Joint Equidistribution of CM Points

Ilya Khayutin September 29, 2017

André-Oort for Product of Modular Curves

Theorem (Pila '11 for general *n*, André '98 for n = 2. Conditionally on GRH: Edixhoven '98 and Edixhoven '05)

Let $X = \underbrace{Y \times \ldots \times Y}_{n}$ be the Cartesian power of a modular curve. Assume $\{x^{i} = (x_{1}^{i}, \ldots, x_{n}^{i})\}_{i}$ is a sequence of special points in X, i.e. each $x_{k}^{i} \in Y_{k}$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

André-Oort for Product of Modular Curves

Theorem (Pila '11 for general *n*, André '98 for n = 2. Conditionally on GRH: Edixhoven '98 and Edixhoven '05)

Let $X = \underbrace{Y \times \ldots \times Y}_{n}$ be the Cartesian power of a modular curve. Assume $\{x^i = (x_1^i, \ldots, x_n^i)\}_i$ is a sequence of special points in X, i.e. each $x_k^i \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

Definition

We call a sequence of special points generic if it has finite intersection with every proper special subvariety.

Proper Special Subvarieties for n = 2

- A special point (x₁, x₂),
- $\{x\} \times Y$ and $Y \times \{x\}$ for $x \in Y$ a CM point,
- image of a Hecke correspondence T_n → Y × Y, e.g. the diagonal embedding Y → Y × Y.

Equidistribution Conjecture

Conjecture

Let $\{x_i\}_i$ be a generic sequence of special points in X – the Cartesian power of a modular curve. Let the probability measure μ_i on X be the normalized counting measure on the Galois orbit of x_i

$$\mu_i \coloneqq \frac{1}{|\mathsf{Orb}(\mathbf{x}_i)|} \sum_{\mathbf{y} \in \mathsf{Orb}(\mathbf{x}_i)} \delta_{\mathbf{y}}$$

Then $\{\mu_i\}_i$ converges weak-* to the uniform measure $m_X = \underbrace{m_Y \times \ldots m_Y}_n$.

Equidistribution Conjecture

Conjecture

Let $\{x_i\}_i$ be a generic sequence of special points in X – the Cartesian power of a modular curve. Let the probability measure μ_i on X be the normalized counting measure on the Galois orbit of x_i

$$\mu_i \coloneqq \frac{1}{|\mathsf{Orb}(\mathbf{x}_i)|} \sum_{\mathbf{y} \in \mathsf{Orb}(\mathbf{x}_i)} \delta_{\mathbf{y}}$$

Then $\{\mu_i\}_i$ converges weak-* to the uniform measure $m_X = \underbrace{m_Y \times \ldots m_Y}_n$.

Weaker Conjecture

Asymptotic density of Galois orbits in the locally compact topology.

n = 1 -Duke '88, Iwaniec '87... Michel '04,
 SW Zhang '05. Assuming a split prime: Linnik '55.

¹excludes most cases

 n = 1 - Duke '88, Iwaniec '87... Michel '04, SW Zhang '05. Assuming a split prime: Linnik '55.
 n = 2 - If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant¹ and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh '13.

- n = 1 Duke '88, Iwaniec '87... Michel '04,
 SW Zhang '05. Assuming a split prime: Linnik '55.
- n = 2 If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant¹ and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh '13.
- n = 2 Analogues problem over F_q(t) reduced to counting points on varieties. Main term computed but could not yet show that error term is negligible. Shende, Tsimerman '13.

¹excludes most cases

Theorem (Kh' 17) Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Theorem (Kh' 17) Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

Theorem (Kh' 17) Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

- 1. p₁ and p₂ split in E_i,
- The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Theorem (Kh' 17) Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

- 1. p₁ and p₂ split in E_i,
- The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Then $\{\mu_i\}$ converges weak-* to the uniform measure.

Complex Multiplication

Let $x \in Y$ be a CM point. The theory of complex multiplication implies that the Galois group of the field of definition of x is isomorphic to $Pic(\Lambda)$ and

$$\mathsf{Orb}_{\mathrm{Galois}}(x) = \mathsf{Orb}_{\mathsf{Pic}(\Lambda)}(x)$$

Galois Action $\xrightarrow{\text{reciprocity}}$ Torus Action

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let **G** be a form of \mathbf{PGL}_2 over \mathbb{Q} and set $Y := \Gamma \setminus \frac{\mathbf{G}(\mathbb{R})}{K_{\infty}}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let **G** be a form of \mathbf{PGL}_2 over \mathbb{Q} and set $Y \coloneqq \Gamma \setminus \mathbf{G}(\mathbb{R})/K_{\infty}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q} . Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

$$\mathcal{H}_i^{\mathrm{joint}} = \{(\mathbf{z}, \sigma_i. \mathbf{z}) \in \mathbf{Y} \times \mathbf{Y} \mid \mathbf{z} \in \mathcal{H}_i\}$$

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let **G** be a form of \mathbf{PGL}_2 over \mathbb{Q} and set $Y := \Gamma \setminus {\mathbf{G}(\mathbb{R})}/{K_{\infty}}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q} . Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in \text{Pic}(\Lambda_i)$ and define

$$\mathcal{H}_i^{ ext{joint}} = \{(\mathbf{z}, \sigma_i. \mathbf{z}) \in \mathbf{Y} imes \mathbf{Y} \mid \mathbf{z} \in \mathcal{H}_i\}$$

Denote by $\mu_i^{\rm joint}$ the Pic $(\Lambda_i)^{\Delta}$ -invariant probability measure supported on $\mathcal{H}_i^{\rm joint}$. If

 $\overbrace{\mathfrak{a}\subseteq \Lambda_{i} \text{ invertible}}_{\mathfrak{a}\in \sigma_{i}} \operatorname{\mathsf{Nr}}_{\mathsf{Nr}} \mathfrak{a} \rightarrow_{i \rightarrow \infty} \infty$

Then $\mu_i^{ ext{joint}} o \mathbf{m}_{\mathbf{Y}} imes \mathbf{m}_{\mathbf{Y}}$.

 Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case
 Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between *H_i* and a Hecke correspondence via a G^Δ\^G × ^G/_{T^Δ} relative trace where T is the anisotropic torus /Q associated to *H_i*.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case
 Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between H_i and a Hecke correspondence via a G^Δ\^G × ^G/_{T^Δ} relative trace where T is the anisotropic torus /Q associated to H_i.
- Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in A-ideals).

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case
 Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between H_i and a Hecke correspondence via a G^Δ\^G × ^G/_{T^Δ} relative trace where T is the anisotropic torus /Q associated to H_i.
- Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in A-ideals).
- Sieve: Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.

Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

 $\exists \eta > \mathbf{0} \ \forall i \geq 1$: $\min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal} \\ \mathfrak{a} \in \sigma_i}} \operatorname{Nr} \mathfrak{a} \ll |\mathcal{D}_i|^{1/2 - \eta}$

This covers approximately $\sim |\mathsf{D}_i|^{-\eta} \# \operatorname{Pic}(\Lambda)$ twists σ_i .

Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > \mathbf{0} \ \forall i \geq 1$$
: $\min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal } \mathfrak{a} \in \sigma_i}} \operatorname{Nr} \mathfrak{a} \ll |\mathcal{D}_i|^{1/2 - \eta}$

This covers approximately $\sim |D_i|^{-\eta} \# \operatorname{Pic}(\Lambda)$ twists σ_i .

The new method applies when the extra conditions hold and

$$\exists \epsilon > \mathbf{0} \ \forall i \ge 1$$
: $\min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal} \\ \mathfrak{a} \in \sigma_i}} \operatorname{Nr} \mathfrak{a} \ge |\mathsf{D}_i|^{\frac{2-\theta^{-1}}{3}+\epsilon}$

where θ is the best available exponent in Gauss's circle problem for imaginary quadratic fields. The Van der Corput bound yields $\theta = 2/3 \mapsto \frac{2-\theta^{-1}}{3} = 1/6$.

Joint Equidistribution of CM Points

Ilya Khayutin September 29, 2017

André-Oort for Product of Modular Curves

Theorem (Pila '11 for general *n*, André '98 for n = 2. Conditionally on GRH: Edixhoven '98 and Edixhoven '05)

Let $X = \underbrace{Y \times \ldots \times Y}_{n}$ be the Cartesian power of a modular curve. Assume $\{x^i = (x_1^i, \ldots, x_n^i)\}_i$ is a sequence of special points in X, i.e. each $x_k^i \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

André-Oort for Product of Modular Curves

Theorem (Pila '11 for general *n*, André '98 for n = 2. Conditionally on GRH: Edixhoven '98 and Edixhoven '05)

Let $X = \underbrace{Y \times \ldots \times Y}_{n}$ be the Cartesian power of a modular curve. Assume $\{x^i = (x_1^i, \ldots, x_n^i)\}_i$ is a sequence of special points in X, i.e. each $x_k^i \in Y_k$ is a CM point. If the intersection of this sequence with any proper special subvariety is finite then this sequence is Zariski dense in X.

Definition

We call a sequence of special points <u>generic</u> if it has finite intersection with every proper special subvariety.

Proper Special Subvarieties for n = 2

- A special point (x₁, x₂),
- $\{x\} \times Y$ and $Y \times \{x\}$ for $x \in Y$ a CM point,
- image of a Hecke correspondence T_n → Y × Y, e.g. the diagonal embedding Y → Y × Y.

Equidistribution Conjecture

Conjecture

Let $\{x_i\}_i$ be a generic sequence of special points in X – the Cartesian power of a modular curve. Let the probability measure μ_i on X be the normalized counting measure on the Galois orbit of x_i

$$\mu_i \coloneqq \frac{1}{|\mathsf{Orb}(\mathbf{x}_i)|} \sum_{\mathbf{y} \in \mathsf{Orb}(\mathbf{x}_i)} \delta_{\mathbf{y}}$$

Then $\{\mu_i\}_i$ converges weak-* to the uniform measure $m_X = \underbrace{m_Y \times \dots m_Y}_n$.

Equidistribution Conjecture

Conjecture

Let $\{x_i\}_i$ be a generic sequence of special points in X – the Cartesian power of a modular curve. Let the probability measure μ_i on X be the normalized counting measure on the Galois orbit of x_i

$$\mu_i \coloneqq \frac{1}{|\mathsf{Orb}(\mathbf{x}_i)|} \sum_{\mathbf{y} \in \mathsf{Orb}(\mathbf{x}_i)} \delta_{\mathbf{y}}$$

Then $\{\mu_i\}_i$ converges weak-* to the uniform measure $m_X = \underbrace{m_Y \times \ldots m_Y}_n$.

Weaker Conjecture

Asymptotic density of Galois orbits in the locally compact topology.

n = 1 -Duke '88, Iwaniec '87... Michel '04,
 SW Zhang '05. Assuming a split prime: Linnik '55.

¹excludes most cases

n = 1 - Duke '88, Iwaniec '87... Michel '04, SW Zhang '05. Assuming a split prime: Linnik '55.
n = 2 - If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant¹ and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh '13.

- n = 1 Duke '88, Iwaniec '87... Michel '04,
 SW Zhang '05. Assuming a split prime: Linnik '55.
- n = 2 If the minimal volume of an ambient Hecke correspondence grows slowly relatively to the discriminant¹ and assuming a split prime (embedding argument): Ellenberg, Michel, Venkatesh '13.
- n = 2 Analogues problem over F_q(t) reduced to counting points on varieties. Main term computed but could not yet show that error term is negligible. Shende, Tsimerman '13.

¹excludes most cases

Theorem (Kh'17)

Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Theorem (Kh'17)

Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

Theorem (Kh'17)

Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

- 1. p₁ and p₂ split in E_i,
- The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Main Theorem

Theorem (Kh'17)

Let $X = \underbrace{Y \times \ldots Y}_{n}$ be the Cartesian power of a modular curve.

Let $\{x_i\}_i$ be a generic sequence of special points such that all coordinates of x_i have CM by the same maximal order of discriminant D_i and CM field E_i/\mathbb{Q} . Fix two primes p_1 , p_2 and assume that for all $i \in \mathbb{N}$

- 1. p₁ and p₂ split in E_i,
- The Dedekind ζ-function of E_i has no exceptional Landau-Siegel zero.

Then $\{\mu_i\}$ converges weak-* to the uniform measure.

Class Field Theory

Complex Multiplication

Let $x \in Y$ be a CM point. The theory of complex multiplication implies that the Galois group of the field of definition of x is isomorphic to $Pic(\Lambda)$ and

$$Orb_{\mathrm{Galois}}(x)=Orb_{Pic(\Lambda)}(x)$$

Galois Action
$$\xrightarrow{\text{reciprocity}}$$
 Torus Action

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let G be a form of PGL₂ over \mathbb{Q} and set $Y \coloneqq_{\Gamma} \setminus^{\mathbf{G}(\mathbb{R})} /_{K_{\infty}}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let **G** be a form of \mathbf{PGL}_2 over \mathbb{Q} and set $Y \coloneqq_{\Gamma} \setminus^{\mathbf{G}(\mathbb{R})}/_{K_{\infty}}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q} . Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in Pic(\Lambda_i)$ and define

$$\mathcal{H}_i^{ ext{joint}} = \{ (\mathbf{z}, \sigma_i. \mathbf{z}) \in \mathbf{Y} imes \mathbf{Y} \mid \mathbf{z} \in \mathcal{H}_i \}$$

The Mixing Conjecture

Conjecture (Michel & Venkatesh)

Let **G** be a form of \mathbf{PGL}_2 over \mathbb{Q} and set $Y \coloneqq_{\Gamma} \setminus^{\mathbf{G}(\mathbb{R})}/_{K_{\infty}}$ for $\Gamma < \mathbf{G}(\mathbb{R})$ a congruence lattice and $K_{\infty} < \mathbf{G}(\mathbb{R})$ a compact torus.

For each $i \in \mathbb{N}$ let Λ_i be an order of discriminant D_i in the imaginary quadratic field E_i/\mathbb{Q} . Let $\mathcal{H}_i \subset Y$ be a toral packet for the order Λ_i (Generalization of a Pic(Λ_i)-orbit of a Heegner/Gross point). For all i pick an element $\sigma_i \in Pic(\Lambda_i)$ and define

$$\mathcal{H}_i^{ ext{joint}} = \{(\mathbf{z}, \sigma_i. \mathbf{z}) \in \mathbf{Y} \times \mathbf{Y} \mid \mathbf{z} \in \mathcal{H}_i\}$$

Denote by $\mu_i^{\rm joint}$ the $\text{Pic}(\Lambda_i)^{\Delta}\text{-invariant}$ probability measure supported on $\mathcal{H}_i^{\rm joint}.$ If

$$\min_{\substack{\mathfrak{a}\subseteq\Lambda_i \text{ invertible ideal}\\\mathfrak{a}\in\sigma_i}} \operatorname{\mathsf{Nr}} \mathfrak{a} \to_{i\to\infty} \infty$$

Then $\mu_i^{\mathrm{joint}}
ightarrow \mathbf{m}_{\mathbf{Y}} imes \mathbf{m}_{\mathbf{Y}}$.

 Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between *H_i* and a Hecke correspondence via a G[△] (^G × ^G)/^{T[△]} relative trace where T is the anisotropic torus /Q associated to *H_i*.

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between *H_i* and a Hecke correspondence via a G[△] (^G × ^G/_{T[△]} relative trace where T is the anisotropic torus /Q associated to *H_i*.
- Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in A-ideals).

- Einsiedler-Lindenstrauss Joinings Theorem ('15): Splitting Condition + n = 1 case ⇒ Any limit measure is a convex combination of the uniform measure and translates of Hecke correspondences.
- Main Obstacle: Exclude intermediate measures, i.e. translates of Hecke correspondences.
- Relative Trace: Express cross-correlation between *H_i* and a Hecke correspondence via a G[△] (^G × ^G/_{T[△]} relative trace where T is the anisotropic torus /Q associated to *H_i*.
- Geometric Expansion: Transform relative trace into a short shifted convolution sum of ideal counting functions using the geometric expansion of the relative trace and fine arithmetic invariants (valued in A-ideals).
- Sieve: Upper bound on shifted convolution sum using a vector sieve. This is conditional on non-existence of exceptional zeros.

Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > \mathbf{0} \; \forall i \geq \mathbf{1} : \min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal} \\ \mathfrak{a} \in \sigma_i}} \mathsf{Nr} \, \mathfrak{a} \ll |\mathcal{D}_i|^{1/2 - \eta}$$

This covers approximately $\sim |D_i|^{-\eta} \# \operatorname{Pic}(\Lambda)$ twists σ_i .

Ellenberg-Michel-Venkatesh Condition

The method of Ellenberg, Michel and Venkatesh applies with a fixed single split prime and when

$$\exists \eta > \mathbf{0} \; \forall i \geq 1: \min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal} \\ \mathfrak{a} \in \sigma_i}} \mathsf{Nr} \, \mathfrak{a} \ll |\mathsf{D}_i|^{1/2 - \eta}$$

This covers approximately $\sim |D_i|^{-\eta} \# \operatorname{Pic}(\Lambda)$ twists σ_i .

The new method applies when the extra conditions hold and

$$\exists \epsilon > \mathbf{0} \; \forall i \geq \mathbf{1} : \min_{\substack{\mathfrak{a} \subseteq \Lambda_i \text{ invertible ideal } \\ \mathfrak{a} \in \sigma_i}} \operatorname{Nr} \mathfrak{a} \geq |\mathsf{D}_i|^{\frac{2-\theta^{-1}}{3}+\epsilon}$$

where θ is the best available exponent in Gauss's circle problem for imaginary quadratic fields. The Van der Corput bound yields $\theta = 2/3 \mapsto \frac{2-\theta^{-1}}{3} = 1/6$.