_{β} is not continuous w.r.t. Lebesgue measure.
In $2 \mathrm{~d} \phi(x)$ is (a version) of the Gaussian Free Field, in 1d the $1 / f$ noise.

Phase transition

These measures exhibit a phase transition: $\exists \beta_{c}$ s.t.

- For $\beta \leq \beta_{c}, \mu_{\beta}$ is continuous, singular w.r.t. Lebesgue
- For $\beta>\beta_{c}, \mu_{\beta}$ is atomic

They provide simple models of freezing transition believed to occur in (spin) glasses.

They have also been used to shed light on

- The KPZ relation between dimensions of fractals in Euclidean and random geometry or more conjecturally critical exponents on regular and random surfaces (Duplantier and Sheffield)
- Random fractal plane curves via conformal welding (Astala, Jones, A.K. and Saksman; Sheffield)
$\beta<\beta_{C}$

Rhodes and Vargas (2013)
$\beta>\beta_{c}$

Rhodes and Vargas (2013)

Log correlated fields

Def. Logarithmically correlated random field ϕ in \mathbb{R}^{d} :

$$
\mathbb{E} \phi(x) \phi\left(x^{\prime}\right)=\log \left|x-x^{\prime}\right|^{-1}+g(x, y)
$$

with g continuous.

- 2d free field with covariance $(-\Delta+1)^{-1}$
- $1 / f$ noise $x \in[0,1], \alpha_{n}, \beta_{n}$ i.i.d. $N(0,1)$:

$$
\begin{gathered}
\phi(x)=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(\alpha_{n} \cos 2 \pi n x+\beta_{n} \sin 2 \pi n x\right) \\
\mathbb{E} \phi(x) \phi\left(x^{\prime}\right)=\log \left|z-z^{\prime}\right|^{-1}, \quad z=e^{2 \pi i x}
\end{gathered}
$$

Decomposition to scales

Log correlated fields may be decomposed in scales

$$
\phi(x)=\sum_{n=0}^{\infty} \phi_{n}(x)
$$

- ϕ_{n} independent, fluctuations at scale 2^{-n}

$$
\mathbb{E} \phi_{n}(x) \phi_{n}\left(x^{\prime}\right)=g_{n}\left(2^{n} x, 2^{n} x^{\prime}\right)
$$

- $g_{n}(x, y)$ smooth, fast decay in $|x-y|$

Define also a regularized field with short distance cutoff 2^{-N}

$$
\phi_{\leq N}(x):=\sum_{n=0}^{N} \phi_{n}(x)
$$

Hierarchical field

Let \mathcal{D} be the set of dyadic intervals $I \subset[0,1]$
Let $\left\{V_{l}\right\}_{l \in \mathcal{D}}$ be i.i.d. $\sim N(0,1)$ and set

$$
\phi(x)=\sum_{\ni x} V_{l}=\sum_{n=0}^{\infty} \phi_{n}(x)
$$

where $\phi_{n}(x)=V_{I}$ for the unique I s.t. $|I|=2^{-n}$ and $x \in I$. Then

$$
\mathbb{E} \phi(x) \phi\left(x^{\prime}\right)=\sum_{\nexists x, x^{\prime}} 1=1+\log _{2} d\left(x, x^{\prime}\right)^{-1}
$$

$d\left(x, x^{\prime}\right)$ length of shortest dyadic interval $I \ni x, x^{\prime}$

Binary trees

Dyadic intervals in $[0,1] \leftrightarrow$ binary trees $\Sigma=\cup_{N=0}^{\infty} \Sigma_{N}$
$\Sigma_{N}=\{0,1\}^{N}$ lists edges (ancestors) of level N
$\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{n-1} \leftrightarrow$ interval $\left|I_{\sigma}\right|=2^{-n}$

Directed polymer and branching random walk

- On each edge σ of the tree random weights V_{σ}
- The cutoff 2^{-N} field $\phi_{\leq N}(x)$ is constant $\equiv \phi_{\leq N}(\sigma)$ on the interval corresponding to $\sigma=\sigma_{0} \sigma_{1} \ldots \sigma_{N}$:

$$
\phi_{\leq N}(\sigma)=V_{\sigma_{0}}+V_{\sigma_{0} \sigma_{1}}+\cdots+V_{\sigma_{0} \sigma_{1} \ldots \sigma_{N}}
$$

- Think of $\phi_{\leq N}(\sigma)$ as the energy of the directed polymer i.e. a path on the tree of length N from the root to σ
- We can also think of $\phi_{\leq N}(\sigma)$ as a branching random walk: at time N there are 2^{N} particles σ at positions $\phi_{\leq N}(\sigma)$

Multiplicative chaos

Let

$$
\mu_{\beta, N}(d x):=e^{-\beta \phi_{\leq N}(x)} d x
$$

Kahane's multiplicative chaos is the random measure

$$
\nu_{\beta}=\lim _{N \rightarrow \infty} z_{N} \mu_{\beta, N}
$$

whenever the limit exists for a (deterministic) constant z_{N}.
Density of $\mu_{\beta, N}$ is a product of independent random variables

$$
e^{-\beta \phi_{\leq N}(x)}=\prod_{n=0}^{N} e^{-\beta \phi_{n}(x)}
$$

Mandelbrot cascade

For hierarchical field this measure is the Mandelbrot cascade (1973)

It is the Gibbs measure of the directed polymer
(Derrida-Spohn 1986):

$$
\mathbb{P}(\text { path }) \propto e^{-\beta \phi_{\leq N}(\sigma)}
$$

Martingale

Let \mathcal{F}_{N} be the σ-algebra generated by $\left\{\phi_{n}\right\}_{n \leq N}$.
Since $\phi_{\leq N}(x)=\phi_{N}(x)+\phi_{\leq N-1}(x)$

$$
\mathbb{E}\left(e^{-\beta \phi_{\leq N}(x)} \mid \mathcal{F}_{N-1}\right)=\left(\mathbb{E} e^{-\beta \phi_{N}(x)}\right) e^{-\beta \phi_{\leq N-1}(x)}
$$

Normalizing the measure as

$$
\nu_{\beta, N}:=\frac{e^{-\beta \phi_{\leq N}(x)}}{\mathbb{E} e^{-\beta \phi_{\leq N}(x)}} d x
$$

(i.e. Wick ordering) we obtain

$$
\mathbb{E}\left(\nu_{\beta, N} \mid \mathcal{F}_{N-1}\right)=\nu_{\beta, N-1} .
$$

In particular total mass

$$
M_{N}:=\nu_{\beta, N}([0,1])
$$

is a martingale:

$$
\mathbb{E}\left(M_{N} \mid \mathcal{F}_{N-1}\right)=M_{N-1}, \quad \mathbb{E} M_{N}=1
$$

Uniform Integrability

M_{N} is a positive martingale \Longrightarrow it converges a.s. to $M \geq 0$.
To show $M>0$ need uniform integrability, e.g. that $\mathbb{E} M_{N}^{p}$ stays bounded for some $p>1$.

Kahane (1985) showed there exists a critical value β_{C} so that M_{N} is bounded in L^{p} for some $p>1$ if and only if $\beta<\beta_{c}$. In hierarchical model this is very easy to see using the tree structure.

Hierarchical Recursion relation

$$
M_{N} \cong \frac{1}{2} e^{-\beta V-\frac{1}{2} \beta^{2}}\left(M_{N-1}^{(1)}+M_{N-1}^{(2)}\right)
$$

with $V \cong N(0,1), M_{N-1}^{(i)}$ independent.

Uniform Integrability

$$
M_{N} \cong \frac{1}{2} e^{-\beta V-\frac{1}{2} \beta^{2}}\left(M_{N-1}^{(1)}+M_{N-1}^{(2)}\right)
$$

Let $p>1$. Using $(a+b)^{p} \geq a^{p}+b^{p}$ get

$$
\mathbb{E} M_{N}^{p} \geq\left(\frac{1}{2}\right)^{p} e^{\frac{1}{2}\left(p^{2}-p\right) \beta^{2}} 2 \mathbb{E} M_{N-1}^{p}
$$

Thus, if M_{N} converges in L^{p} then necessarily

$$
\left(\frac{1}{2}\right)^{p-1} e^{\frac{1}{2}\left(p^{2}-p\right) \beta^{2}} \leq 1 \text { i.e. } \beta^{2} \leq(2 \log 2) / p
$$

and so, if $\beta \geq \sqrt{2 \log 2}, M_{N}$ can not converge in any $L^{p}, \mathrm{p}>1$.
Converse is not much harder.
Also, the argument extends to Kahane's log correlated chaos.

Phase transition

Kahane: $\exists \beta_{c}$

- $M>0$ almost surely for $\beta<\beta_{C}$
- $M=0$ almost surely for $\beta \geq \beta_{c}$

Moreover $\lim _{N \rightarrow \infty} \nu_{\beta, N}=\nu_{\beta}$ almost surely and

- $\nu_{\beta} \neq 0$, (singular) continuous for $\beta<\beta_{c}$
- $\nu_{\beta}=0$ for $\beta \geq \beta_{c}$
- We have also $M \in L^{p}(\Omega)$ for $p<\left(\beta_{c} / \beta\right)^{2}$ and

$$
\mathbb{E} \nu(I)^{p} \sim C|I|^{\phi(p)}
$$

with $\phi(p)=p-\left(\frac{\beta}{\beta_{c}}\right)^{2}\left(p-p^{2}\right)$
Is it possible to obtain a nontrivial measure ν_{β} for $\beta \geq \beta_{c}$?
Is it continuous? Atomic?

Liouville model

Find z_{N} s.t. the random variable

$$
z_{N} \int_{0}^{1} e^{-\beta \phi_{\leq N}(x)} d x
$$

converges or, equivalently that its Laplace transform, i.e. the partition function of the "Liouville model"

$$
F(\lambda, N):=\mathbb{E} e^{-\lambda z_{N} \int_{0}^{1} e^{-\beta \phi \leq N(x)} d x}
$$

converges for all $\lambda \geq 0$ and is nontrivial.
We saw that for $\beta<\beta_{c}$ Wick ordering

$$
z_{N}=1 / \mathbb{E} e^{-\beta \phi_{\leq N}(x)}=e^{-\frac{1}{2} \beta^{2} \log 2^{N}}=e^{-\frac{\log 2}{2} \beta^{2} N}
$$

works. (also, Hoegh-Krohn (1971): $\beta<\beta_{c} / \sqrt{2}$)

Hierarchical Recursion relation

Consider the total mass of $2^{N} e^{-\beta \phi_{\leq N}(x)} d x$ i.e. the partition function of the directed polymer

$$
Z_{N}=\sum_{\sigma \in \Sigma_{N}} e^{-\beta \phi_{\leq N}(\sigma)}
$$

It satisfies the recursion

$$
Z_{N} \stackrel{d}{=} e^{-\beta V}\left(Z_{N-1}^{(1)}+Z_{N-1}^{(2)}\right)
$$

Look at Laplace transform of Z_{N} in the variable $\lambda=e^{-\beta y}$, $y \in(-\infty, \infty):$

$$
G_{N}(y):=\mathbb{E} e^{-e^{-\beta y} Z_{N}}
$$

For $\beta<\beta_{c}$ we saw $2^{-N} e^{-\beta^{2} N} Z_{N}$ converges i.e.

$$
G_{N}\left(y+c_{\beta} N\right)
$$

has a limit as $N \rightarrow \infty$ if $c_{\beta}=\frac{1}{2} \beta+\log 2 / \beta$.

Recursion relation

$$
G_{N}(y):=\mathbb{E} e^{-e^{-\beta y} Z_{N}}, \quad Z_{N} \stackrel{d}{=} e^{-\beta V}\left(Z_{N-1}^{(1)}+Z_{N-1}^{(2)}\right)
$$

imply

$$
\begin{aligned}
G_{N+1}(y) & =\mathbb{E}\left(\exp \left(-e^{-\beta(y+v)}\left(Z_{N}^{(1)}+Z_{N}^{(2)}\right)\right)\right) \\
& =\int \rho(v) E\left(\exp \left(-e^{-\beta(y+v)} Z_{N}\right)\right)^{2} d v \\
& =\int \rho(v) G_{N}(y+v)^{2} d v
\end{aligned}
$$

$\rho(v)$ density of V. Continuum limit $N \rightarrow \infty$ by iteration, initial data

$$
G_{0}(y)=\exp \left(-e^{-\beta y}\right) \rightarrow \begin{cases}0 & \text { if } y \rightarrow-\infty \\ 1 & \text { if } y \rightarrow \infty\end{cases}
$$

Traveling wave

$$
G_{N+1}(y)=\int \rho(v) G_{N}(y+v)^{2} d v
$$

- $G_{N} \equiv 0$ is a linearly stable solution
- $G_{N} \equiv 1$ is a linearly unstable solution
- $G_{N}(y)=w_{c}(y-c N)$ traveling wave solutions

Given an initial datum G_{0}, G_{N} tends to a traveling wave with speed $c(\beta)$ selected by asymptotics of of G_{0} at ∞ i.e. by the parameter β.

Indeed, our recursion is finite time version of the Fischer-Kolmogorov PDE.

Asymptotics

Recall

$$
G_{N}(x)=\mathbb{E} \exp \left(-e^{-\beta y} Z_{N}\right)
$$

Following Bramson's analysis for the PDE (1983) one gets
Theorem (C.Webb 2011)

$$
\lim _{N \rightarrow \infty} G_{N}\left(y+m_{\beta, N}\right) \rightarrow g(y)
$$

with $\left(\beta_{c}=\sqrt{2 \log 2}\right)$

$$
m_{\beta, N}= \begin{cases}\beta N & \text { if } \beta<\beta_{c} \\ \beta_{c} N-\frac{1}{2 \beta_{c}} \log N & \text { if } \beta=\beta_{c} \\ \beta_{c} N-\frac{3}{2 \beta_{c}} \log N & \text { if } \beta>\beta_{c}\end{cases}
$$

Freezing: $g(y)$ is independent of β for $\beta \geq \beta_{c}$
Transition from typical to extreme configurations dominating the measure.

Convergence of the total mass

This gives the desired normalization since as $N \rightarrow \infty$:

$$
\mathbb{E} \exp \left(-e^{-\beta\left(y+m_{\beta, N}\right)} Z_{N}\right)=G_{N}\left(y+m_{\beta, N}\right) \rightarrow g(y)
$$

Hence

$$
e^{-\beta m_{\beta, N}} Z_{N} \rightarrow z_{\beta} \text { as } N \rightarrow \infty
$$

in distribution. In particular at the critical point this becomes

$$
N^{\frac{1}{2}} \int_{0}^{1} \frac{e^{-\beta \phi_{\leq N}(x)}}{\mathbb{E} e^{-\beta \phi_{\leq N}(x)}} d x \rightarrow z_{\beta_{c}}
$$

i.e. the martingale is renormalized by $N^{\frac{1}{2}}$.

Similar results by Aïdekon \& Shi, Madaule (2012).

Critical point and low temperature

Consequences of $N^{\frac{1}{2}}$ (J. Barral, A.K, M. Nikula, E. Saksman, C. Webb):

- $\nu_{\beta_{c}}$ is a.s. continuous, Hausdorff dimension zero
- Logarithmic modulus of continuity: for $\gamma<\frac{1}{2}$, almost surely

$$
\nu_{\beta_{c}}(I) \leq\left. C(\omega)|\log | I\right|^{-\gamma}
$$

Consequence of freezing (Barral, Rhodes, Vargas):

- ν_{β} purely atomic for $\beta>\beta_{c}$.

Law of the low temperature measures

Recall the (renormalized) total mass has the law

$$
\mathbb{E} \exp \left(-e^{-\beta y} z_{\beta}\right)=g(y) \forall \beta \geq \beta_{c}
$$

Put $t=e^{-\beta y}$. Then $t^{\frac{\beta_{c}}{\beta}}=e^{-\beta_{c} y}$ and thus

$$
\mathbb{E} \exp \left(-t z_{\beta}\right)=\mathbb{E} \exp \left(-t^{\frac{\beta_{c}}{\beta}} z_{\beta_{c}}\right) \forall \beta \geq \beta_{c} .
$$

Let for $\alpha \in(0,1) L_{\alpha}(s), s \geq 0$, be the stable Lévy process

$$
\mathbb{E} e^{-t L_{\alpha}(s)}=e^{-s t^{\alpha}}
$$

independent on $z_{\beta_{c}}$. Then

$$
z_{\beta} \stackrel{d}{=} L_{\frac{\beta_{c}}{\beta}}\left(z_{\beta_{c}}\right)
$$

Law of the low temperature measures

Extends to measures (Barral, Rhodes and Vargas):

$$
\nu_{\beta}([0, t]) \stackrel{d}{=} L_{\frac{\beta_{c}}{\beta}}\left(\nu_{\beta_{c}}([0, t])\right) \quad \text { for all } t \in[0,1]
$$

$L_{\frac{\beta_{c}}{\beta}}$ pure jump process $\Longrightarrow \nu_{\beta}, \beta>\beta_{c}$, a.s. purely atomic.
The critical measure determines the low temperature one.

Exponential of the Free field

In multiplicative chaos the renormalization group becomes non-local. However much can be done using convexity and the fact that the covariances of cascade and chaos are comparable.

- $\beta<\beta_{c}$: Martingale normalization gives nontrivial limit (Kahane, Bacry \& Muzy)
- $\beta=\beta_{c}: N^{\frac{1}{2}} \times$ martingale normalization gives continuous measure (Duplantier, Rhodes, Sheffield, Vargas) of zero dimension (Barral, A.K., Nikula, Saksman,Webb).
- $\beta>\beta_{c}$: Normalization, freezing, atomicity (Madaule, Rhodes and Vargas)
- $\beta=\infty$ Let M_{N} be the maximum of $\phi_{\leq N}(x)$. Then $m_{N}-\mathbb{E} m_{N}$ converges in distribution (Bolthausen, Bramson, Zeitouni, Ding)

Random Geometry: KPZ

KPZ formula relates Hausdorff dimension of fractals in the Euclidean metric and their dimension in a random metric.

Define on $[0,1]$ random metric

$$
\rho_{\beta}(x, y)=\nu_{\beta}([x, y])
$$

- Let $K \subset[0,1]$
- ζ_{0} Hausdorff dimension of K w.r.t. Euclidean metric
- ζ_{β} Hausdorff dimension of K w.r.t. random metric ρ_{β}

Then

- For $\beta \leq \beta_{c}, \zeta_{0}=\zeta+\left(\frac{\beta}{\beta_{c}}\right)^{2} \zeta(1-\zeta)$
- For $\beta>\beta_{c}, \zeta_{\beta}=\frac{\beta_{c}}{\beta} \zeta_{\beta_{c}}$

Duplantier and Sheffield, Benjamini and Schramm: $\beta<\beta_{c}$

Random Curves and Surfaces

Conformally invariant random plane curves

- Glueing discs with the random metric ν_{β} produces random curves, loop version of $\operatorname{SLE}_{\kappa(\beta)}, \kappa(\beta)<4$ if $\beta<\beta_{c}$ (Astala, Jones, A.K. Saksman; Sheffield).
- How about $\beta \geq \beta_{c}$?

Random surfaces

- Riemannian metric $e^{-\beta \phi_{N}(z)}(d z)^{2}$ on a domain or S^{2}.
- Do we get as $N \rightarrow \infty$ a random metric space \mathcal{M}_{β} ?
- What is the Hausdorff dimension of \mathcal{M}_{β} ? $(?$ $\beta=8 / 3)$?
- Is it a scaling limit of random triangulations weighted with Potts or $O(N)$ models?

Critical random band matrices

Critical random band matrices

$$
\mathbb{E}\left|H_{i j}\right|^{2}=(1+|i-j| / b)^{-2}
$$

Inverse participation rates

$$
P_{q}=\sum_{i}\left|\psi_{i}\right|^{q}
$$

expected to scale with volume as

$$
P_{q} \propto N^{-\tau(q)}
$$

with (localized) $0<\tau(q)<q-1$ (extended). Let

$$
H_{i j}(n):=H_{i j} 1_{|i-j| \leq n}
$$

For b small (small off-diagonal terms) Levitov derived a renormalization group equation for $P_{q}(n)$:

$$
P_{q}(n+1) \stackrel{d}{\stackrel{d}{ }} \xi P_{q}^{(1)}(n)+(1-\xi) P_{q}^{(2)}(n)
$$

ξ certain random variable on $[0,1]$.

Freezing transition

Mirlin and Evers used this to compute

$$
\mathbb{E} P_{q}(N) \sim N^{-\tilde{\tau}(q)}
$$

with

$$
\tilde{\tau}(q)=\frac{2 \Gamma(q-1)}{\sqrt{\pi} \Gamma\left(q-\frac{1}{2}\right)}
$$

Moreover, studying the tail of the pdf of P_{q} they concluded a transition at $q^{*}=2.405 .$. :

$$
\tau(q)=\tilde{\tau}(q), \quad q \leq q^{*}, \quad \tau(q)=\alpha q, \quad q \geq q^{*}
$$

Looks like a freezing transition as in cascade with logarithmic corrections at $q \geq q^{*}$ (Fyodorov).
Real challenge is to justify the RG!

Characteristic polynomial

Characteristic polynomial of $N \times N$ unitary matrix

$$
p_{N}(x):=\operatorname{det}\left(1-e^{-2 \pi i x} U_{N}\right)
$$

where $x \in[0,1]$, Then

$$
\log \left|p_{N}(x)\right|=-\frac{1}{2} \sum_{n=1}^{\infty}\left(e^{2 \pi i n x} \operatorname{tr} U_{N}^{n}+e^{-2 \pi i n x} \operatorname{tr} U_{N}^{-n}\right)
$$

Diaconis and Shahshahani: if U_{N} is CUE then for any M

$$
\left\{\sqrt{n} \operatorname{tr} U_{N}^{n}\right\}_{n \leq M} \rightarrow\left\{\frac{1}{\sqrt{2}}\left(a_{n}+i b_{n}\right)\right\}_{n \leq M} \text { as } N \rightarrow \infty
$$

with a_{n}, b_{n} i.i.d. $N(0,1)$. Thus, formally

$$
-\sqrt{2} \log \left|p_{N}(x)\right| \rightarrow \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x\right)
$$

the $1 / f$ noise.

Characteristic polynomial

Does the limit

$$
\lim _{N \rightarrow \infty} z_{N}\left|p_{N}(x)\right|^{\beta} d x=\nu_{\beta}(d x)
$$

exist? Can it be realized as a martingale in N ? (Bourgade, Hughes, Nikeghbali, Yor, showed for fixed x)
Does it exhibit a freezing transition?
Applications to ζ-function: (Fyodorov and Keating)

Conformal Welding

Conformal welding gives a correspondence between:
Closed curves in $\widehat{\mathbb{C}} \leftrightarrow$ Homeomorphisms $\phi: S^{1} \rightarrow S^{1}$ Jordan curve $\Gamma \subset \widehat{\mathbb{C}}$ splits plane $\widehat{\mathbb{C}}$ to inside R and outside R^{c}. Riemann mappings

$$
f_{+}: \mathbb{D} \rightarrow R \text { and } f_{-}: \mathbb{D}^{c} \rightarrow R^{c}
$$

f_{-}and f_{+}extend continuously to $S^{1}=\partial \mathbb{D}=\partial \mathbb{D}^{c} \Longrightarrow$

$$
\phi=\left(f_{+}\right)^{-1} \circ f_{-}: S^{1} \rightarrow S^{1} \text { Homeomorphism }
$$

Welding problem: invert this: Given $\phi: S^{1} \rightarrow S^{1}$, find Γ and $f_{ \pm}$.

Continuity

Continuity follows from

$$
\nu_{\beta_{c}}\left(I_{\sigma}\right) \stackrel{d}{=} e^{-\beta_{c} \phi_{\leq N}(\sigma)} z_{\beta_{c}}
$$

for $\sigma \in \Sigma_{n}$ and

$$
n^{\frac{1}{2}} \sum_{\sigma \in \Sigma_{n}} e^{-\beta_{c} \phi_{\leq N}(\sigma)} \rightarrow z_{\beta_{c}}
$$

and a tail estimate for $z_{\beta_{c}}$.

Proof of KPZ

For the upper bound need to control 1-point functions

$$
\mathbb{E}\left(\rho_{\beta}(x, y)\right)^{s} \sim|x-y|^{\phi(s)}
$$

where the multi-fractal exponent is explicit:

$$
\phi(s)=s-\left(\frac{\beta}{\beta_{c}}\right)^{2}\left(s-s^{2}\right)
$$

For the lower bound need to estimate the 2-point function

$$
\mathbb{E}\left(d \nu_{\beta}(x) d \nu_{\beta}(y)\right)
$$

using hierarchical structure and scale invariance.
In low temperatures the Levy process induces a natural scaling.

