# Pseudoholomorphic curves with boundary: Can you count them? Can you really?

Members' seminar, Institute for Advanced Study November 2019

#### Outline

- Gromov-Witten (GW) theory
- Open Gromov-Witten (OGW) theory

- WDVV equation in GW theory
- Open WDVV equation in OGW theory
- Quantum product in GW theory
- Relative quantum product in OGW theory

#### Gromov-Witten theory (g = 0)

Setting:  $(X, \omega, J)$  symplectic manifold with almost complex structure

$$X=X^{2n}, \ \omega$$
 2-form such that  $\omega^{\wedge n}$  is a volume form  $J\in End(TX),\ J^2=-\operatorname{Id}$ , " $\omega$ -tame"

Example:  $(\mathbb{C}P^n, \omega_{FS}, J_0)$ 



# J-holomorphic u

$$u_*\big[S^2\big]=\beta\in H_2(X;\mathbb{Z})$$



**Question:** # *u* =?

a) Define invariantly of choices (e.g., representative of 
$$\begin{bmatrix} P_j \\ \Theta \end{bmatrix} \in H_*(X)$$
) Sompute values

#### The moduli space of sphere maps

$$\overline{\mathcal{M}}_l(\beta) = \left\{ \left( u \colon S^2 \xrightarrow{J-hol.} X, \ w_1, \dots, w_l \right) : \begin{array}{l} [u] = \beta \in H_2(X; \mathbb{Z}) \\ w_j \in S^2, \ w_i \neq w_j \end{array} \right\} / \sim$$



# Rephrasing the problem

Count elements of  $\mathcal{M}_l(\beta)$  such that the marked points are mapped to given constraints.

Can be expressed as an integral:

$$GW_l^{\beta}(\gamma_1, ..., \gamma_l) = \int_{\overline{\mathcal{M}}_l(\beta)} ev_1^* \gamma_1 \wedge \cdots \wedge ev_l^* \gamma_l.$$

$$\gamma_j = PD[P_j], \quad ev_j: \overline{\mathcal{M}}_l(\beta) \to X$$

#### Facts of life

- GW invariants are defined by the above integral if the space  $\overline{\mathcal{M}}_l(\beta)$  is "nice"
- ullet GW are generally hard to compute
- In some cases, can compute GW invariants by the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation

#### Open Gromov-Witten theory (g = 0)

Setting:  $(X, \omega, J)$  symplectic manifold with almost complex structure  $L \subset X \text{ a Lagrangian submanifold}$   $(\dim L = \frac{1}{2} \dim X, \ \omega \,|_{L} = 0)$ 

Example:  $(X, L, \omega, J) = (\mathbb{C}P^n, \mathbb{R}P^n, \omega_{FS}, J_0)$ 

Assumption: L oriented, relatively spin



 $\emph{J}$ -holomorphic

$$u_*\big[D^2,\partial D^2\big]=\beta\in H_2(X,L;\mathbb{Z})$$



Question: # u = ?

a) Define invariantly of choices (e.g., representative of

$$\begin{bmatrix} P_j \end{bmatrix} \in H_*(X),$$
 b) Compute 
$$Q_1 \text{ wes } H_*(L)$$

# Rephrasing the problem

$$\overline{\mathcal{M}}_{k,l}(\beta) = \left\{ \begin{array}{l} u: (D, \partial D) \xrightarrow{J-hol.} (X, L), \\ z_1, \dots, z_k, \ w_1, \dots, w_l \end{array} \right\}. \quad [u] = \beta \in H_2(X, L; \mathbb{Z}) \\ z_i \in \partial D, \ w_j \in D \end{array} \right\} / \sim$$

Want to count elements of  $\mathcal{M}_{k,l}(\beta)$  such that the marked points are mapped to given constraints:

$$OGW_{k,l}^{\beta}(\alpha_{1},...,\alpha_{k};\gamma_{1},...\gamma_{l}) \stackrel{?}{=}$$

$$\int evb_{1}^{*}\alpha_{1} \wedge \cdots \wedge evb_{k}^{*}\alpha_{k} \wedge evi_{1}^{*}\gamma_{1} \wedge \cdots \wedge evi_{l}^{*}\gamma_{l}.$$

$$\overline{\mathcal{M}}_{k,l}(\beta)$$

# Compactification of $\mathcal{M}_{k,l}(\beta)$



#### Invariance problem

$$OGW_{k,l}^{\beta}(\alpha_{1},...,\alpha_{k};\gamma_{1},...\gamma_{l}) \stackrel{?}{=}$$

$$\int evb_{1}^{*}\alpha_{1} \wedge \cdots \wedge evb_{k}^{*}\alpha_{k} \wedge evi_{1}^{*}\gamma_{1} \wedge \cdots \wedge evi_{l}^{*}\gamma_{l}$$

$$\overline{\mathcal{M}}_{k,l}(\beta)$$

<u>Issue</u>:  $\partial \overline{\mathcal{M}}_{k,l}(\beta) \neq \emptyset \implies$  a priori value not invariant

#### Definition – some previous results

#### OGW are defined when

- $S^1$  acts on (X, L) (Liu, 2004)
- $(X, L, \omega, J)$  is a real symplectic manifold with  $\dim_{\mathbb{C}} X = 2, 3$ , real interior constraints, point boundary constraints (Cho, Solomon, 2006)
- $(X,L,\omega,J)$  is a real symplectic manifold with  $\dim_{\mathbb{C}}X$  odd, no boundary constraints (Georgieva, 2013)
- $(X,\omega)$  is a Calabi-Yau threefold (Joyce 2006; Fukaya, 2011; Ekholm 2017)

#### Open WDVV – some previous results

OGW satisfy a WDVV-like equation when  $(X,L,\omega,J)$  is a real symplectic manifold with

- $\dim_{\mathbb{C}} X = 2$ , real interior constraints, point boundary constraints (Solomon, 2007; Horev-Solomon, 2012, Chen 2019)
- $\dim_{\mathbb{C}} X$  odd, no boundary constraints (Georgieva-Zinger, 2013)
- $\dim_{\mathbb{C}} X = 3$ , real interior constraints, point boundary constraints, finite group symmetry (Chen-Zinger, 2019)

#### Our approach (Joint with Jake Solomon)





Cancel out boundary bubbling by using a bounding chain

Cancel out boundary degeneration by incorporating spheres

#### Invariance – Part I

A bounding chain is a special type of boundary constraint.

Geometrically, it keeps track of disk bubbling.

Algebraically, a bounding chain b is a solution of the Maurer-Cartan equation:

$$\sum_{k\geq 0} \mathfrak{m}_k(b^{\otimes k}) = c \cdot 1$$

$$\mathfrak{m}_k: A^*(L;R)^{\otimes k} \longrightarrow A^*(L;R)$$

$$\mathbf{m}_k(\alpha_1, \ldots, \alpha_k) = (evb_0)_* \left( \wedge_{j=1}^k evb_j^* \alpha_j \right) + \delta_{k,1} \cdot d\alpha_1$$



#### The (strong) Maurer-Cartan equation

The strong MC equation of the  $A_{\infty}$  algebra  $\left(A^*(L;R),\left\{\mathfrak{m}_k\right\}_{k=0}^{\infty}\right)$ :

$$\sum_{k \ge 0} \mathfrak{m}_k(b^{\bigotimes k}) = 0$$



$$\underline{\operatorname{Idea}} \colon \Omega = \left\langle \mathfrak{m}_k \big( b^{\otimes k} \big), b \right\rangle \, + \, \operatorname{corrections} . \qquad \begin{array}{c} \langle \eta, \zeta \rangle := \int \eta \wedge \zeta \\ \text{the Poincaré pairing} \end{array}$$

Theorem:  $\exists \ \Omega = \Omega(b)$ , a generating function of OGW invariants, invariant under gauge equivalence.

Remark: In particular,  $\Omega$  is invariant under change of constraint within cohomology class.

# Special case

Theorem: If 
$$H^*(L;\mathbb{R}) \simeq H^*(S^n;\mathbb{R})$$
, then  $b \sim b' \Leftrightarrow \int b = \int b'.$  Significance:

Every bounding chain b has the form

$$b = a \cdot pt + (non\ closed\ corrections)$$

So, OGW invariants count configurations of disks with point boundary constraints.





# Invariance - Part II



#### The mapping cone complex

$$i\!:\!A^*(X;Q) o R[-n]$$
 ,  $i\!\left(\eta\right)=\int\limits_L\eta$  ,  $Q\le R$  coefficient rings

$$Cone(i) = A^*(X; Q) \oplus R[-n-1]$$
chains in  $X$ 
data from  $L$ 
(e.g.,  $\Omega$ )

#### **Strategy:**

- 1. Find an invariant in  $H^*(Cone(i))$
- 2. "Project" to second component

Remark: The plain projection is not a chain map. So, correct by contributions from first component.

Theorem:  $\exists \ \bar{\Omega} = \bar{\Omega}(b)$ , a generating function of

 $O\overline{G}W$ , invariant under gauge equivalence.

#### $\underline{\Omega}$ vs. $\bar{\Omega}$ :

For  $k \neq 0$  or  $\beta \notin Im(H_2(X; \mathbb{Z}) \rightarrow H_2(X, L; \mathbb{Z}))$ ,

$$OGW_{\beta,k}(\eta_1,...,\eta_l) = O\bar{G}W_{\beta,k}(\eta_1,...,\eta_l).$$

Otherwise,  $OGW_{\beta,k}ig(\eta_1,...,\eta_lig)=0$  .

# The WDVV equation

$$\gamma_j \in H^*(X; \mathbb{R})$$
 basis;  $g_{ij} = \int_X \gamma_i \wedge \gamma_j$ ,  $(g^{ij}) = (g_{ij})^{-1}$ 

 $t_j$  = formal variables associated with  $\gamma_j$ 

#### Φ WDVV equation:

$$\partial_u \partial_v \partial_i \Phi \ g^{ij} \partial_j \partial_w \partial_v \Phi \ = \ \partial_u \partial_w \partial_i \Phi \ g^{ij} \ \partial_j \partial_v \partial_v \Phi$$

$$\forall u, v, w, y \in \left\{t_j\right\}$$

# $\partial_u \partial_v \partial_i \Phi g^{ij} \partial_j \partial_w \partial_y \Phi = \partial_u \partial_w \partial_i \Phi g^{ij} \partial_j \partial_v \partial_y \Phi$







#### Kontsevich (1994)

| degree = d | No. of degree-d curves in through 3d-1 points |  |
|------------|-----------------------------------------------|--|
| 1          | 1                                             |  |
| 2          | 1                                             |  |
| 3          | 12                                            |  |
| 4          | 620                                           |  |
| 5          | 87,304                                        |  |
| 6          | 26,312,976                                    |  |
| 7          | 14,616,808,192                                |  |

# Open WDVV (Joint with J. Solomon)

 $t_0, \ldots, t_N$  = formal variables associated with  $\gamma_j$  s = formal variable associated with the bounding chain point part  $\Phi$  = generating function for GW,  $\bar{\Omega}$  = generating function for  $O\bar{G}W$  c = the Maurer-Cartan constant

#### Theorem:

$$\partial_{\nu}\partial_{\omega}\partial_{i}\Phi g^{ij}\partial_{j}\partial_{u}\bar{\Omega} - \partial_{\nu}\partial_{\omega}\bar{\Omega} \cdot \partial_{u}c =$$

$$= \partial_u \partial_w \partial_i \Phi \ g^{ij} \partial_j \partial_v \bar{\Omega} \ - \partial_u \partial_w \bar{\Omega} \cdot \partial_v c$$

$$w_{u,v \in \{s,t_0,...,t_N\}}, w \in \{t_0,...,t_N\}.$$

• If  $[L] = 0 \in H_n(X; \mathbb{R})$ , then

$$\partial_{v}\partial_{w}\partial_{i}\Phi g^{ij}\partial_{j}\partial_{u}\bar{\Omega} - \partial_{v}\partial_{w}\bar{\Omega} \cdot \partial_{u}\partial_{s}\bar{\Omega} =$$

$$= \partial_u \partial_w \partial_i \Phi \ g^{ij} \partial_j \partial_v \bar{\Omega} \ - \partial_u \partial_w \bar{\Omega} \cdot \partial_v \partial_s \bar{\Omega}$$

• If  $[L] \neq 0 \in H_n(X; \mathbb{R})$ , then

$$\partial_{v}\partial_{w}\partial_{i}\Phi g^{ij}\partial_{j}\partial_{u}\Omega - \partial_{v}\partial_{w}\Omega \cdot \partial_{u}\partial_{s}\Omega =$$

$$= \partial_u \partial_w \partial_i \Phi g^{ij} \partial_j \partial_v \Omega - \partial_u \partial_w \Omega \cdot \partial_v \partial_s \Omega$$

# $\partial_u \partial_v \partial_i \Phi g^{ij} \partial_j \partial_w \partial_y \Phi = \partial_u \partial_w \partial_i \Phi g^{ij} \partial_j \partial_v \partial_y \Phi$





$$\partial_{v}\partial_{w}\partial_{i}\Phi g^{ij}\partial_{j}\partial_{u}\bar{\Omega} - \partial_{v}\partial_{w}\bar{\Omega} \cdot \partial_{u}\partial_{s}\bar{\Omega} =$$

$$= \partial_{u}\partial_{w}\partial_{i}\Phi g^{ij}\partial_{j}\partial_{v}\bar{\Omega} - \partial_{u}\partial_{w}\bar{\Omega} \cdot \partial_{v}\partial_{s}\bar{\Omega}$$



# Special case

#### Theorem:

Let 
$$(X, L, \omega, J) = (\mathbb{C}P^n, \mathbb{R}P^n, \omega_{FS}, J_0)$$
.

Then all OGW invariants are computable via recursions produced by OWDVV + general properties of  $\bar{\Omega}$  (open Gromov-Witten axioms, wall crossing).

 $(X,L)=(\mathbb{C}P^n,\mathbb{R}P^n)$ 

Initial condition:

$$OGW_{1,2}^n = 2$$

| dim = n | degree =<br>d | No. of boundary points = k | Resulting invariant                |
|---------|---------------|----------------------------|------------------------------------|
| 3       | 3             | 6                          | -2                                 |
|         | 5             | 10                         | 90                                 |
|         | 7             | 14                         | -29,178                            |
|         | 9             | 18                         | 35,513,586                         |
| 5       | 5             | 8                          | -2                                 |
|         | 9             | 14                         | 1974                               |
|         | 13            | 20                         | -42,781,410                        |
|         | 17            | 26                         | 7,024,726,794,150                  |
| 7       | 7             | 10                         | -2                                 |
|         | 13            | 18                         | 35,498                             |
|         | 19            | 26                         | -40,083,246,650                    |
|         | 25            | 34                         | 680,022,893,749,060,370            |
| 9       | 9             | 12                         | -2                                 |
|         | 17            | 22                         | 587,334                            |
|         | 25            | 32                         | -31,424,766,229,890                |
|         | 33            | 42                         | 49,920,592,599,715,322,910,<br>150 |
| 15      | 29            | 34                         | 2,247,512,778                      |

# Back to the general case

# Quantum product

$$*: H^*(X) \otimes H^*(X) \longrightarrow H^*(X)$$

u\*w = the locus of points on spheres that pass through u, w



# Associativity

$$(u * w) * v$$



$$u*(w*v)$$



$$\partial_u \partial_v \partial_i \Phi g^{ij} \partial_j \partial_w \partial_y \Phi = \partial_u \partial_w \partial_i \Phi g^{ij} \partial_j \partial_v \partial_y \Phi$$





# Associativity





<u>Corollary</u>: WDVV is equivalent to the associativity of \*.

#### Relative quantum product (Joint with J. Solomon)

$$h^*(X,L)\otimes H^*(X,L)\longrightarrow H^*(X,L)$$

For 
$$i_{\mathbb{R}}: A^*(X; \mathbb{R}) \to \mathbb{R}$$
,  $i_{\mathbb{R}}(\eta) = \int_{L} \eta$ , we have 
$$Cone(i_{\mathbb{R}}) \overline{H}^* (Cone(i)) \otimes H^* (Cone(i)) \xrightarrow{L} Cone(i)$$

# Associativity

$$u, v, w \in H^*(X)$$

$$\alpha(v, \alpha(w, u))$$

#### First component:



#### $\alpha(v, \alpha(w, u))$ - second component:



$$\begin{array}{ll} \partial_{v}\partial_{w}\partial_{i}\Phi \ g^{ij}\partial_{j}\partial_{u}\bar{\Omega} & -\partial_{u}\partial_{v}\bar{\Omega}\cdot\partial_{u}c = \\ & = \partial_{v}\partial_{w}\partial_{i}\Phi \ g^{ij}\partial_{j}\partial_{u}\bar{\Omega} - \partial_{u}\partial_{v}\bar{\Omega}\cdot\partial_{u}c \end{array}$$



#### Theorem:

The open WDVV is equivalent to the associativity of מ.

#### So...

Genus zero curves with boundary: Can you count them?

- Pretty much.

Can you really?

- Sometimes...

Thank you