Table 1: Numerical estimation of c for matrices of size N.

N	c	
20	1.43570	
30	1.46107	
40	1.48018	
50	1.49072	
60	1.49890	
70	1.50756	

Table 2: Ratio of data mean $\tilde{\delta}$ to model mean δ with c=3/2 and c=1/2.

T	N	$\left(\tilde{\delta}/\delta\right)_{c=3/2}$	$\left(\tilde{\delta}/\delta\right)_{c=1/2}$
10^{22}	51	1.001343	0.504993
10^{19}	44	0.992672	0.510293
10^{15}	35	0.976830	0.518057
3.6×10^7	17	0.930533	0.552856

Figure 1: Numerical computation (red crosses) for 10^6 matrices with n=50 compared to the theoretical prediction (blue line) for p(x).

Figure 2: Numerical computation (solid red line) compared to theoretical prediction (dashed black line) for p(x).

Figure 3: Numerical computation (red dots) compared to the theoretical prediction (dashed black line) for $D_T(\beta)$, suggesting freezing beyond $\beta = 1$