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Plan of the talk:

(1) Motivation: Hodge locus and André-Oort conjecture.

(2) Bi-algebraic geometry and the Ax-Lindemann-Weierstraß conjecture.

(3) Strategy of the proof.

(4) Some details.
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Motivation: Hodge locus and André-Oort conjecture

S : smooth quasi-projective variety over C.

H −→ S a polarized ZVHS.

Example

π : X −→ S a smooth projective family, H := (R iπ∗Z)prim

Definition:

HL(H) := {s ∈ S / exceptional Hodge classes appear in H⊗s }.

Theorem: (Cattani-Deligne-Kaplan)

HL(H) is a countable union of algebraic subvarieties of S.

Definition:

Special subvariety of (S ,H):= irreducible stratum of HL(H)
Special point:= special subvariety of dimension 0
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Goal:

Understanding the distribution in S of special subvarieties, especially
special points, associated to the ZVHS H.

Example

S = SL(2,Z)\H
j
' C = Y0(1)

moduli space of C-elliptic curves, seen as weight 1 polarized ZHS.

τ ∈ H←→ Eτ := C/(Z + τZ)

Special point:
τ imaginary quadratic ←→ Eτ has complex multiplication (by Q(τ))

Special points are dense in Y0(1) = C, even for the usual topology.
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Example

S = SL(2,Z)\H× SL(2,Z)\H
j
' C× C = Y0(1)× Y0(1)

moduli space of pairs of C-elliptic curves.

Special points in Y0(1)× Y0(1): pairs (x , y) of special points.

Special curves:

{x} × Y0(1) or Y0(1)× {x}, x special,
Im(Y0(N) −→ Y0(1)× Y0(1)), where Y0(N) is the moduli space of
isogenies Z/NZ ↪→ E1 � E2.

Every special curve contains infinitely many special points. Conversely:

Conjecture: (André, ’89)

An irreducible curve of C× C containining infinitely many special points
is special.
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Griffiths’s transversality condition prevents, in general, the existence of
moduli spaces for polarized ZVHS. Shimura varieties naturally appear as
solutions to such moduli problems with additional data, when the
Griffiths’s condition is empty.

Definition:

A connected Shimura variety is a quotient S = Γ\X of a symmetric
bounded domain X of CN by an arithmetic (congruence) subgroup
Γ = G(Z), G = Aut(X ).

Example

X = Bn
C, G = PU(n, 1).

X = D I
p,q = {Z ∈ M(p, q,C) ' Cpq : Iq − Z∗Z > 0},

G = PU(p, q).

X = {Z ∈ D I
g ,g : Z t = −Z}, G = Sp(g ,R), Γ = Sp(g ,Z), S = Ag

moduli space of Abelian varieties of dimension g .
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Basic facts:

Such an S = Γ\X has a canonical structure of a quasi-projective
variety over C (Baily-Borel), even over Q (Shimura-Deligne).

thanks to its modular definition, S is canonically endowed with a
polarized ZVHS H −→ S .

The special subvarieties of S = Γ\S are completely understood:

from the group-theoretical point of view: special subvarieties of S
are the irreducible components of Hecke translates of Shimura
subvarieties of S .

from the differential geometric point of view: special subvarieties are
totally geodesic subvarieties containing at least one special point.

Special points are Q-points. They are dense in each special
subvariety, in particular in S .
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Conjecture: (André-Oort)

Let S be a connected Shimura variety and Z ⊂ S a closed irreducible
algebraic subvariety.
If Z contains a Zariski-dense set of special points then Z is special.
Equivalently: there exists finitely many special subvarieties Y1, . . . ,Yr of
S contained in Z , and maximal for this property.
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Conjecture: (André-Oort)

Let S be a connected Shimura variety and Z ⊂ S a closed irreducible
algebraic subvariety.
If Z contains a Zariski-dense set of special points then Z is special.
Equivalently: there exists finitely many special subvarieties Y1, . . . ,Yr of
S contained in Z , and maximal for this property.

This conjecture is similar to the Manin-Mumford conjecture:

Theorem: (Raynaud)

Let A be an Abelian variety and Z ⊂ A a closed irreducible algebraic
subvariety.
If Z contains a Zariski-dense set of torsion points then Z is a translate of
an Abelian subvariety by a torsion point.
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Conjecture: (André-Oort)

Let S be a connected Shimura variety and Z ⊂ S a closed irreducible
algebraic subvariety.
If Z contains a Zariski-dense set of special points then Z is special.
Equivalently: there exists finitely many special subvarieties Y1, . . . ,Yr of
S contained in Z , and maximal for this property.

Results:

The AO conjecture has been proven by Klingler-Ullmo-Yafaev under
the Generalized Riemann Hypothesis. The proof uses ergodic,
algebraic and arithmetic geometry.

In 2010 Pila proved unconditionnally the AO conjecture in the
special case S = Y0(1)N . His proof relies on the hyperbolic
Ax-Lindemann-Weierstraß conjecture in this particular case.
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Bi-algebraic complex geometry

Setting:

π : X −→ S a transcendental morphism between (complex) algebraic
varieties.

Questions:

Describe the bi-algebraic subvarieties, namely the irreducible pairs
(Y ,V := π(V )) with Y ⊂ X algebraic and V ⊂ S algebraic.

Ax-Lindemann-Weierstraß statement: let Y ⊂ X be an algebraic
subvariety. Then any irreducible component of the Zariski closure

π(Y )
Z

of π(V ) is bi-algebraic.

Equivalently: consider the diagram

Y
� � algebraic, irreducible

maximal
// π−1V

� � //___

��

X

π

��
V
� � algebraic // S .

Then Y is bialgebraic.
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Example (The flat ALW conjecture)

π = (exp, . . . , exp) : Cn −→ (C∗)n .

Bialgebraic varieties are the pairs (translate of a rational linear
subspaces of Cn, translate of a subtorus in (C∗)n).

The flat ALW conjecture holds true (Ax): if Y ⊂ Cn is an algebraic

subvariety, then any irreducible component of π(Y )
Z

of π(V ) is a
translate of a subtorus of (C∗)n.

Remark:

This is the geometric analog of the classical Lindemann-Weierstraß
theorem:
if α1, . . . , αn ∈ Q are Q-linearly independant then eα1 , . . . , eαn are
algebraically independant over Q.
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Example (The Abelian ALW conjecture)

π : Cn −→ A = Λ\Cn the uniformizing map of an Abelian variety.

Bi-algebraic subvarieties are the translates of linear subspaces
covering translate of Abelian subvarieties of A.

the ALW conjecture holds true in this case (Ax): let Y ⊂ Cn be an

algebraic subvariety. Then any irreducible component of π(Y )
Z

is a
translate of an Abelian subvariety of A.

Zannier noticed that one can obtain a new proof of the Manin-Mumford
conjecture using the Abelian ALW conjecture as a crucial ingredient. Pila
realized one might use the same kind of techniques for proving the
André-Oort conjecture.
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The hyperbolic ALW conjecture

Let
π : X −→ S = Γ\X

be the uniformizing map of an arithmetic variety (∼ connected Shimura
variety), where Γ = G(Z) is an arithmetic lattice in G = Aut(X ).
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The hyperbolic ALW conjecture

Let
π : X −→ S = Γ\X

be the uniformizing map of an arithmetic variety (∼ connected Shimura
variety), where Γ = G(Z) is an arithmetic lattice in G = Aut(X ).

Remark:

Notice that we are not exactly in the setting of bi-algebraic geometry:
while S is an algebraic variety, the bounded symmetric domain X is only
a semi-algebraic subset of the algebraic variety CN .
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The hyperbolic ALW conjecture

Let
π : X −→ S = Γ\X

be the uniformizing map of an arithmetic variety (∼ connected Shimura
variety), where Γ = G(Z) is an arithmetic lattice in G = Aut(X ).

Definition:

A subset Y ⊂ X is an irreducible algebraic subvariety of X if Y is an

analytic irreducible component of D ∩ Ỹ for Ỹ ⊂ CN an algebraic
subvariety.
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The hyperbolic ALW conjecture

Let
π : X −→ S = Γ\X

be the uniformizing map of an arithmetic variety (∼ connected Shimura
variety), where Γ = G(Z) is an arithmetic lattice in G = Aut(X ).

Definition:

A subset Y ⊂ X is an irreducible algebraic subvariety of X if Y is an

analytic irreducible component of D ∩ Ỹ for Ỹ ⊂ CN an algebraic
subvariety.

The semi-algebraic structure on X is canonical. If you use any other
semi-algebraic realization of X (for example the one given by the Borel
embedding) you do not change the algebraic subsets of X .
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The hyperbolic ALW conjecture

Let
π : X −→ S = Γ\X

be the uniformizing map of an arithmetic variety (∼ connected Shimura
variety), where Γ = G(Z) is an arithmetic lattice in G = Aut(X ).

Definition:

A subset Y ⊂ X is an irreducible algebraic subvariety of X if Y is an

analytic irreducible component of D ∩ Ỹ for Ỹ ⊂ CN an algebraic
subvariety.

Proposition: (Ullmo-Yafaev)

The bialgebraic subvarieties in S are the weakly special (i.e. totally
geodesic) ones.
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Theorem: (K., Ullmo, Yafaev)

Let π : X −→ S = Γ\X the uniformizing map of an arithmetic variety.
Then the Ax-Lindemann-Weierstraß conjecture holds true for π.

Remarks:

For S compact: this is due to Ullmo-Yafaev.

The result for S = Ag has been obtained by Pila-Tsimerman.

Mok is able to relieve the arithmeticity condition on Γ (rank 1). His
proof uses purely differential geometric methods.

Corollary:

Using this theorem one can obtain a new proof of the André-Oort
conjecture under GRH.

Corollary:

The André-Oort conjecture holds true unconditionnally for S = An
6, for

all n.
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conjecture under GRH.

Corollary:

The André-Oort conjecture holds true unconditionnally for S = An
6, for

all n.

B.Klingler The hyperbolic Ax-Lindemann-Weierstraß conjecture



Theorem: (K., Ullmo, Yafaev)

Let π : X −→ S = Γ\X the uniformizing map of an arithmetic variety.
Then the Ax-Lindemann-Weierstraß conjecture holds true for π.

Remarks:

For S compact: this is due to Ullmo-Yafaev.

The result for S = Ag has been obtained by Pila-Tsimerman.

Mok is able to relieve the arithmeticity condition on Γ (rank 1). His
proof uses purely differential geometric methods.

Corollary:

Using this theorem one can obtain a new proof of the André-Oort
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Strategy of the proof of the main theorem:

We start with Y �
�algebraic, irreducible

maximal
// π−1V �

� //____

��

X

π

��
V �
� algebraic // S = Γ\X

with Γ = G(Z).

Want to show: Y is an irreducible component of a weakly special
subvariety of X . In particular we have to show that there exists a positive
dimensional Q-algebraic subgroup of G stabilizing Y .

Theorem (Step 3)

The Q-group HY :=
(

G(Z) ∩ StabG(R)Y
Zar/Q)0

is positive dimensional

and stabilizes Y .

Then using classical monodromy arguments (Deligne’s semi-simplicity
theorem) one can conclude that Y is weakly special.
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Theorem (Step 3)

The Q-group HY :=
(

G(Z) ∩ StabG(R)Y
Zar/Q)0

is positive dimensional

and stabilizes Y .

To prove Step 3, fix a fundamental set F ⊂ X for the Γ-action.

Definition:

Σ(Y ) := {g ∈ G(R) / dim(gY ∩ π−1V ∩ F) = dim Y } .

Notice that if g ∈ Σ(Y ) then gY ⊂ π−1V is also maximal irreducible
algebraic. Suppose you show that Σ(Y ) contains a positive dimensional
semi-algebraic subset W . By maximality of Y the set W has to stabilize
Y .

Hence we are reduced to showing that Σ(Y ) contains a positive
dimensional semi-algebraic subset.
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Main idea of Pila-Zannier:

even if π : X −→ S is highly transcendental, one can still control its
transcendence if it is definable in a “tame topology” in Grothendieck’s
sense, i.e. an “o-minimal structure” in the sense of model theory.

Definition:

A structure S is a collection S = (Sn)n∈N, where Sn is a set of subsets of
Rn, called definable sets, such that:

(1) all algebraic subsets of Rn are in Sn.

(2) Sn is a boolean subalgebra of powerset of Rn.

(3) If A ∈ Sn and B ∈ Sm then A× B ∈ Sn+m.

(4) Let p : Rn+1 −→ Rn be a linear projection. If A ∈ Sn+1 the
p(A) ∈ Sn.

The structure S is said to be o-minimal if the elements of S1 are
precisely the finite unions of points and intervals.
A map f : A −→ B between definable sets is definable if its graph is.
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Non-trivial o-minimal structures do exist:

Ran (Van den Dries): a function f : [0, 1]n −→ R is definable in Ran

if it is the restriction of a real analytic function defined on some
open neighbourhood of [0, 1]n.

Rexp (Wilkie): you require exp : R −→ R to be definable.

Ran,exp (Van den Dries-Miller). This is the one used in Diophantine
geometry.

Theorem (Pila-Wilkie)

Let Z ⊂ Rm be definable in some o-minimal structure.
Let Z alg ⊂ Z be the union of all positive-dimensional semi-algebraic
subsets of Z . Then:

∀ε > 0, ∃Cε > 0 /
∣∣{x ∈ (Z \ Z alg) ∩Qm), H(x) ≤ T

}∣∣ < CεT
ε .
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Theorem (Step 1)

There exists a semi-algebraic fundamental set F ⊂ X for Γ such that

π|F : F −→ S

is definable in Ran,exp.

Remarks:

for S compact: this is obvious, even in Ran.

for S = Ag : this was proven by Peterzil-Starchenko, using explicit
intricate computations with θ-functions. Crucially used by
Pila-Tsimerman.

our proof is general and purely geometric, relying on the structure of
toröıdal compactifications of S .

Corollary:

The set Σ(Y ) := {g ∈ G(R) / dim(gY ∩ π−1V ∩ F) = dim Y } is
definable in Ran,exp.
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To show that Σ(Y ) contains a positive dimensional semi-algebraic set,
we are reduced, using the Pila-Wilkie theorem, to showing that

Σ(Y ) ∩ G(Z) =
{
γ ∈ G(Z) / γ−1F ∩ Y 6= ∅

}
is “big”:

Theorem: (Step 2)

Let Y ⊂ X be an irreducible algebraic subset of X .
There exists c1 > 0 such that

|{γ ∈ G(Z) / Y ∩ γF 6= ∅, H(γ) ≤ T}| ≥ T c1 .
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About the proof of Step 2 assuming Step 1

Height on G(Z):

Fix G ⊂ GL(E ) a faithful linear representation of G. Write X = G(R)/K ,
where K is a maximal compact subgroup of G(R). Fix ‖ · ‖∞ a
K -invariant norm on E and denote in the same way the operator norm on
End (E ).

Definition:

For g ∈ G(Z), we define H(g) := max(1, ‖g‖∞).

Lemma

∃ B > 0 / ∀ γ ∈ G(Z), ∀ u ∈ γF , H(γ) ≤ B‖u‖∞.
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Proof of Step 2:

Theorem: (Step 2)

Let Y ⊂ X be an irreducible algebraic subset of X .
There exists c1 > 0 such that

|{γ ∈ G(Z) / Y ∩ γF 6= ∅, H(γ) ≤ T}| ≥ T c1 .

We can assume that Y = C ⊂ X is an irreducible complex algebraic
curve.

C (T ) := {u ∈ C and ‖u‖∞ ≤ T} =
⋃
γ∈Γ

γF∩C 6=∅

{u ∈ γF ∩ C and ‖u‖∞ ≤ T}

⊂
⋃

γ∈Γ, γF∩C 6=∅
H(γ)≤B·T

{u ∈ γF ∩ C} by previous lemma .

Taking volumes: VolC (C (T )) ≤
∑
γ∈Γ, γF∩C 6=∅

H(γ)≤B·T
VolC (F ∩ γ−1C ) .
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VolC (C (T )) ≤
∑

γ∈Γ, γF∩C 6=∅
H(γ)≤B·T

VolC (F ∩ γ−1C ) .

Notice that all the curves γ−1C , γ ∈ G(Z), have the same degree as
algebraic curves.

Proposition:

∃ A > 0 / ∀C ⊂ X algebraic curve of degree d , VolC (C ∩ F) ≤ A · d .

Hence VolC (C (T )) ≤ (A · d) · |{γ ∈ Γ, γF ∩ C 6= ∅, H(γ) ≤ B · T}| .
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VolC (C (T )) ≤ (A · d) · |{γ ∈ Γ, γF ∩ C 6= ∅, H(γ) ≤ B · T}| .

Lemma

∀ g ∈ G(R), log ‖g‖∞ ≤ dX (g · x0, x0) .

Hence C ∩ B(x0, log T ) ⊂ C (T ). Thus:

|{γ ∈ Γ, γF ∩ C 6= ∅, H(γ) ≤ B · T}| ≥ 1

A · d
VolC (C ∩ B(x0, log T ))

≥ a · T c1 by [Hwang-To].

2
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About the proof of Theorem 1.

What happens in the case of the modular curve S = Y0(1)?

Let us consider the diagram of holomorphic maps:

F ⊂ H z 7→e2πiz

−→ D∗
j−→ S = C ,

where F denotes the usual fundamental domain for SL(2,Z).
We claim that this composite is definable in Ran,exp. It follows from the
following observations:

exp(2πiz) = exp(−2πIm(z)) · exp(2πiRe(z)). The first factor is
definable is definable in Rexp. On the other hand Re(x) is bounded
on F , hence the second factor, on F , is definable in Ran.

The j-function j : D∗ −→ C extends to D −→ P1C hence is
definable in Ran.

This picture extends to any arithmetic variety using toröıdal
compactifications for S and Siegel fundamental domain in X for Γ.
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