Uniqueness aspects of symplectic fillings

Zhengyi Zhou

IAS

10-4-2019

Zhengyi Zhou (IAS)

∃ ▶ ∢

A contact manifold is a 2n - 1 dimensional manifold with a hyperplane distribution ξ , so that ξ is 'completely non-integrable'(the opposite of ξ coming from a foliation).

A contact manifold is a 2n - 1 dimensional manifold with a hyperplane distribution ξ , so that ξ is 'completely non-integrable'(the opposite of ξ coming from a foliation).

Example

1
$$\mathbb{R}^{2n+1}$$
 with $\xi := \ker(\alpha = \mathrm{d}z - \sum_{i=1}^{n} p_i \mathrm{d}q_i)$.

2
$$S^{2n-1}$$
 with $\xi_{std} := JTS^{2n-1} \cap TS^{2n-1}$.

Figure: Standard contact \mathbb{R}^3

→ < Ξ → </p>

 (W, λ) is called a Liouville filling of contact manifold (Y, ξ) iff $\partial W = Y$ and the following holds

• $\omega := d\lambda$ is a symplectic form on W and there is a vector field X such that $L_X \omega = \omega$ and X is pointing out along boundary.

2
$$\xi = \ker \lambda$$
.

 (W, λ) is called a Liouville filling of contact manifold (Y, ξ) iff $\partial W = Y$ and the following holds

• $\omega := d\lambda$ is a symplectic form on W and there is a vector field X such that $L_X \omega = \omega$ and X is pointing out along boundary.

2
$$\xi = \ker \lambda$$
.

Example

- The standard symplectic ball is a filling of the standard contact sphere.
- **②** The cotangent disk bundle DT^*M is a filling of ST^*M .
- Smoothings of a singularity are fillings of the link of the singularity.

In general, we have Liouville cobordisms between contact manifolds.

Question

Understand this cobordism category.

∃ >

Symplectic field theory (SFT) is a field theory on the cobordism category of contact manifolds, a special case of SFT assigns an algebra $CC_*(Y)$ called contact homology to a contact manifold Y. For the empty contact manifold, the assigned algebra is the ground field \mathbf{k} . Therefore given a filling W of Y, we have a map $\epsilon_W : CC_*(Y) \to \mathbf{k}$, such map is called an augmentation.

Symplectic field theory (SFT) is a field theory on the cobordism category of contact manifolds, a special case of SFT assigns an algebra $CC_*(Y)$ called contact homology to a contact manifold Y. For the empty contact manifold, the assigned algebra is the ground field \mathbf{k} . Therefore given a filling W of Y, we have a map $\epsilon_W : CC_*(Y) \to \mathbf{k}$, such map is called an augmentation.

It is much easier to classify augmentations than to classify fillings.

Slogan

If a contact manifold admits only the trivial augmentation, then many Floer theoretic properties and topological properties of the filling is independent of the filling.

A contact manifold is called asymptotically dynamically convex (ADC) if the SFT gradings are positive.

Theorem (Lazarev)

The ADC property is preserved under subcritical and flexible handle attachment.

A contact manifold is called asymptotically dynamically convex (ADC) if the SFT gradings are positive.

Theorem (Lazarev)

The ADC property is preserved under subcritical and flexible handle attachment.

Example

- (Lazarev) Boundary of flexible Weinstein domain W with $c_1(W) = 0$.
- **2** ST^*M when dim $M \ge 4$.
- (McLean) Links of terminal singularities.

A contact manifold is called asymptotically dynamically convex (ADC) if the SFT gradings are positive.

Theorem (Lazarev)

The ADC property is preserved under subcritical and flexible handle attachment.

Example

- (Lazarev) Boundary of flexible Weinstein domain W with $c_1(W) = 0$.
- **2** ST^*M when dim $M \ge 4$.
- (McLean) Links of terminal singularities.

Theorem (Eliashberg-Floer-McDuff)

Exact fillings of (S^{2n-1}, ξ_{std}) are diffeomorphic to a ball.

* ヨト * ヨ

Theorem (Eliashberg-Floer-McDuff)

Exact fillings of (S^{2n-1}, ξ_{std}) are diffeomorphic to a ball.

The same method was used by Oancea-Viterbo and Barth-Geiges-Zehmisch to reach the following.

Theorem (Barth-Geiges-Zehmisch)

Let Y be a simply connected subcritically fillable contact manifold of dimension \geq 5, then exact fillings of Y have the unique diffeomorphism type.

Theorem (Eliashberg-Floer-McDuff)

Exact fillings of (S^{2n-1}, ξ_{std}) are diffeomorphic to a ball.

The same method was used by Oancea-Viterbo and Barth-Geiges-Zehmisch to reach the following.

Theorem (Barth-Geiges-Zehmisch)

Let Y be a simply connected subcritically fillable contact manifold of dimension \geq 5, then exact fillings of Y have the unique diffeomorphism type.

The strategy of proof is finding a "homological foliation" by pseudo-holomorphic curves, the existence of foliation is hinted by the fact that $W = V \times \mathbb{C}$, when W is subcritical.

イロト イヨト イヨト イヨ

For every Liouville domain W, we can assign it with two Floer type theories $SH^*(W)$, $SH^*_+(W)$, so that they fit into a long exact sequence,

 $\ldots \rightarrow H^*(W) \rightarrow SH^*(W) \rightarrow SH^*(W) \rightarrow H^{*+1}(W) \rightarrow \ldots$

For every Liouville domain W, we can assign it with two Floer type theories $SH^*(W)$, $SH^*_+(W)$, so that they fit into a long exact sequence,

$$\ldots
ightarrow {\sf H}^*({\sf W})
ightarrow {\sf SH}^*({\sf W})
ightarrow {\sf SH}^*_+({\sf W})
ightarrow {\sf H}^{*+1}({\sf W})
ightarrow \ldots$$

Theorem (Z 19')

Let Y be ADC, then $\delta_{\partial} : SH^*_+(W) \to H^{*+1}(W) \to H^{*+1}(Y)$ is independent of the filling W as long as $c_1(W) = 0$ and $\pi_1(Y) \to \pi_1(W)$ is injective. For every Liouville domain W, we can assign it with two Floer type theories $SH^*(W)$, $SH^*_+(W)$, so that they fit into a long exact sequence,

$$\ldots
ightarrow {\sf H}^*({\sf W})
ightarrow {\sf SH}^*({\sf W})
ightarrow {\sf SH}^*_+({\sf W})
ightarrow {\sf H}^{*+1}({\sf W})
ightarrow \ldots$$

Theorem (Z 19')

Let Y be ADC, then $\delta_{\partial} : SH^*_+(W) \to H^{*+1}(W) \to H^{*+1}(Y)$ is independent of the filling W as long as $c_1(W) = 0$ and $\pi_1(Y) \to \pi_1(W)$ is injective.

A quick corollary is that if Y is flexibly fillable, then $H^*(W) \to H^*(Y)$ is independent of filling.

- A E M A E M -

Since 1 ∈ Im δ_∂ is equivalent to SH_{*}(W) = 0, therefore for ADC contact manifolds, the vanishing of symplectic cohomology is independent of filling.

4 E > 4

- Since 1 ∈ Im δ_∂ is equivalent to SH_{*}(W) = 0, therefore for ADC contact manifolds, the vanishing of symplectic cohomology is independent of filling.
- The vanishing of symplectic cohomology is the first symplectic property measuring the complexity of symplectic domains in a whole hierarchy. The next one is the existence of dilation, i.e. ∃x ∈ SH¹(W) such that Δ(x) = 1. In general, we can consider the S¹-equivariant symplectic cohomology, we say W carries a k-dilation, if 1 is killed in the k + 1-th page of the spectral sequence from the u-filtration.

- Since 1 ∈ Im δ_∂ is equivalent to SH_{*}(W) = 0, therefore for ADC contact manifolds, the vanishing of symplectic cohomology is independent of filling.
- The vanishing of symplectic cohomology is the first symplectic property measuring the complexity of symplectic domains in a whole hierarchy. The next one is the existence of dilation, i.e. ∃x ∈ SH¹(W) such that Δ(x) = 1. In general, we can consider the S¹-equivariant symplectic cohomology, we say W carries a k-dilation, if 1 is killed in the k + 1-th page of the spectral sequence from the u-filtration.

Theorem (Z 19')

There are structure maps related to the existence of k-dilation. When Y is ADC, and all of them are independent of the filling W as long as $c_1(W) = 0$ and $\pi_1(Y) \rightarrow \pi_1(W)$ is injective.

A D N A B N A B N A B N

• An instant corollary of the previous theorem is that the existence of *k*-dilation is independent of filling, if the boundary is ADC.

- An instant corollary of the previous theorem is that the existence of *k*-dilation is independent of filling, if the boundary is ADC.
- If Y is ADC, then whether Im δ_{∂} contains an element of degree $> \frac{\dim Y+1}{2}$ is an obstruction to Weinstein fillability. The obstruction is symplectic in natural, in particular, there are infinitely many 4k + 3 contact manifolds that are exactly fillable, almost Weinstein fillable, but not Weinstein fillable.

- An instant corollary of the previous theorem is that the existence of *k*-dilation is independent of filling, if the boundary is ADC.
- If Y is ADC, then whether Im δ_{∂} contains an element of degree $> \frac{\dim Y+1}{2}$ is an obstruction to Weinstein fillability. The obstruction is symplectic in natural, in particular, there are infinitely many 4k + 3 contact manifolds that are exactly fillable, almost Weinstein fillable, but not Weinstein fillable.
- The *k*-dilation can be used to define a cobordism obstruction for ADC manifolds.

Reformulising the constructions using SFT, so that the slogan can be made rigorous once the construction for SFT is completed.

< 3 > <

- Reformulising the constructions using SFT, so that the slogan can be made rigorous once the construction for SFT is completed.
- The existence of k-dilation implies uniruledness, it is unlikely that uniruledness will imply the existence of k-dilation for some k for affine varieties. Is there a symplectic characterization of uniruledness for affine varieties?

- Reformulising the constructions using SFT, so that the slogan can be made rigorous once the construction for SFT is completed.
- The existence of k-dilation implies uniruledness, it is unlikely that uniruledness will imply the existence of k-dilation for some k for affine varieties. Is there a symplectic characterization of uniruledness for affine varieties?
- Some the second sec

<ロト < 四ト < 三ト < 三ト

Zhengyi Zhou (IAS)

Symplectic fillings

▶ < E ▶ E ∽ Q C 10-4-2019 13 / 14

quasi dilation

qusi cyclic dilation

Log Calabi-Yau

positive log Kodaira

イロト イヨト イヨト イヨト

Zhengyi Zhou (IAS)

Symplectic fillings

 Image: Non-4-2019
 Image: Non-4-2019
 Image: Non-4-2019

E ► < E ►

996

Zhengyi Zhou (IAS)

 ▲ ■
 ■
 • ● Q < 0</th>

 10-4-2019
 13 / 14

イロト イヨト イヨト イヨト

Thank you!

メロト メポト メヨト メヨト