Table 1: Numerical estimation of c for matrices of size N.

N	c
20	1.43570
30	1.46107
40	1.48018
50	1.49072
60	1.49890
70	1.50756

Table 2: Ratio of data mean $\tilde{\delta}$ to model mean δ with $c=3 / 2$ and $c=1 / 2$.

T	N	$(\tilde{\delta} / \delta)_{c=3 / 2}$	$(\tilde{\delta} / \delta)_{c=1 / 2}$
10^{22}	51	1.001343	0.504993
10^{19}	44	0.992672	0.510293
10^{15}	35	0.976830	0.518057
3.6×10^{7}	17	0.930533	0.552856

Figure 1: Numerical computation (red crosses) for 10^{6} matrices with $n=50$ compared to the theoretical prediction (blue line) for $p(x)$.

Figure 2: Numerical computation (solid red line) compared to theoretical prediction (dashed black line) for $p(x)$.

Figure 3: Numerical computation (red dots) compared to the theoretical prediction (dashed black line) for $D_{T}(\beta)$, suggesting freezing beyond $\beta=1$

