Tropical Currents

June Huh

September 30, 2014

The *logarithm map* is the homomorphism

$$\mathsf{Log}: \mathbb{C}^* \longrightarrow \mathbb{R}, \qquad z \longmapsto -\log |z|,$$

and the argument map is the homomorphism

$$\operatorname{\mathsf{Arg}}: \mathbb{C}^* \longrightarrow S^1, \qquad z \longmapsto z/|z|.$$

Let N be a finitely generated free abelian group.

There are homomorphisms

called the logarithm map and the argument map for N respectively, where

- T_N := the complex algebraic torus $\mathbb{C}^* \otimes_{\mathbb{Z}} N$,
- S_N := the compact real torus $S^1 \otimes_{\mathbb{Z}} N$,
- $N_{\mathbb{R}}$:= the real vector space $\mathbb{R} \otimes_{\mathbb{Z}} N$.

Corresponding to a *p*-dimensional rational subspace *H* of \mathbb{R}^n , there is

where the vertical surjections are the logarithm maps.

We define a homomorphism π_H as the composition

$$\pi_H: \operatorname{Log}^{-1}(H) \xrightarrow{\operatorname{Arg}} (S^1)^n \longrightarrow S_{\mathbb{Z}^n/(H \cap \mathbb{Z}^n)}$$

Its kernel is the closed subgroup

$$\ker(\pi_H)=\,T_{H\cap\mathbb{Z}^n},$$

and all other fibers are translations of the kernel by the action of $(S^1)^n$.

Let A be a p-dimensional affine subspace of \mathbb{R}^n parallel to the linear subspace H.

We define a submersion π_A as the composition

$$\pi_A: \operatorname{\mathsf{Log}}^{-1}(A) \xrightarrow{e^a} \operatorname{\mathsf{Log}}^{-1}(H) \xrightarrow{\pi_H} S_{\mathbb{Z}^n/(H \cap \mathbb{Z}^n)}, \qquad a \in A.$$

The submersion π_A does not depend on the choice of *a*.

Let σ be a *p*-dimensional rational polyhedron in \mathbb{R}^n . We define

$$\begin{array}{lll} \operatorname{aff}(\sigma) & := & \operatorname{the affine span of } \sigma, \\ \sigma^{\circ} & := & \operatorname{the interior of } \sigma \operatorname{in aff}(\sigma), \\ H_{\sigma} & := & \operatorname{the linear subspace parallel to aff}(\sigma). \end{array}$$

The *normal lattice* of σ is the quotient group

$$N(\sigma) := \mathbb{Z}^n/(H_\sigma \cap \mathbb{Z}^n).$$

The normal lattice defines the (n - p)-dimensional vector spaces

$$N(\sigma)_{\mathbb{R}} := \mathbb{R} \otimes_{\mathbb{Z}} N(\sigma), \qquad N(\sigma)_{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{Z}} N(\sigma).$$

We define a submersion π_{σ} as the restriction of $\pi_{aff(\sigma)}$ to $Log^{-1}(\sigma^{\circ})$:

$$\pi_{\sigma}: \mathrm{Log}^{-1}(\sigma^{\circ}) \longrightarrow S_{N(\sigma)}.$$

Each fiber $\pi_{\sigma}^{-1}(x)$ is a *p*-dimensional complex submanifold of $(\mathbb{C}^*)^n$.

We define a submersion π_{σ} as the restriction of $\pi_{aff(\sigma)}$ to Log⁻¹(σ°):

$$\pi_{\sigma}: \mathsf{Log}^{-1}(\sigma^{\circ}) \longrightarrow S_{N(\sigma)}$$

Each fiber $\pi_{\sigma}^{-1}(x)$ is a *p*-dimensional complex submanifold of $(\mathbb{C}^*)^n$.

Definition

Let μ be a complex Borel measure on $S_{N(\sigma)}$. We define a (p, p)-dimensional current

$$\mathscr{T}_{\sigma}(\mu):=\int_{x\in S_{N(\sigma)}}\left[\pi_{\sigma}^{-1}(x)
ight]d\mu(x).$$

If μ is the normalized Haar measure, we write

$$\mathscr{T}_{\sigma} := \mathscr{T}_{\sigma}(\mu)$$

A *p*-dimensional weighted complex in \mathbb{R}^n is a polyhedral complex \mathscr{C} such that

- 1. each inclusion-maximal cell σ in \mathscr{C} is rational,
- 2. each inclusion-maximal cell σ in \mathscr{C} is *p*-dimensional, and
- 3. each inclusion-maximal cell σ in \mathscr{C} is assigned a complex number $w_{\mathscr{C}}(\sigma)$.

A *p*-dimensional weighted complex in \mathbb{R}^n is a polyhedral complex \mathscr{C} such that

- 1. each inclusion-maximal cell σ in C is rational,
- 2. each inclusion-maximal cell σ in \mathscr{C} is *p*-dimensional, and
- 3. each inclusion-maximal cell σ in \mathscr{C} is assigned a complex number $w_{\mathscr{C}}(\sigma)$.

The weighted complex \mathscr{C} is said to be *positive* if, for all *p*-dimensional cells σ in \mathscr{C} ,

 $w_{\mathscr{C}}(\sigma) \geq 0.$

The support of \mathscr{C} is the union of all p-dimensional cells of \mathscr{C} with nonzero weight.

We define a (p, p)-dimensional current on $(\mathbb{C}^*)^n$ by

$$\mathscr{T}_{\mathscr{C}} := \sum_{\sigma} w_{\mathscr{C}}(\sigma) \; \mathscr{T}_{\sigma},$$

where the sum is over all p-dimensional cells in \mathscr{C} .

Let τ be a codimension 1 face of a *p*-dimensional rational polyhedron σ .

The difference of σ and τ defines a ray in the normal space

$$\operatorname{cone}(\sigma - \tau)/H_{\tau} \subseteq H_{\sigma}/H_{\tau} \subseteq \mathbb{R}^n/H_{\tau} = N(\tau)_{\mathbb{R}}.$$

We write $u_{\sigma/\tau}$ for the primitive generator of this ray in the lattice $N(\tau)$.

Let τ be a codimension 1 face of a *p*-dimensional rational polyhedron σ .

The difference of σ and τ defines a ray in the normal space

$$\operatorname{cone}(\sigma-\tau)/H_{\tau} \subseteq H_{\sigma}/H_{\tau} \subseteq \mathbb{R}^n/H_{\tau} = N(\tau)_{\mathbb{R}}.$$

We write $u_{\sigma/\tau}$ for the primitive generator of this ray in the lattice $N(\tau)$.

Definition

A p-dimensional weighted complex $\mathscr C$ satisfies the balancing condition at τ if

$$\sum_{\sigma\supset\tau} w_{\mathscr{C}}(\sigma) u_{\sigma/\tau} = 0$$

in $N(\tau)_{\mathbb{C}}$, where the sum is over all *p*-dimensional cells σ in \mathscr{C} containing τ .

A weighted complex is *balanced* if it satisfies the balancing condition at each of its codimension 1 cells.

A *tropical variety* is a positive and balanced weighted complex, and a *tropical current* is the current associated to a tropical variety.

Theorem (A)

A weighted complex $\mathscr C$ is balanced if and only if $\mathscr T_{\mathscr C}$ is closed.

A normal closed current \mathscr{T} is strongly extremal if for any normal closed current \mathscr{T}'

which has the same dimension and support as \mathscr{T} there is a complex number *c* such

that $\mathscr{T}' = c \cdot \mathscr{T}$.

A normal closed current \mathscr{T} is *strongly extremal* if for any normal closed current \mathscr{T}' which has the same dimension and support as \mathscr{T} there is a complex number *c* such that $\mathscr{T}' = c \cdot \mathscr{T}$.

If \mathscr{T} is positive and strongly extremal, then \mathscr{T} generates an extremal ray in the cone of positive closed currents: If $\mathscr{T} = \mathscr{T}_1 + \mathscr{T}_2$ is any decomposition of \mathscr{T} into positive closed currents, then

$$|\mathscr{T}| = |\mathscr{T} + \mathscr{T}_1| = |\mathscr{T} + \mathscr{T}_2|,$$

and hence both \mathcal{T}_1 and \mathcal{T}_2 are positive multiples of \mathcal{T} .

A balanced complex \mathscr{C} is *strongly extremal* if for any balanced complex \mathscr{C}' which has the same dimension and support as \mathscr{C} there is a complex number *c* such that $\mathscr{C}' \sim c \cdot \mathscr{C}$. A weighted complex in \mathbb{R}^n is *non-degenerate* if its support is contained in no proper affine subspace of \mathbb{R}^n .

Theorem (B)

A non-degenerate weighted complex ${\mathscr C}$ is strongly extremal if and only if

 $\mathcal{T}_{\mathscr{C}}$ is strongly extremal.

Let \mathscr{P} be a *p*-dimensional locally finite polyhedral complex in \mathbb{R}^n .

Choose a complex Borel measure μ_{σ} for each *p*-dimensional cell σ of \mathcal{P} , and define

$$\mathscr{T} := \sum_{\sigma} \mathscr{T}_{\sigma}(\mu_{\sigma}).$$

For each σ and its codimension 1 face τ , there are inclusion maps

$$M(\sigma) \longrightarrow M(\tau) \longrightarrow (\mathbb{Z}^n)^{\vee}$$

dual to the quotient maps

$$\mathbb{Z}^n \longrightarrow N(\tau) \longrightarrow N(\sigma).$$

If *m* is an element of $M(\sigma)$, the *m*-th Fourier coefficient of μ_{σ} is the complex number

$$\hat{\mu}_{\sigma}(m):=\int_{x\in S_N}\chi^m\;d\mu_{\sigma}(x)$$

For a *p*-dimensional cell σ in \mathscr{P} and an element *m* of $(\mathbb{Z}^n)^{\vee}$, we set

$$w_{\mathscr{T}}(\sigma,m):=egin{cases} \hat{\mu}_{\sigma}(m) & ext{if } m\in M(\sigma), \ 0 & ext{if } m
otin M(\sigma). \end{cases}$$

This defines a *p*-dimensional weighted complex $\mathscr{C}_{\mathscr{T}}(m)$ in \mathbb{R}^n .

For a *p*-dimensional cell σ in \mathscr{P} and an element *m* of $(\mathbb{Z}^n)^{\vee}$, we set

$$w_{\mathscr{T}}(\sigma,m):=egin{cases} \hat{\mu}_{\sigma}(m) & ext{if } m\in M(\sigma), \ 0 & ext{if } m
otin M(\sigma). \end{cases}$$

This defines a *p*-dimensional weighted complex $\mathscr{C}_{\mathscr{T}}(m)$ in \mathbb{R}^n .

Theorem (C)

The current \mathscr{T} is closed if and only if $\mathscr{C}_{\mathscr{T}}(m)$ is balanced for all $m \in (\mathbb{Z}^n)^{\vee}$.

For a *p*-dimensional cell σ in \mathscr{P} and an element *m* of $(\mathbb{Z}^n)^{\vee}$, we set

$$w_{\mathscr{T}}(\sigma,m):=egin{cases} \hat{\mu}_{\sigma}(m) & ext{if } m\in M(\sigma), \ 0 & ext{if } m
otin M(\sigma). \end{cases}$$

This defines a *p*-dimensional weighted complex $\mathscr{C}_{\mathscr{T}}(m)$ in \mathbb{R}^n .

Theorem (C)

The current \mathscr{T} is closed if and only if $\mathscr{C}_{\mathscr{T}}(m)$ is balanced for all $m \in (\mathbb{Z}^n)^{\vee}$.

Theorem (C)

The current \mathscr{T} is closed if and only if $\mathscr{C}_{\mathscr{T}}(m)$ is balanced for all $m \in (\mathbb{Z}^n)^{\vee}$.

This implies Theorem (A) because $\hat{\mu}(m) = 0$ for $m \neq 0$ if μ is an invariant measure.

This implies Theorem (B) because $\bigcap_{\sigma} M(\sigma) = 0$ if \mathscr{P} is non-degenerate.

Let X be the *n*-dimensional smooth complex toric variety of a complete fan Σ .

A cohomology class in X gives a homomorphism from the homology group of X to \mathbb{Z} , defining the Kronecker duality homomorphism

$$H^{2k}(X;\mathbb{Z}) \longrightarrow \mathsf{Hom}_{\mathbb{Z}}(H_{2k}(X;\mathbb{Z}),\mathbb{Z}).$$

The above homomorphism is, in fact, an isomorphism.

Let X be the *n*-dimensional smooth complex toric variety of a complete fan Σ .

A cohomology class in X gives a homomorphism from the homology group of X to \mathbb{Z} , defining the Kronecker duality homomorphism

$$H^{2k}(X;\mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_{2k}(X;\mathbb{Z}),\mathbb{Z}).$$

The above homomorphism is, in fact, an isomorphism.

Since the homology group is generated by *k*-dimensional torus orbit closures, the duality identifies cohomology classes with certain integer valued functions on the set of *p*-dimensional cones in Σ , where p = n - k.

Theorem (Fulton-Sturmfels)

The Kronecker duality gives isomorphisms between abelian groups $H^{2k}(X;\mathbb{Z}) \simeq Hom(H_{2k}(X),\mathbb{Z}) \simeq \{p\text{-dimensional balanced integral weights on }\Sigma\},$ There is an induced isomorphism between complex vector spaces

 $H^{k,k}(X) \simeq \left\{ p \text{-dimensional balanced weights on } \Sigma \right\}.$

The *recession cone* of a polyhedron σ is the convex polyhedral cone

$$\operatorname{rec}(\sigma) = \{ b \in \mathbb{R}^n \mid \sigma + b \subseteq \sigma \}.$$

Definition

Let \mathscr{C} be a *p*-dimensional finite weighted complex in \mathbb{R}^n .

For each *p*-dimensional cone γ in Σ , we define

$$w_{\mathsf{rec}(\mathscr{C},\Sigma)}(\gamma) := \sum_{\sigma} w_{\mathscr{C}}(\sigma),$$

where the sum is over all *p*-dimensional cells σ in \mathscr{C} whose recession cone is γ .

This defines a *p*-dimensional weighted complex $rec(\mathcal{C}, \Sigma)$, the *recession* of \mathcal{C} in Σ .

We say that \mathscr{C} is *compatible* with Σ if $\operatorname{rec}(\sigma) \in \Sigma$ for all $\sigma \in \mathscr{C}$. In this case, we write

 $\operatorname{rec}(\mathscr{C}) := \operatorname{rec}(\mathscr{C}, \Sigma).$

For any \mathscr{C} , there is a subdivision of \mathscr{C} that is compatible with a subdivision of Σ .

Theorem (D)

If \mathscr{C} is a *p*-dimensional balanced weighted complex compatible with Σ , then

 $\{\overline{\mathscr{T}}_{\mathscr{C}}\} = \operatorname{rec}(\mathscr{C}) \in H^{k,k}(X).$

In particular, if all polyhedrons in \mathscr{C} are cones in Σ , then

$$\{\overline{\mathscr{T}}_{\mathscr{C}}\} = \mathscr{C} \in H^{k,k}(X).$$

Theorem (E)

There is a (2, 2)-dimensional positive closed current T on a smooth projective variety X of dimension 4 such that

- 1. $\{T\} \in H^{2,2}(X) \cap H^4(X; \mathbb{Z})$, and
- 2. *T* is not a limit of currents of the form $\sum \lambda_i [V_i]$ with $\lambda_i > 0$.

The current T is strongly extremal, and this property is crucial in justifying 2.

If T is positive and strongly extremal, then T spans an extremal ray of the cone of positive closed currents.

Therefore, if *T* is a limit of currents of the form $\sum_i \lambda_i [V_i], \lambda_i > 0$ then *T* is a limit of currents of the form $\lambda[V], \lambda > 0$. Lemma

	/ 3	0	0	0	0	-1	-1	$^{-1}$	0	0	0	0	0	0 `	
L :=	0	3	0	0	-1	0	0	$^{-1}$	0	0	0	$^{-1}$	0	0	
	0	0	3	0	$^{-1}$	-1	0	0	0	0	0	0	0	-1	
	0	0	0	3	$^{-1}$	0	-1	0	0	-1	0	0	0	0	
	0	-1	-1	$^{-1}$	1	0	0	0	0	0	0	0	0	0	
	-1	0	-1	0	0	1	0	0	-1	0	0	0	0	0	
	-1	0	0	$^{-1}$	0	0	1	0	0	0	-1	0	0	0	
	-1	-1	0	0	0	0	0	1	0	0	0	0	-1	0	
	0	0	0	0	0	-1	0	0	0	-1	0	0	0	0	
	0	0	0	$^{-1}$	0	0	0	0	-1	0	0	0	0	0	
	0	0	0	0	0	0	-1	0	0	0	0	$^{-1}$	0	0	
	0	-1	0	0	0	0	0	0	0	0	-1	0	0	0	
	0	0	0	0	0	0	0	-1	0	0	0	0	0	-1	
	\ o	0	-1	0	0	0	0	0	0	0	0	0	-1	ο,	/

The characteristic polynomial of L is

$$\chi_L(x) = x^4 (x^3 - 4x^2 - x + 8)^2 (x^4 - 8x^3 + 12x^2 + 24x - 35).$$