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Outline

« Gromov-Witten (GW) theory
* Open Gromov-Witten (OGW) theory

* WDVV equation in GW theory
* Open WDVYV equation in OGW theory

* Quantum product in GW theory
* Relative quantum product in OGW theory



Gromov-Witten theory (g =0)

Setting: (X, w, J) symplectic manifold with almost complex
structure

X = in, @ 2-form such that w”" is a volume form
J € End(TX), J>=-1d, “w-tame”

Example: (CP”, OIS JO)
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Rephrasing the problem

Count elements of %l(ﬂ) such that the marked points are mapped
to given constraints.

Can be expressed as an integral:

GIfVlﬁ(yl, el 71) = evi Y A - Aevy;.

M ()

yj=PDIP], ev;:JM(B)— X



—acts of life

- GW invariants are defined by the above integral if the space
%Kﬂ) is “nice”
« GW are generally hard to compute

* In some cases, can compute GW invariants by the WDVV

(Witten-Dijkgraaf-Verlinde-Verlinde) equation



Open Gromov-Witten theory (g =0

Setting: (X, w, J) symplectic manifold with almost complex structure

1L C X a Lagrangian submanifold
(dimL = EdimX, w|, =0)

Example: (X, L,w, J) = (CP”, RP", wgs, JO)

Assumption: L oriented, relatively spin
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Rephrasing the problem

_ . J—hol, Nul=p € HyX, L; Z)
My (B) = {(u.(D, oD) (X, L),> y - }/~

Zl""’zk’ wl,...,wl ZieaD, LUJED

Want to count elements of %k,,(ﬁ) such that the marked points are mapped to
given constraints:

?

0GW;€;(“1a ooy 5T ...y,) =

J evbia; A -+ A evbyay A evify; A -+ A evif'y;.
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Compactification of %k,l<ﬂ)

if k =0 and
pe Im(HyX;Z) > HyX, L;
= Ker(H,(X,L;Z) — H,(L;.

codimp =1



Invariance problem

OGW]f,l(al, T P S ...y,) ;

J evbja; A -+ A evbray, A evify; A -+ A evi)'y

My (B

Issue: 0 k,l(ﬂ) # (¢ = a priori value not invariant




Definition — some previous results

OGW are defined when
« ST acts on (X, L) (Liu, 2004)

* (X, L,w, J) is a real symplectic manifold with dim~X = 2, 3, real
interior constraints, point boundary constraints (Cho, Solomon, 2006)

- (X, L,w, J) is a real symplectic manifold with dim,~.X odd, no
boundary constraints (Georgieva, 2013)

. %(1 ,76)0) is a Calabi-Yau threefold (Joyce 2006; Fukaya, 2011; Ekholm



Open WDVV — some previous results

OGW satisfy a WDVV-like equation when
(X, L,®,J)is areal symplectic manifold with

« dim,~X = 2, real interior constraints, point boundary
constraints (Solomon, 2007; Horev-Solomon, 2012, Chen 2019)

- dim,~X odd, no boundary constraints (Georgieva-Zinger, 2013)

- dim,~X = 3, real interior constraints, point boundary
constraints, finite group symmetry (Chen-Zinger, 2019)



Our approach (Joint with Jake Solomon)

S

Cancel out Cancel out boundary
boundary bubbling degeneration by
by incorporating spheres

using a bounding
chain



Invariance — Part |

A bounding chain is a special type of boundary constraint.

Geometrically, it keeps track of disk bubbling.

Algebraically, a bounding chain b is a solution of the Maurer-
Cartan equation:

Y m(b®) =c- 1

k>0



m,: A*(L; R)®" » A*(L: R)

m(ay, ..., ay) = (evh) < A evba >+5k1 da,

T Opp - O j )




The (strong) Maurer-Cartan equation

D m(b®) =0
k>0




—_—t8) = [MC
Idea: €2 = <mk(b®k),b> + corrections. ;

the Poincaré pairing

Theorem: 4 € = €2(b), a generating function of
OGW invariants, invariant under gauge equivalence.

Remark: In particular, €2 is invariant under change of constraint
within cohomology class.




Special case

Theorem: If H*(L; R) ~ H*(S"; R), then
b~b o |b=|b.

(7

Signifi T T

Every bounding chain b has the form
b"="a - pt + (non closed corrections)

So, OG W invariants count configurations of disks with point
boundary constraints.
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Invariance — Part ||




The mapping cone complex

itANX;0) > R[—n], i(”l) = [ﬂ ) O < R coefficient rings
L
Cone(i) = A*(X; Q}@R[ —n _\1]\
chains in X data from L
Strategy: (e.g., L)

1. Find an invariant in H*(Cone(i))
2. “Project” to second component

Remark: The plain projection is not a chain map. So, correct by contributions from first
component.



Theorem: 3 Q = Q(b), a generating function of

OC_?I/V, invariant under gauge equivalence.

Q vs.
Fork #0or f & Im(H.X;Z) - H,X, L; 7)),

OGIfVﬂ,k(r]l, e r],) = OGWﬁ,k(m, e ;1,) :

Otherwise, OGI/Vﬁ’k(nl, e n,) =0.



The WDVV equation

—1

X
t; = formal variables associated with y;

@ WDVYV equation:

0,0,0,® £70,0,0® = 0,0,0,P g 0,0,0,P

Vu,v,w,y € {tj}



0,0,/ ® 200,00 = 0,0,)® = 9,0,®

w



Kontsevich (1994)

No. of degree-d curves in
degree = d

through 3d-1 points

620
87,304
26,312,976

14,616,808,192



Open WDVV (Joint with J. Solomon)

[os - - -» Iy = formal variables associated with y;

s = formal variable associated with the bounding chain point part
® = generating function for GW, Q = generating function for OGW

¢ = the Maurer-Cartan constant

Theorem:
0,0,,0® §70,0,Q —9,0,Q - 0,c=

= 9,0 0, 79,0, —09,0,Q -9,

Vu,v € {s,10,...1N} 9 w E {to, ...,tN} .



If [L] =0 € H,(X;R), then
0,0,0P 19,0, — 0,0,Q - 9,0,0-

VW1

0.£2

v-S

= 0,0 0, £70,0,Q —0,0,8 -0

-If [L] #0 € H, (X;R), then

0,0,0,® £70,0,Q — 0,0,Q - 0,00

V"W

= 0,0 0, £70,0,Q — 0,0,Q - 9,0,



0,0,/ ® 200,00 = 0,0,)® = 9,0,®

w









Special case

Theorem:
Let (X, L,w,J) = (CP”, RP", wgs, JO).

Then all OGW invariants are computable via
recursions produced by OWDVV + general properties

of €2 (open Gromov-Witten axioms, wall crossing).




(X, L) = (CP", RP"

Initial condition:

OGW}, =2

degree =
d

O U1 O N U1 W

13

13
19
25

17
25

33
29

points = k
6
10
14
18
8
14
20
26
10
18
26
34
12
22
32

42
34

Resulting invariant

-2
90
-29,178
35,513,586
-2
1974
-42,781,410
7,024,726,794,150
-2
35,498
-40,083,246,650
680,022,893,749,060,370
-2
587,334
-31,424,766,229,890
49,920,592,599,715,322,910,
150
2.247 512.778



Back to the general
case



Quantum product

x  H*(X) ® H*(X) , H*(X)

uxw = the locus of points on spheres that pass through u, w



Assoclativity

(u*w)*v u* (W * v)



0,0, D 0,0, = 0,0,/ 0,0, D

u’v U’ w vy



Assoclativity

(u*w)*v ux (W * )

Corollary: WDVV is equivalent to the associativity of *.




Relative guantum product (Joint with J. Solomon)

n:HX,L)® H*X, L) . H*(X, L)

S
mem

Forin: A*(X;R) — R, iR( ) = r], we have

COne)(:fR (1&))(26% ﬁ@ fﬁ ((aféne)(‘) Cone#)( one(i))




N ((w,0),(u,a)) —

|
N



Assoclativity

u,v,w € H*(X)
n (U N (w, u))
First component:



N(v,n (w,u)) - second component:

u w
b+
A




u-o
= 0,0 0@

0.Q -0 c=

w

0,0 —0,00-dc



Theorem:

The open WDVYV is equivalent to the associativity of n.



Genus zero curves with boundary: Can you count them?

- Pretty much.
Can you really?

- Sometimes...



Thank you



