PIT problems in the light of and the noncommutative rank algorithm

Gábor Ivanyos MTA SZTAKI

Optimization, Complexity and Invariant Theory, IAS, June 4-8, 2018.

PIT problems in this talk

Determinant:

```
\det(x_0A_0 + x_1A_1 + \ldots + x_kA_k) \not\equiv 0

\approx \textit{exists} a non-singular matrix in \mathcal{A} = \langle A_0, \ldots, A_1 \rangle

\approx \text{What is the rk } \mathcal{A} \text{ (commutative) rank of (= max rank in) } \mathcal{A}

Constructive version (rank optimization):

Find a matrix of max rank in \mathcal{A}
```

We assume square case

most problems reducible to that

Overview

- Common block triangular forms of matrices
- Behavior of Wong sequences
- Module problems: from easy to hard
- If time left:
 - Spaces spanned by *unknown* rank one matrices

Some notation

- $M_n(F) = M_{n \times n}(F)$
- Block matrices, "holes" in matrices:

- Block (upper) triangular matrices: $\begin{pmatrix} A & B \\ C \end{pmatrix}$, A and C square
- Matrix sets: $\begin{pmatrix} A & * \\ & * \end{pmatrix} = \left\{ \begin{pmatrix} A & B \\ & C \end{pmatrix} : B, Carbitrary \right\}$

Notation (2)

Product of sets:

$$\mathcal{A}U = \{Au : A \in \mathcal{A}, u \in U\}$$

(subspace when either A or U is a subspace)

$$\mathcal{AB} = \{AB : A \in \mathcal{A}, B \in \mathcal{B}\}$$

- \sim (similarity): in the same orbit of conjugation by GL, changing the basis
- $lpha pprox (pprox_{GL imes GL})$: in the same orbit of (independent) left-right multiplication by GL changing the two bases independently

Oil and Vinegar signature schemes (Patarin (1997), ...)

- Public key: $P = (P_1, \dots, P_k) \in F[\underline{x}]^k \underline{x} = (x_1, \dots, x_n)$, deg P = 2
- Message: $\underline{a} \in F^k$
- Valid signature: a solution of $P(\underline{x}) = \underline{a}$
- Private key (hidden structure):
 - "easy" system: P' s.t. $P'(y) = \underline{a}$
 - $P = P' \circ A, A \in GL_n(F)$
 - a linear change of variables
- "easiness":
 - P' is linear in the first o variables: no terms $x_i x_j$ with $i, j \in \{1, ..., o\}$
 - by a random substitution for x_j (j = o + 1, ..., n) we have a solvable linear system (with "good" chance)
 - x_1, \dots, x_o : "oil variables"; x_{o+1}, \dots, n "vinegar variables"

Oil and Vinegar (2)

- \blacksquare Key generation: choose such P' randomly, and A randomly
- Tuning: choose the parameters k, o, n:
 - P' easy to solve
 - hard to break
- Balanced O & V (Patarin 1997):

$$n=2o$$
 (and $k\approx o$)

- Breaking Balanced O & V (Kipnis & Shamir 1998):
 - $P_i = Q_i + \text{linear}$ $P'_i = Q'_i + \text{linear}$, $Q_i = A^T Q'_i A$
 - pick $Q_0 = \sum \alpha_i Q_i$ random invertible with h.p. (for "most" P)
 - $Q_0 = A^T Q_0' A \qquad Q_0' = \sum_i \alpha_i Q_i)$ $R_i := Q_0^{-1} Q_i \qquad R_i' = Q_0'^{1} Q_i'$

Breaking Balanced O & V

$$Q_0 = A^T Q_0' A \qquad (Q_0' = \sum \alpha_i Q_i)$$

$$R_i := Q_0^{-1}Q_i \qquad (R_i' = Q_0'^1Q_i')$$

- key property: $R_i = A^{-1}R_i'A$
 - easier than $Q_i = A^T Q_i' A$
 - Proof.

$$R_i = A^{-1}Q_0'A^{-T}A^TQ_i'A = A^{-1}R_i'A$$

$$Q_i' \in \begin{pmatrix} & * \\ * & * \end{pmatrix} = \begin{pmatrix} * & * \\ & * \end{pmatrix} \begin{pmatrix} & I \\ I & \end{pmatrix}, \ Q_i'^{-1} \in \begin{pmatrix} & I \\ I & \end{pmatrix} \begin{pmatrix} * & * \\ & * \end{pmatrix},$$

$$R'_i = Q'_0^{-1}Q'_i \in \begin{pmatrix} * & * \\ & * \end{pmatrix} \begin{pmatrix} & I \\ I & \end{pmatrix}^2 \begin{pmatrix} * & * \\ & * \end{pmatrix} = \begin{pmatrix} * & * \\ & * \end{pmatrix}$$

Breaking Balanced O & V (2)

$$\blacksquare R_i \in A^{-1} \begin{pmatrix} * & * \\ & * \end{pmatrix} A$$

- unique" common block triangular form of R_i for most P' up to lin. changes of the O and V variables separately do not disturb easiness
- find common block triangularization of R_i \rightarrow O & V decomposition of Q_i

e.g. use the *MeatAxe*Kipnis & Shamir: simpler "direct" method
(exploits specialties of the setting)

Unbalanced O & V
 (Kipnis & Patarin 1999)
 better
 "hardness": Bulygin, Petzoldt & Buchmann (2010)

Block triangular forms

■
$$GAH \subseteq \begin{pmatrix} * & * \\ & * \end{pmatrix}$$
, $n-t \times t$ zero lower left block

- reduces many problems
- to the diag. blocks
- e.g, finding full rk. $A \in A$;

Find $B \in \mathcal{A}$ with invertible upper left block, $B \in \mathcal{A}$ with invertible lower block, $\lambda B + C$ will be invertible except for a few λs

"instability"

Block triangular forms (2)

- The full (commutative) rank case: $A_0 \in A$ invertible
- use A_0 as a bijection between the domain and range \sim a prefect matchings: bipartite graphs \rightarrow digraphs
- New matrix space: $A_0^{-1}\mathcal{A} = \{A_0^{-1}A : A \in \mathcal{A}\} \ni I_n$,
- $A_0^{-1}\mathcal{A} = A_0^{-1}\mathcal{A}I \approx_{GL\times GL} \mathcal{A}$, inherits block triang.
- $(GA_0H)^{-1}G\mathcal{A}H = H^{-1}A_0^{-1}G^{-1}G\mathcal{A}H = H^{-1}A_0^{-1}\mathcal{A}H$ "natural" action on $A_0^{-1}\mathcal{A}$: conjugation $X \mapsto H^{-1}XH$ = two-sided action of $GL \times GL$ preserving I

Block triangular forms (3)

•
$$I_n \in \mathcal{A}, H^{-1}\mathcal{A}H \subseteq \begin{pmatrix} * & * \\ & * \end{pmatrix}, n-t \times t$$
 zero block

- First t basis vectors span an $H^{-1}AH$ -invariant subspace U'
 - $U = H^{-1}U'$ t-dim A-invariant subspace
 - Remark: if $I_n \in \mathcal{A}$ and dim $\mathcal{A}U \leq \dim U$ then $\mathcal{A}U = U$.
 - \sim nontrivial strong components in digraphs
- Env(A) enveloping (matrix) algebra closure of A w.r.t. lin. comb. and multiplications
 - ~ transitive closure of digraphs
- A-invariant subspace: submodule for Env(A) (or for the free algebra)

Finding common invariant subspaces

- Quite well studied/understood
- lacktriangle Many of the methods: based on structure of $\operatorname{Env}(\mathcal{A})$ one-sided ideals, zero divisors
 - for $A = \langle I, A_0 \rangle$: factors of the minimum polynomials of A_0
 - general \mathcal{A} : zero div. \leftarrow factoring min. pol. of "good" $A \in \mathsf{Env}(\mathcal{A})$
- over algebraically closed fields: "almost" easy
 - Depends on the computational model
 - Representation size explosion? E.g. "huge" (composite) extensions

$$\blacksquare M_{2n}(\mathbb{Q}) \ni A \sim \begin{pmatrix} \sqrt{2} & & & & \\ & -\sqrt{2} & & & \\ & & \ddots & & \\ & & & \sqrt{p_n} & \\ & & & & -\sqrt{p_n} \end{pmatrix}$$

Finding invariant subspaces - "rationality" issues

- over non-closed base fields (extensions not allowed)
- over finite fields: only randomized methods (in large char), factoring polynomials MeatAxe for group representations
- over Q only a partial decompositions
 - Hardness of distinguishing full matrix algebras from division algebras over \mathbb{Q} (Rónyai 1987):
 - in some generalizations of the quaternions existence of zero divisors \gtrapprox quadratic residuousity mod composite numbers
 - $\mathit{finding}\ \mathsf{zero}\ \mathsf{divisors}$: \succsim factoring integers
 - a motivation in conjecturing the regularity

Using blowups for block triangularization

- $\mathcal{A}' = \mathcal{A} \otimes M_d(F)$ (on $F^n \otimes F^d$). Property $\mathcal{A}' = (I_n \otimes M_d(F))\mathcal{A}' = \mathcal{A}'(I_n \otimes M_d(F))$ (this *characterizes* blowups)
- $A'U' \leq V' \Longrightarrow \mathcal{A}'(I_n \otimes M_d(F))U' \leq (I_n \otimes M_d(F))V'$
- $I_n \otimes M_d(F)$ -invariant subspaces of $F^n \otimes F^d$:
 - $(I \otimes M_d(F))U' = U' \iff U' = U \otimes F^d$ $U = \{u \in F^n : u \otimes v \in U' \text{ for some } 0 \neq v \in F^d\}$ Computing U:
 - v_1, \ldots, v_d : basis for F^d , u'_1, \ldots, u'_k : basis for U'
 - $\mathbf{u}_i' = \sum u_{ij} \otimes v_j \quad u_{ij} \in F^n$
 - U is spanned by u_{ij} (i = 1, ..., k j = 1, ..., d)

Using blowups (2)

- Lower left zero blocks in blowups:
- $A' = \mathcal{A} \otimes M_d(F)$
 - U', V' ($I \times M_d(F)$)-invariant subsp.
 - $U' = U \otimes M_d(F), \ V = V \otimes M_d(F)$
 - $A'U' \le V' \Longleftrightarrow AU \le AV$
 - L.L.Z.B. in $\mathcal{A}' \longleftrightarrow$ L.L.Z.B. in \mathcal{A}
 - lacksquare block triang forms of $\mathcal{A}'\longleftrightarrow$ block triang forms of \mathcal{A}
- Application of constructive ncrank:find
 - "singular" block triang of some blowup \mathcal{A}'
 - \longrightarrow block triang of ${\mathcal A}$
 - lacksquare or an invertible element in *some* blowup \mathcal{A}'
 - \longrightarrow block triang \mathcal{A}'
 - \longrightarrow a block triang of \mathcal{A}'
- More serious applications in the next talk (?)

The Wong sequence

- Given $A_0, A_1, \ldots, A_k \in M_n(F)$

 - $rk A_0 = r < n, c = n r$ (co-rank of A_0)
- Idealistic goal: find

case (1)
$$A' \in A$$
 s.t. $\operatorname{rk} A' > r$ or case (2) $U \leq F^n$ s.t. $\dim AU \leq \dim U - c$

- $U'_0 = (0), \ U_j = A_0^{-1} U'_j, \ U'_{j+1} = \mathcal{A} U_j$
 - $(A_0^{-1}W$: full inverse image of W at A_0)
 - $U'_0 \leq U'_1 \leq \ldots \leq U'_\ell$, $U_0 \leq U_1 \leq \ldots \leq U_\ell$
 - ..., U'_j ,... stops inside im $A_0 \Leftrightarrow case$ (2)
 - otherwise *escapes* from im A_0 : $AU_j \not\subseteq \text{im } A_0$ for some j
- length of the (escaping) Wong sequence

$$\ell = \min\{j : \mathcal{A}U_j \not\subseteq \operatorname{im} A_0\}$$

Length 1 Wong sequence

- $\ell = 1$; basic case n = r + 1, $A_0 = I_r$, r > 0
- \blacksquare \mathcal{A} ker $A_0 \not\leq \operatorname{im} A_0$
- $\exists i$: $A_i \ker A_0 \not\subseteq \operatorname{im} A_0$

$$A_i + \lambda A_0 \approx \begin{pmatrix} B' + \lambda I & * \\ * & b \end{pmatrix} \approx \begin{pmatrix} B'' + \lambda I & * \\ & b \end{pmatrix} (b \neq 0)$$

- has rank > r if λ and is not an eigenvalue of B'' (F large enough)
- "Blind" algorithm

compute
$$\operatorname{rk}(A_i + \lambda A_0)$$

 $(i = 1, \dots, k, \lambda = \lambda_1, \dots, \lambda_{r+1})$

Length 1 - some examples

Examples (long Wong sequences):

$$\mathcal{A}_0 = \left(egin{array}{cccc} & 1 & & & & \\ & & \ddots & & & \\ & & & & 1 \end{array}
ight),$$

- k = 1, $A_1 = i$: rk $(A_0 + A_1) >$ rk A_0
- k = n > 1, $A_i = E_{ii}$: rk $(A_0 + A_i) =$ rk A_0
- Length one a "nice" property:
 - lacksquare independent of the basis for ${\cal A}$
 - preserved by $\approx_{GL_n \times GL_n}$
 - preserved by base filed extension
- $F = \mathbb{R}$; A_0 , A_i pos. szemidef.
 - $\mathbf{v} \in \ker A_0 \setminus \ker A_i = (\operatorname{im} A_0)^{\perp} \setminus \ker A_i$
 - $0 \neq v^T A_i v$, but $v^T A_0 w = 0$ for every w

Length 1 - examples (2)

- lacksquare A_i diagonal $(i=0,\ldots,k)$
 - $\exists i, v : \operatorname{im} A_0 \cap \ker A_0 = (0)$
 - ker A_0 , A_i -invariant (because $A_iA_0 = A_0A_i$)
 - $A_i \ker A_0 \leq \operatorname{im} A_0 \Leftrightarrow \ker A_0 \subseteq \ker A_i$
- Application: simplicity of finite extensions of Q:
 - L: field extension of $F = \mathbb{Q}$, |L:F| = n
 - $a \in L$: F[a] = subring (=subfield) generated by F and a
 - Task: find a s.t. L = F[a]
- Matrix representation of L

$$a \mapsto M_a = \text{matrix of } x \mapsto ax \text{ on } L (n \times n)$$
 identify $a \text{ with } M_a$;

- Facts:
 - lacksquare M_a are simultaneously diagonalizable over $\mathbb C$
 - |F[a]: F| = # distinct eigenvalues of a

simplicity of extensions (2)

- lacksquare $a\mapsto \operatorname{Ad}_{M_a}=\operatorname{matrix}\operatorname{of}X\mapsto M_aX-XM_a$
- lacksquare $\mathcal{A}:=\{\operatorname{Ad}_{M_a}:a\in L\}$ *n*-dim subspace of $M_{n^2}(F)$

- $Ad_{\Delta}E_{ij} = \Delta E_{ij} E_{ij}\Delta = (\delta_i \delta_j)E_{ij}$
- max. rank is $n^2 n$ when $\delta_i \neq \delta_j$ for $i \neq j$
- generalizes to direct sums of field extensions (over perfect base fields)

Short Wong sequences

Key observation of Bläser, Jindal & Pandey (2017)

$$\mathcal{A} = \langle A_0, A_1, \dots, A_k \rangle$$

$$\mathcal{A}' = \langle A_0, A_1' \rangle \text{ (over } F(x_1, \dots, x_k))$$

$$A_1' = x_1 A_1 + \dots, x_k A_k$$

 A_0 not of max rank in \mathcal{A}

$$(F \text{ sufficiently large})$$

 A_0 not of max rank in \mathcal{A}'

$$A_1'U_\ell \not\leq \operatorname{im} A_0$$

$$U_1, \ldots, U_\ell$$
 Wong sequence for A_0 in \mathcal{A}'

Short Wong sequences (2)

- Assume basic case $A_0 = \begin{pmatrix} I_r \\ \end{pmatrix}$, n = r + 1
- $A_1' U_\ell = A_1'^{\ell} \ker A_0$
- lower right entry of A'_1 :
 - nonzero degree ℓ polynomial in x_1, \ldots, x_k
 - \blacksquare has term $a \cdot x_{i_1} \dots x_{i_\ell}$
 - $lacksquare A_0$ is not of max rank in $\mathcal{A}'' = \langle A_0, x_{i_1}A_{i_1} + \ldots + x_{i_\ell}A_{i_\ell} \rangle$
 - $lacksquare A_0$ is not of max rank in $\mathcal{A}'''=\langle A_0,A_{i_1},\ldots,A_{i_\ell} \rangle$.
- Assume $\ell' \ge$ length of Wong seq. for \mathcal{A}' . Then

$$A_0$$
 is of max rank in $\langle A_0, A_1, \dots, A_k \rangle$

$$A_0$$
 is of max rank in $\langle A_0, A_{i_1}, \dots, A_{i_{\ell'}} \rangle$ for every subset $\{i_1, \dots, i_{\ell'}\} \subset \{1, \dots, k\}$

Short Wong sequences (3)

Algorithm (Bläser, Jindal & Pandey (2017))

- Input: A_0, A_1, \ldots, A_k and $\ell \leq k$
- Output: $A'_0 \in \mathcal{A}$ of rank $> \operatorname{rk} A_0$ or: " ℓ IS TOO SMALL"
- for every subset $\{i_1,\ldots,i_\ell\}\subseteq\{1,\ldots,k\}$ try $A_0+\sum_{t=1}^\ell\omega_tA_{i_t}$ for all $(\omega_1,\ldots,\omega_\ell)\in\Omega^\ell$ $(|\Omega|=n)$
- complexity $(kn)^{\ell} \times poly$

Progress of Wong sequences

- Wong sequence $U_0' = (0)$, $U_j' = \mathcal{A}A_0^{-1}A_0$
- $lacksquare U_j'\subseteq \operatorname{im} A_0 \ (j=0,\ldots,\ell-1)$
- Lemma (BJP17 for case k=2) Assume that $\operatorname{rk} A_0 = r < \operatorname{ncrk} A$. Then for every $1 \le j < \ell$, $\dim U_i' \ge \dim U_{i-1}' + \operatorname{ncrk} A r$.
 - sufficient to prove for $n = \operatorname{ncrk} \mathcal{A}$ ("basic case") $A_0 = \begin{pmatrix} I_r \\ \end{pmatrix}; s = \operatorname{ncrk} \mathcal{A},$ take an $s \times s$ "window" of full ncrk
 containing the upper left r by r

Progress of Wong (2)

$$A_{0} = \begin{pmatrix} I_{r} \\ \end{pmatrix} F^{n} = \operatorname{im} A_{0} \oplus \ker A_{0}, \text{ block structure using}$$

$$(0) = U'_{0} < U'_{1} < \dots < U'_{\ell-1} \leq \operatorname{im} A_{0}$$

$$A \ni A = \begin{pmatrix} B_{1} & B_{12} & \dots & B_{17} & B_{18} & B_{19} \\ B_{21} & B_{2} & \dots & B_{27} & B_{28} \\ & \ddots & \ddots & \vdots & \vdots \\ & & B_{76} & B_{7} & B_{8} \\ & & & B_{97} & B_{98} \end{pmatrix}$$

$$(7 = \ell)$$

 B_{jj} square (I for A_0); $B_{\ell+2,\ell} \neq 0$ cyclically shift by n-r

Progress of Wong (3)

diagonal shifted by ncrk - r to the right

$$A pprox egin{pmatrix} B_{19} & B_{1} & B_{12} & \cdots & B_{17} & B_{18} \ & B_{21} & B_{2} & \cdots & B_{27} & B_{28} \ & & \ddots & \ddots & \vdots & \vdots \ & & & B_{76} & B_{7} & B_{78} \ & & & & B_{97} & B_{98} \end{pmatrix}$$

 B_{jj} has \geq ncrk $\mathcal{A} - r$ columns by def of ncrk

Progress of Wong (3)

Approximating the commutative rank

- Bläser, Jindal & Pandey (2017)
- $ightharpoonup r = \max$. rk in $\mathcal{A} = \langle A_1, \dots, A_k \rangle$
- goal: find $A \in \mathcal{A}$: rk $A \ge (1 \epsilon)r$)
- Iteration
 - if $\mathsf{rk}\,A_0 \leq (1 \epsilon r)$ then: length of Wong seq. for A_0 and $x_1A_1 + \ldots + x_kA_k$ $\leq \mathsf{rk}\,A_0/(r - \mathsf{rk}\,A_0) \leq (1 - \epsilon)/\epsilon = 1/\epsilon - 1$
- try $A_0' = A_0 + \omega_1 A_{i_1} + \ldots + \omega_\ell A_{i\ell}$
- replace A_0 with A'_0 if better
- terminate if no improvement
- Cost: $(kn)^{1/\epsilon} \cdot poly$

Thin Wong sequences

- dim $U_{j+1} = \dim U_j + 1 \ (j = 0, \dots, \ell 1)$
- basic case $n = \operatorname{rk} A_0 + 1$

$$\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{17} & B_{18} & b_{19} \\ b_{21} & b_{22} & \cdots & b_{27} & B_{28} \\ & \ddots & \ddots & \vdots & \vdots \\ & & b_{76} & b_{77} & B_{78} \\ & & & B_{87} & B_{88} \\ & & & b_{97} & B_{98} \end{pmatrix} \approx \begin{pmatrix} b_{19} & b_{11} & b_{12} & \cdots & b_{17} & B_{18} \\ & b_{21} & b_{22} & \cdots & b_{27} & B_{28} \\ & & \ddots & \ddots & \vdots & \vdots \\ & & & b_{76} & b_{77} & B_{78} \\ & & & & b_{97} & B_{98} \\ & & & & B_{87} & B_{88} \end{pmatrix}$$

- lacksquare find $A' \in \mathcal{A}$ with no zero diag entry in the big upper left part
- find $A' + \lambda A_0$ with invertible lower right diag block (B_{88})

Thin Wong sequences (2)

■ hardness of rank of diagonal A_i over F of constant size $q \ge 3$:

reduction from coloring with q colors: vertices: v_1, \ldots, v_k , edges e_1, \ldots, e_n $(A_i)_{tt} = \begin{cases} +1 & \text{if } e_t = \{v_i, v_j\}, \ j > i \\ -1 & \text{if } e_t = \{v_i, v_j\}, \ j < i \quad (i = 1, \ldots, k) \\ 0 & \text{otherwise.} \end{cases}$

- special instances:
 - **pencils**: $\mathcal{A} = \langle A_0, A_1 \rangle$
 - A_1, \ldots, A_k of rank one: find smallest ℓ , $A_{i_\ell} \ldots A_{i_1}$ ker $A_0 \not\subseteq \operatorname{im} A_0$ $\mathcal{A} \leftarrow \langle A_0, A_{i_1}, \ldots, A_{i_\ell} \rangle$
 - \blacksquare \exists poly method for $\mathcal A$ spanned by A_0 and unknown rank one matrices

Wong sequences - remarks & problems

Triangularizable spaces of full rank:

$$\mathcal{A} \lessapprox_{GL \times GL} \begin{pmatrix} * & \dots & * \\ & \ddots & \vdots \\ & & * \end{pmatrix}$$

- Would be "length 1" for rk Aⁿ rank of the "diagonal part" triangularization by conjugation
- Dual Wong sequence could recover part of triang structure
- Shortening length of Wong with $A_0 + \lambda A_i$?
 - **Example:** A_0 triangular, A_1, \ldots, A_k diagonal
 - Nicer classes?
- Nice classes for length ≤ 2 ?

Wong sequences - remarks & problems (2)

- Length and blowup size
 - length $\geq 2 \times$ "current" blowup size (sufficient to increase rk A_0)
 - $lue{}$ thinness at a single step ightarrow block triang
 - ⇒ "current" blowup size $\lesssim \operatorname{rk} A_0/4$
 - relation with "final" blowup size?
 - commutative rank for bounded blowup size?
- Rank of generators
 - rank one: blowup size 1
 - rank ≤ 2: current blowup size ≤ 2 (looks so) final blowup size???? in special cases, e.g., (skew) symmetric?
 - rank ≤ c: bound on current blowup size?

Modules

- lacksquare modules for the free algebra $\widetilde{\mathcal{B}} = F\langle X_1, \dots, X_t
 angle$
- n-dimensional (left) $\widetilde{\mathcal{B}}$ -module:

■
$$V \cong F^n$$
, $\cdot : \widetilde{\mathcal{B}} \times V \to V$
bilinear
commutes with \cdot of $\widetilde{\mathcal{B}}$: $(a \cdot b) \cdot v = a \cdot (b \cdot v)$

Notation: $av = a \cdot v$

- input data: linear maps $L_1, \ldots, L_t : V \to V$ ($n \times n$ matrices) action of X_1, \ldots, X_t .
 - \sim multiplication tables in groups
- could take smaller (finite dim.) \mathcal{B}
- Isomorphisms
 - V, V', given by $L_1, \ldots, L_t \in M_n(F), L'_1, \ldots, L'_t \in M_n(F)$
 - $\phi: V \to V'$ bijective linear
 - $X_i \cdot \phi(v) = \phi(X_i \cdot v)$
 - $L_i' \circ \phi = \phi \circ L_i$

Module morphisms (2)

- Homomorphisms
 - V, V', given by $L_1, \ldots, L_t \in M_n(F)$, $L'_1, \ldots, L'_t \in M_{n'}(F)$ Hom $(V, V') := \{\phi : V \to V' \text{ lin. } : \phi \circ L_i = L'_i \circ \phi\}$ subspace of $\text{Lin}_{n' \times n}(F)$ solutions of the lin. constraints $\phi \circ L_i = L'_i \circ \phi$ Isomorphism: n' = n, invertible transf. from Hom(V, V')
- Isomorphism: a full rank matrix \in Hom(V, V') (n' = n)
- In \mathcal{P} :
 - Chistov, I & Karpinski (1997) over many fields;
 - Brooksbank & Luks (08); I, Karpinski & Saxena (010) all fields
- Length 1 Wong sequence in a special case

Module morphisms (3)

submodule

Common invariant subspaces for L_i Block triangular form of L_i simple (irreducible) modules: no proper submodules

direct sum

"external": space
$$V\oplus V'$$
; action $\begin{pmatrix} L_i \\ L_i' \end{pmatrix}$ "internal": $V=V_1\oplus V_2$ (of subspaces), V_1,V_2 submodule block diagonal form for L_i indecomposable modules: no such decomp.

Krull-Schmidt:

```
"uniqueness" of decomposition into indecomposables: isomorphism types and multiplicities \sim factorization of numbers
```

Module isomorphism - the decision version

- An new ncrank-based method
- Key observation:

$$\mathsf{Hom}(V,V')\otimes M_d(F)=\mathsf{Hom}(V^{\oplus d},V'^{\oplus d})$$

■ Consequence: (assume dim $V = \dim V' = n$):

$$V \cong V' \Leftrightarrow \operatorname{ncrk}(\operatorname{Hom}(V, V') = n$$

Proof.

$$V \cong V' \Rightarrow \operatorname{rk}\operatorname{Hom}(V,V') = n \Rightarrow \operatorname{ncrk}\operatorname{Hom}(V,V') = n$$

 $\Rightarrow V^{\oplus d} \cong V'^{\oplus d}$ for some d
 $\Rightarrow V \cong V'$ by (Krull-Schmidt)

Hardness of injectivity

- Are spaces Hom(V, V') special?
 NO: every matrix space is essentially Hom(V, V')
 Construction: I, Karpinski & Saxena (2010)
- \blacksquare A_1, \ldots, A_k arbitrary $n \times n$
- V, V' modules for $F\langle x_1, \dots, x_n, x_{n+1} \rangle$
- \blacksquare dim V = n + 1, dim V' = n + k

■
$$L'_j = \begin{pmatrix} \widehat{A}_j \end{pmatrix}$$
, $n + k \times n + k$

$$\widehat{A}_j = \begin{pmatrix} A_1^{(j)} & \cdots & A_k^{(j)} \end{pmatrix}$$
: j th columns of A_1, \dots, A_k $(j \le n)$
Another "slicing" of the 3-tensor A : $(\widehat{A}_j)_{j\ell} = (A_\ell)_{jj}$

$$\blacksquare L_{n+1} = \begin{pmatrix} I_{n \times n} & \\ & 0 \end{pmatrix}, L'_{n+1} = \begin{pmatrix} I_{n \times n} & \\ & 0_{k \times k} \end{pmatrix}$$

Hardness of injectivity (2)

■ Hom(V, V'): $n + k \times n + 1$ -matrices $C = \begin{pmatrix} B & \\ & \underline{\alpha} \end{pmatrix}$

$$B \in M_n(F), \ \underline{\alpha} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} \in F^n \text{ s.t.:}$$
 $CL_j = L'_j C \ (j = 1, \dots, n)$ \Rightarrow $B = A_{\underline{\alpha}}, \text{ where } A_{\underline{\alpha}} = \alpha_1 A_1 + \dots + \alpha_k A_k$ Proof.

$$CL_{j} = \begin{pmatrix} B^{(j)} \\ \end{pmatrix}$$

$$L'_{j}C = \begin{pmatrix} \alpha_{1}A_{1}^{(j)} + \dots + \alpha_{k}A_{k}^{(j)} \end{pmatrix} = \begin{pmatrix} A_{\underline{\alpha}}^{(j)} \\ \end{pmatrix}$$

■ $\mathsf{Hom}(V,V') \ni C_{\underline{\alpha}} = \begin{pmatrix} A_{\underline{\alpha}} \\ \alpha \end{pmatrix}$ injective $\Leftrightarrow A_{\underline{\alpha}}$ nonsingular

Module isomorphism - the semisimple case

- $lackbreak V\cong V'$ semisimple (the indecomposable components are simple)
- important property: every submodule is a direct summand
- Assume ϕ : Hom(V, V') not invertible.
- Let $V_0 \le \ker \phi$ simple, let $V = V_0 \oplus W_0$.
- Let $V' = V'_1 \oplus \cdots \oplus V'_t$, V'_i irreducible
- By Krull-Schmidt, $\exists i$ s.t. $V'_i \not\in \text{im } \phi$ and $V'_i \cong V_0$.
- $\psi_0: V_0 \to V_i'$ isomorphism
- extend to $V \to V_i' \le V'$: $\psi(v+w) := \psi_0(v)$ $(v \in V_0, w \in W)$
- $\blacksquare \ \psi \ker \phi = V_0 \not\in \operatorname{im} \phi \qquad \Rightarrow \operatorname{length} \ 1 \ \operatorname{Wong}$

Semisimple module algorithm - remarks

- Actually, finds max rank morphisms between semisimple module
- An application to decrease dimension of representation of simple algebras (Babai & Rónyai 1990, revised presentation):

$$\mathcal{B} \cong M_n(F)$$
, (unknown isomorphism)
Every (unital) module is a direct sum of copies of F^n

- V \mathcal{B} -module of dimension nr, r' = g.c.d(n,r), sr = tn + r', $U = \mathcal{B}$ by left mult. find injective $\phi \in \text{Hom}(U^t, V^s)$, $W = \text{im } \phi$ V^s/W is a \mathcal{B} -module of dim. nr'.
- **Example:** n prime, z any zero divisor in \mathcal{B}
 - V = Bz left ideal as module of dimension nr
 - r' = 1, construct *n*-dimensional module \longrightarrow isomorphism with $M_n(F)$.

Module isomorphism - the general case

- Reduction to finding minimum size sets of module generators (~ surjective morphisms from free modules)
 - \blacksquare $\mathcal{H} = \mathsf{Hom}(V, V)$ closed under multiplication: a matrix algebra
 - Hom(V, V') left \mathcal{H} -module
 - lacktriangledown if $V'\cong V$: isomorphism $\leftrightarrow \mathcal{H} ext{-mod}$. generator of $\mathsf{Hom}(V,V')$
- the "length 1" property of the semisimple case can be exploited to finding min. size sets of generators (I, Karpinski & Saxena (2010))
 - Surjectivity from free modules
 - Remark: "free" can be weakened to "projective"

Hidden rank one generators

- I, Karpinski, Qiao, Santha & Saxena (2014)
- lacksquare $\mathcal{A}=\langle A_0,A_1,\ldots,A_k
 angle$ rk $A_i=1$, but A_i unknown $(i=1,\ldots,k)$
- $\blacksquare \ \, \mathsf{Assume} \,\, A_0 = \begin{pmatrix} I_r \\ \end{pmatrix},$
- ℓ : smallest s.t. $\mathcal{A}^{\ell} \ker A_0 \not\subseteq \operatorname{im} A_0$
- $\exists i_1, \ldots, i_\ell : A_{i_\ell} \ldots A_{i_1} \ker A_0 \not\subseteq \operatorname{im} A_0$
- $lacksquare \mathcal{A}^{\ell-s}A_{i_i}\mathcal{A}^{s-1}\ker A_0\in\operatorname{im} A_0 ext{ when }s
 eq j$
 - For s < j: $A_{i_j} \mathcal{A}^{s-1} \ker A_0 = (0)$, (otherwise $\mathcal{A}^{\ell-j-s} \ker A_0 \supseteq A_{i\ell} \dots A_{i_i} \mathcal{A}^{s-1} \ker A_0 = \operatorname{im} A_{i\ell} \not\subseteq \operatorname{im} A_0$)
 - For j > s: $A^{\ell-s}$ im $A_j \subseteq \text{im } A_0$, similarly
- lacksquare \mathcal{A}_j : space of solutions for

$$\mathcal{A}^{\ell-s}X\mathcal{A}^{s-1}\ker A_0\in\operatorname{im} A_0 \quad (s\in\{1,\ldots,\ell\}\setminus\{j\})$$

system of lin eq.

Hidden rank one generators (2)

- lacksquare Compute bases for $\mathcal{A}_1,\ldots,\mathcal{A}_\ell$
- $lacksquare \mathcal{A}_\ell\cdots\mathcal{A}_1$ ker $\mathcal{A}_0\supseteq\mathcal{A}_\ell\cdots\mathcal{A}_1$ ker $\mathcal{A}_0\not\subseteq\mathsf{im}\,\mathcal{A}_0$
- key property: $A_{i_{\ell}} \dots A_{i_{1}} \subseteq \operatorname{im} A_{0}$ if $i_{j} \neq j$ for some j
- Find $B_i \in A_i$: $B_\ell \cdots B_1 \ker A_0 \not\subseteq \operatorname{im} A_0$
 - Pick a basis element B_1 for A_1 s.t. $A_{\ell} \cdots A_2 B_1$ ker $A_0 \not\subset \text{im } A_0$:
 - Then B_2 from basis for A_2 s.t. $A_\ell \cdots A_3 B_2 B_1$ ker $A_0 \not\subset \text{im } A_0$: etc. . . .
- $(B_1 + \ldots + B_\ell)^\ell \ker A_0 = B_\ell \ldots B_1 \ker A_0 \text{ modulo im } A_0$
- Find λ : $\lambda A_0 + B_1 + \dots B_\ell$ has rank rk A_0 .
- rationality issues:
 - rank one generators do not need to be rational example: field extension
 - known rank one generators: over F, even if small