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Introduction

The theta correspondence between automorphic representations of
groups (H,G) in a reductive dual pair, as well as its local version, has
proved to be a useful tool in the study of such representations.
The basis for this correspondence is the use of theta functions θ(h,g;ϕ)
built from Schwartz functions ϕ, say in some Schrödinger model of the
Weil representation, as integral kernels to transport cuspidal
automorphic functions from one group to the other.
The seesaw identities, Siegel-Weil formula, and the doubling method
then yield criteria for the non-vanishing of such theta lifts in terms of
special values of L-functions and local obstructions.

Stephen Kudla (Toronto) Arithmetic theta series



Introduction

The theta correspondence between automorphic representations of
groups (H,G) in a reductive dual pair, as well as its local version, has
proved to be a useful tool in the study of such representations.
The basis for this correspondence is the use of theta functions θ(h,g;ϕ)
built from Schwartz functions ϕ, say in some Schrödinger model of the
Weil representation, as integral kernels to transport cuspidal
automorphic functions from one group to the other.
The seesaw identities, Siegel-Weil formula, and the doubling method
then yield criteria for the non-vanishing of such theta lifts in terms of
special values of L-functions and local obstructions.

Stephen Kudla (Toronto) Arithmetic theta series



Introduction

The theta correspondence between automorphic representations of
groups (H,G) in a reductive dual pair, as well as its local version, has
proved to be a useful tool in the study of such representations.
The basis for this correspondence is the use of theta functions θ(h,g;ϕ)
built from Schwartz functions ϕ, say in some Schrödinger model of the
Weil representation, as integral kernels to transport cuspidal
automorphic functions from one group to the other.
The seesaw identities, Siegel-Weil formula, and the doubling method
then yield criteria for the non-vanishing of such theta lifts in terms of
special values of L-functions and local obstructions.

Stephen Kudla (Toronto) Arithmetic theta series



Introduction

As a variant of this, when the group G is a classical group O(p,q),
U(p,q) or Sp(p,q), Millson and I constructed theta functions valued in
the deRham complex for the associated locally symmetric manifold,
M = Γ\D.
These ‘geometric’ theta series are closely linked to a certain type of
locally symmetric cycles in M.
The geometric theta series are closed as differential forms and, passing
to cohomology, they give rise to a theta correspondence between
automorphic forms on H and cohomology classes on M.
Such correspondences are the starting point for many applications,
among them the recent striking results of Bergeron-Millson-Moeglin
(2014).
Among other things, they establish new cases of the Hodge conjecture
for certain ball quotients where M is a quasi-projective variety and the
locally symmetric cycles are, in fact, algebraic cycles on M.
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Introduction

For a long time now, I have been pursuing the notion that there should
be another ‘generation’ of theta series, the ‘arithmetic’ theta series.
Very roughly, these arithmetic theta series should arise in the case
where M is a Shimura variety with a regular integral modelM.
The idea is to constructed generating series for classes of certain
‘special cycles’ inM in the arithmetic Chow groups ĈH

r
(M).

The goal is then to show that these series define ĈH
r
(M)-valued

automorphic forms on H.
These arithmetic theta series would then provide an arithmetic theta
correspondence between automorphic forms on H and classes in the
arithmetic Chow groups.
An arithmetic Siegel-Weil formula would then provide a criterion for the
nonvanishing of arithmetic theta lifts in term of values of derivatives of
L-functions and local obstructions.
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Introduction

With this setting as background and motivation, I want to report on the
recent results of a joint project1 with Jan Bruinier, Ben Howard, Michael
Rapoport and Tonghai Yang in which we construct arithmetic theta
series valued in ĈH

1
(M) in the case2 G = U(n − 1,1) for H = U(1,1).

The references are:
Modularity of generating series of divisors on unitary Shimura varieties,
arXiv:1702.07812,
and
Modularity of generating series of divisors on unitary Shimura varieties
II: arithmetic applications.
arXiv:1710.05580.

1Supported by the AIM SQuaRE’s program.
2Actually, G is a slight variant.
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Introduction

These papers build upon the earlier work of several subsets of the
authors and of others, for example:
S. Kudla and M. Rapoport, Special cycles on unitary Shimura varieties
II: Global theory, Crelle 697 (2014), 91–157.
B. Howard, Complex multiplication cycles and Kudla-Rapoport divisors,
Ann. of Math. 176 (2012), 1097–1171.

, Complex multiplication cycles and Kudla-Rapoport divisors II,
Amer. J. Math. 137 (2015), 639–698.
J.H. Bruinier, B. Howard, and T. Yang, Heights of Kudla-Rapoport
divisors and derivatives of L-functions, Invent. Math. 201 (2015), 1–95.
S. Kudla, Another product formula for a Borcherds form, Contemporary
Math. 664 (2016), 261–294.
As I describe the picture, I will not always give precise attributions within
this series.
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The unitary Shimura variety

Here is some notation:

k = imaginary quadratic field with odd discr. −D
W = hermitian space over k of signature (n − 1,1)

W0 = hermitian space over k of signature (1,0)

G = {(g0,g) ∈ GU(W0)× GU(W ) | ν(g0) = ν(g) }
a, a0 = self-dual Ok-lattices in W and W0

K = G(Af ) ∩ ( Ka0 × Ka ), compact open
Sh(G,D)(C) = G(Q)\D ×G(Af )/K , the Shimura variety.

The presence of the ‘extra’ factor coming from W0 is essential in the
definition of the special cycles.
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A modular interpretation

To define the integral model, consider the following moduli problem:
To an Ok-scheme S assign the groupoid of triples (A, ι, ψ) where

A −→ S an abelian scheme of relative dim. n
ι : Ok −→ End(A) an Ok action such that

det(T − ι(α)|Lie (A)) = (T − α)n−1(T − ᾱ) ∈ OS[T ],

ψ : A −→ A∨ a principal polarization such that

ι(α)† = ι(ᾱ). † = Rosati for ψ.

This a not quite good enough at primes dividing the discriminant of k.
To obtain a better model, enhance the data to (A, ι, ψ,FA), where

FA ⊂ Lie (A) = Ok-stable, locally direct OS submodule of rank n − 1

with Ok-acting on FA via Ok −→ OS, and
with Ok-acting on Lie (A)/FA via the conjugate.
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ψ : A −→ A∨ a principal polarization such that

ι(α)† = ι(ᾱ). † = Rosati for ψ.

This a not quite good enough at primes dividing the discriminant of k.
To obtain a better model, enhance the data to (A, ι, ψ,FA), where

FA ⊂ Lie (A) = Ok-stable, locally direct OS submodule of rank n − 1

with Ok-acting on FA via Ok −→ OS, and
with Ok-acting on Lie (A)/FA via the conjugate.

Stephen Kudla (Toronto) Arithmetic theta series



A modular interpretation

The resulting moduli stack3 MKra
(n−1,1) over Spec Ok is regular and flat.

The moduli stackM(1,0) over Spec Ok defined via triples (A0, ι0, ψ0) as
above is already smooth4 over Spec Ok.
If we denote the generic fibers of these stacks by M(n−1,1) and M(1,0),
then

Sh(G,D) ⊂ M(1,0) ×k M(n−1,1)

is an open and closed substack,
characterized by the existence of an isomorphism, for every prime `,

HomOk(T`A0,s,T`As) ' HomOk(a0, a)⊗ Z`

at every geometric point s. This is required to be an isometry for the
natural (Ok)`-hermitian form on the two sides.

3the Krämer model
4Howard (2015)
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A modular interpretation

We obtain our integral model by taking5 the Zariski closure

Exc //

��

SKra //

��

M(1,0) ×MKra
(n−1,1)

��

Sing // SPap //M(1,0) ×M
Pap
(n−1,1)

Sh(G,D)

OO

// M(1,0) ×M(n−1,1)

OO

↖
blowup

←− Zariski closure

HereMPap
(n−1,1) is an intermediate model defined by adding the Pappas

wedge condition rather than the Krämer condition. It has isolated
singular points in fibers over ramified primes. These are blown up to an
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Special divisors in the integral models

The upshot of the previous discussion is that we have nice integral
models

SKra −→ SPap,

related by a blowup.
They both have nice toroidal compactifications

S∗Kra −→ S∗Pap,

with boundary divisors to be discussed in a moment.
In a careful treatment, the two must be carried along since:
S∗Pap is not regular but every vertical Weil divisor meets the boundary.
S∗Kra is regular but Exc does not meet the boundary.
For the moment, we write S = SKra ⊂ S∗Kra = S∗.
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Special divisors in the integral models

For an Ok-scheme S, an S-valued point of S corresponds to a pair
(A0,A) of principally polarized abelian schemes with Ok-action and
some additional equipment.
For such a pair, the Ok-lattice

L(A0,A) = HomOk(A0,A)

has a natural positive definite hermitian form defined by

〈 x1, x2 〉 = x∨2 ◦ x1 ∈ EndOk(A0)

ι−1
0∼−→ Ok,

A0
x1 // A

ψ
��

A∨0

ψ−1
0

OO

A∨.
x∨2
oo

In some sense, the arithmetic theta series is attached to this family of
hermitian spaces.
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Special divisors in the integral models

For m ∈ Z>0, let

Z(m)(S) =

 groupoid of triples (A0,A, x),
(A0,A) ∈ S(S)

x ∈ L(A0,A), with 〈 x , x 〉 = m

 −→ S(S).

The arithmetic special divisors Z(m)’s are Cartier divisors on S.
Conceptually, they are the loci where the abelian variety A is equipped
with an elliptic curve factor A0.
Let Z∗(m) be the Zariski closure of Z(m) in S∗, the toroidal
compactification of S.
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Structure of the compactification

It is now time to say something about the compactification S∗.
Recall that our Shimura variety is

Sh(G,D)(C) = G(Q)\D ×G(Af )/K ,

where
D = negative lines in VR,

and
V = Homk(W0,W ), 〈 x , y 〉 = y∨ ◦ x .

Note that the definition of V , where the extra hermitian space W0 seems
unnecessary, is motivated by the definition of the special cycles where
the role of the ‘auxiliary’ elliptic curve A0 is essential.
The rational boundary components (cusps) of D correspond to
the isotropic k-lines J ⊂ V .
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Structure of the compactification

The cusps of Sh(G,D)(C) are then indexed by pairs Φ = (J,g),
with J ⊂ V an isotropic k-line and g ∈ G(Af ),
modulo a suitable equivalence.
Associated to Φ is a filtration

0 ⊂ J ⊂ J⊥ ⊂ V

and an integral version

0 ⊂ J ∩ gL ⊂ J⊥ ∩ gL ⊂ gL = HomOk(ga0,ga).

The hermitian lattice

LΦ := (gL ∩ J⊥)/gL ∩ J

is then positive definite of rank n − 2.
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Structure of the compactification

The toroidal compactification of Sh(G,D)(C) is then obtained by
blowing up the cusps in the minimal compactification

Sh(G,D)(C)BB ↪→ M(1,0)(C)×MBB
(n−1,0)

to the abelian varieties BΦ(C) of dimension n − 2, where

BΦ = E ⊗Ok LΦ,

for E −→M(1,0) the universal CM-elliptic scheme.
This picture propagates to the integral model.
For the finite isometry group

∆Φ = O×k × U(LΦ),

define the orbifold quotient

S∗(Φ) := ∆Φ\BΦ.
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Structure of the compactification

Then
S∗ = S t

⊔
Φ

mod ∼

S∗(Φ),

where the boundary is a smooth divisor, flat over Ok.

We next augment the divisor Z∗(m) by adding a rational linear
combination of boundary divisors:

Z tot(m) := Z∗(m) + BD(m),

where

BD(m) :=
m

n − 2

∑
Φ

∣∣{x ∈ LΦ | 〈 x , x 〉 = m}
∣∣ · S∗(Φ).
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The generating series

We are almost ready to complete the definition of
the arithmetic theta series

φ̂(τ) = Ẑ tot(0) +
∞∑

m=1

Ẑ tot(m) qm ∈ ĈH
1
Q(S∗).

The remaining issues are:
(1) The addition of the Green functions needed to define classes in the

arithmetic Chow group ĈH
1
Q(S∗), and

(2) the definition of the constant term Ẑ tot(0).

Here recall that classes in ĈH
1
Q(S∗) are given by pairs (Z,gZ) where Z

is a divisor on S∗ and gZ is a Green function on S∗(C) \ Z(C) with

ddcgZ + δZ(C) = [ωZ ], ωZ = a smooth (1,1)-form on S∗(C).

Relations are given by (divψ,− log |ψ|2), for rational functions ψ on S∗.
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φ̂(τ) = Ẑ tot(0) +
∞∑

m=1
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1
Q(S∗) are given by pairs (Z,gZ) where Z

is a divisor on S∗ and gZ is a Green function on S∗(C) \ Z(C) with

ddcgZ + δZ(C) = [ωZ ], ωZ = a smooth (1,1)-form on S∗(C).

Relations are given by (divψ,− log |ψ|2), for rational functions ψ on S∗.

Stephen Kudla (Toronto) Arithmetic theta series



The generating series

To define Z(0), note that
D ↪→ P(VR),

and denote by ωan the pullback to D of the tautological bundle.
Note that this bundle comes with a hermitian metric defined by the
restriction of

− 1
4π

e−γ 〈 , 〉V ,

where γ = −Γ′(1) is Euler’s constant6.
A natural extension of (the inverse of) ωan to S = SKra is defined by

ω−1 = Lie (A0)⊗ Lie (A)/FA.

Moreover, there is a distinguished extension of ω to S∗ uniquely
determined by certain data at the boundary.

6This strange normalization is prevalent for the arithmetic theta series
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The generating series

Finally, the metric on ω extends to a metric with log− log singularities
along the boundary7 of S∗(C) \ S(C), so we obtain a class8

ω̂ = (ω, || · ||) ∈ P̂icQ(S∗) ' ĈH
1
Q(S∗).

Define
Ẑ tot(0) := ω̂−1 + (Exc,− log D) ∈ ĈH

1
Q(S∗).

Also, for m > 0, define

Ẑ tot(m) = (Z tot(m),Θreg(fm)) ∈ ĈH
1
Q(S∗),

where Θreg(fm) is a Green function on S∗(C).

7Brinier-Howard-Yang (2015)
8in the Burgos-Kramer-Kühn extended arithmetic Chow group
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The main theorem

Aside from the detailed definition of the Green functions, we have in
hand the complete definition of the arithmetic theta series

φ̂(τ) = Ẑ tot(0) +
∞∑

m=1

Ẑ tot(m) qm ∈ ĈH
1
Q(S∗)[[q]].

Main Theorem (BHKRY). The formal series φ̂(τ) is a ĈH
1
Q(S∗)-valued

modular form of weight n, level D, and character χ = χn
k.

This means that for any Q-linear function α : ĈH
1
Q(S∗) −→ C, the series∑

m≥0

α
(
Ẑ tot(m) ) qm

is the q-expansion of an element of Mn(D, χ).
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Consequences

As a formal consequence we have:

Corollary. The dimension of the subspace of ĈH
1
Q(S∗) spanned by the

classes Ẑ tot(m), for m ≥ 0 is at most dim Mn(D, χn
k).

Another important consequence is that we can define
an arithmetic theta lift

θ̂ : Sn(Γ0(D), χn
k) −→ ĈH

1
(S∗), f 7→ θ̂(f ) = 〈 φ̂, f 〉Pet.

Various constructions analogous to the more familiar ones involving the
classical theta correspondence, seesaw identities, etc., give rise to
expressions relating height pairings to special values.
I want to give a sketch of what goes into the proof of the main theorem.
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Modularity criterion

The basic idea is to use the ‘duality method’ introduced by Borcherds.
Modularity criterion. For k ≥ 2, and for a formal power series

φ(q) =
∑
m≥0

d(m) qm ∈ C[[q]],

the following are equivalent:
(1) φ(q) is the q-expansion of a modular form9 in M∞k (D, χ).
(2) the relation ∑

m≥0

c(−m) d(m) = 0

for every weakly holomorphic form10

f (τ) =
∑

m�−∞
c(m) qm ∈ M !,∞

2−k (D, χ).

9M∞k (D, χ) = cuspidal outside of ∞.
10M !,∞

2−k (D, χ) = holomorphic outside ∞.
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Modularity criterion

To apply this in our situation, we need to produce relations in ĈH
1
Q(S∗)

of the form ∑
m≥0

c(−m) Ẑ tot(m) = 0,

for every weakly holomorphic form11

f (τ) =
∑

m�−∞
c(m) qm ∈ M !,∞

2−n(D, χ).

Those familiar with the theory of Borcherds forms will recognize that, as
a starting point, we will want to associate to such a weakly
homomorphic form f , with c(−m) ∈ Z for m ≥ 0, a meromorphic section
ψ(f ) of ωk

an on Sh(G,D)(C).
This is the unitary group analogue of the Borcherds lift for SO(n − 2,2).

11holomorphic outside ∞.
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Unitary Borcherds forms

Indeed, we have a morphism of Shimura varieties

j : Sh(G,D)(C) −→ Sh(G̃, D̃)(C)

where G̃ = SO(V ), for the rational quadratic space V with quadratic
form defined by Q(x) = 〈 x , x 〉. Thus, sig(V ) = (2n − 2,2).

For a weakly holomorphic form f ∈ M !,∞
2−n(D, χ), the Borcherds lift

defines a meromorphic modular form ψ̃(f ) on Sh(G̃, D̃)(C).
Let

ψ(f ) := j∗ψ̃(f ).

Of course, such a Borcherds lift could be defined directly for the dual
pair (U(1,1),U(n − 1,1)), but it is more efficient to take advantage of
the extensively developed theory for the dual pair (SL(2),O(2n − 2,2)),
via the seesaw.
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Unitary Borcherds forms

Note that the inequivalent cusps of Γ0(D) are∞r ∼ r
D where r | D.

For a weakly holomorphic form

f (τ) =
∑

m�−∞
c(m) qm ∈ M !,∞

2−n(D, χ),

let cr (0) be its normalized constant term at the cusp∞r .
We can assume that c(−m) for m > 0 and cr (0) all lie in Z.

Theorem A. (1) Suitably normalized, ψ(f ) = j∗ψ̃(f ) is a rational section
of the line bundle ωk on S∗, where k =

∑
r |D cr (0).

(2) The divisor of this section on S∗ is given by

divψ(f ) =
∑
m>0

c(−m)Z tot(m) +
1
2

k ( Exc− div(D)) +
1
2

∑
r |D

cr (0) div(r)

− 1
2

∑
m>0

c(−m)
∑

s∈Sing

∣∣ {x ∈ HomOk(A0,s,As) | 〈 x , x 〉 = m }
∣∣ · Excs.
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Unitary Borcherds forms

Thus, the divisor divψ(f ) involves
(a) the Zariski closure of Z∗(m) of Z(m) in S∗

(b) boundary divisors S∗(Φ) at the various cusps Φ, with mutiplicities∑
m>0

c(−m)
m

n − 2
∣∣{x ∈ LΦ | 〈 x , x 〉 = m}

∣∣
(c) components Excs of the exceptional locus for the blowup
S∗ = S∗Kra −→ S∗Pap ⊃ Sing, with multiplicities∣∣ {x ∈ Ls | 〈 x , x 〉 = m }

∣∣, Ls = HomOk(A0,s,As)

(d) and multiples of the fibers S∗p at ramified primes p | D.
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Green functions

The class of divψ(f ) and of ωk coincide in the Chow group CH1
Q(S∗),

but we still want to include the Green functions.
Following an idea due to Bruinier, consider the space of harmonic
Maass forms:

H∞2−n(D, χ) ⊃ M !,∞
2−n(D, χ).

These have expansions

f (τ) =
∑

m�−∞
c+(m) qm +

∑
m<0

c−(m) Γ(n − 1,4π|m|v) qm,

where τ = u + iv and Γ(s, x) =
∫∞

x e−t ts−1 dt .
For m ∈ Z>0, there is a unique such function fm with

f (τ) = q−m + O(1), as q→ 0.
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Green functions

One can take such forms as inputs in Borcherds regularized theta
integral Θreg. The crucial facts are:
(1) Θreg(fm) is a logarithmic Green function12 on S∗(C) for the divisor
Z tot(m)(C).
Therefore we can define

Ẑ tot(m) = (Z tot(m),Θreg(fm)) ∈ ĈH
1
Q(S∗).

(2) If f ∈ M !,∞
2−n(D, χ) is weakly holomorphic, then

Θreg(f ) ≡ − log ||ψ(f )||2. (up to log− log-negligible terms)

where || · || is the norm on ω̂.

12Bruinier-Howard-Yang
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Modularity

With this definition of the classes Ẑ tot(m) and using (2), we have the
relation

ω̂k ≡ d̂ivψ(f ) := (divψ(f ),− log ||ψ(f )||2), in ĈH
1
Q(S∗).

where k = k(f ) =
∑

r |D cr (0) depends on f .
Now we do some bookkeeping and use the fact that

cr (0) = −
∑
m>0

c(−m) er (m),

where the Eisenstein series associated to the cusp∞r has Fourier
expansion

Er (τ) =
∑
m≥0

er (m) qm.
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Modularity

By the modularity criterion, it follows that the series

φ̂(τ)− 1
2

∑
s∈Sing

θ(τ ; Ls) · Excs

+ (ω̂ − 1
2

Exc) ·
∑
r |D

Er (τ) +
∑
p|D

S∗p ·
∑
r |D
p-r

Er (τ)

is a modular form of weight n, character χ, and level D, valued in
ĈH

1
Q(S∗).

Hence so is φ̂(τ), as claimed.
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Computation of the divisor

It remains to explain something about the proof of Theorem A, in
particular, about the determination of divψ(f ) on the integral model S∗

As there are many technical issues, let me just describe the main
strategy: We study ψ(f ) and ψ̃(f ) in a neighborhood of the boundary.
First consider the complex situation:

Sh(G,D)(C)
j−→ Sh(G̃, D̃)(C)

J = isotropic k-line in V =⇒ isotropic Q-plane J in V .

point boundary component −→ curve boundary component

so that, for the Baily-Borel compactifications

Sh(G,D)(C)BB j−→ Sh(G̃, D̃)(C)BB

we have a CM point mapping to a modular curve.
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Computation of the divisor

In the smooth toroidal compactifications, these are blown up to(
L−1

Φ
// BΦ

//M(1,0)

)
−→

CM-point

(
L̃−1

Φ
// KSΦ

// Y0(D)

)
where KSΦ −→ Y0(D) is a Kuga-Sato variety over a modular curve.
Borcherds gave a product formula for ψ̃(f ) valid in a neighborhood of a
point boundary component on D̃.
There is another product formula for ψ̃(f ), valid is a neighborhood of a
curve boundary component.
From this product formula, we can read off the Fourier-Jacobi expansion
of ψ(f ) on the formal completion of (L−1

Φ )∧BΦ
,

ψ(f ) = qmultΦ(f )
Φ

∑
`≥0

ψ` · q`Φ, ψ0 = leading FJ coeff.

multΦ(f ) =
∑
m>0

c(−m) m
n − 2

∣∣{x ∈ LΦ | 〈 x , x 〉 = m}
∣∣.
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Computation of the divisor

The divisor of ψ(f ) on (L−1
Φ )∧BΦ

is then the pullback π∗(div(ψ0)),

L−1
Φ

π // BΦ

div(ψ)

OO

div(ψ0)

OO

where ψ0 is the leading Fourier-Jacobi coefficient.
Note that ψ0 is a rational section of a certain line bundle
ωk

Φ · L
multΦ(f )
Φ on BΦ = LΦ ⊗ E .

Also, any nonzero vector x ∈ LΦ defines a homomorphism

jx : BΦ = LΦ ⊗ E −→ E , 〈 x , · 〉.
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Computation of the divisor

Finally, the product formula for ψ(f ) shows that

ψ0 = Pη
Φ · P

vert
Φ · Phor

Φ

where Pη
Φ is a CM-value of a power of the Dedekind η-function, and

Pvert
Φ =

∏
r |D

∏
b∈Z/DZ

b 6=0
rb=0

Θ(τ,
b
D

)cr (0), τ = CM-point

Phor
Φ =

∏
m>0

∏
x∈LΦ

Q(x)=m

Θ(τ, 〈w0, x 〉)c(−m), where

Θ(τ, z) = i
ϑ1(τ, z)

η(τ)
= q

1
12 (ζ

1
2 − ζ−

1
2 )
∞∏

n=1

(1− ζ qn)(1− ζ−1 qn).

These are the formulas over C, but the Jacobi theta function lives over Z
and eventually we arrive at Theorem A.
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