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Introduction and Summary
In this lecture we will focus on Yajima’s Lp theory for wave
operators, especially in R3, and the structure result that emerged
from it.

Recall definition of wave operators

Iterated resolvent identity, and it’s dual, Duhamel expansion

Write wave operator as a (formal) infinite series involving the
free Schrödinger evolution. Terminating the series is
expensive, as it involves the unknown evolution.

Beceanu’s Wiener algebra formalism is a summation method
for summing a divergent series.

Solve an inversion problem in a suitable (somewhat
complicated) algebra of operators. The invertibility condition
guaranteed by spectral theory and zero energy condition.

Restriction theory for the Fourier transform (Stein-Tomas),
Strichartz estimates, crucial for the argument

Open problem: redo in scaling invariant norm
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Wave operators

Let V real-valued potential in Rd , bounded, sufficiently decaying,
H := −∆ + V , H0 := −∆. Define

W± := lim
t→∓∞

e itHe−itH0

Exists in the strong L2-sense: d ≥ 3, f ∈ L1 ∩ L2(Rd), V ∈ L2:

W±f = f ∓ i

∫ ∞
0

e itHVe−itH0f dt∫ ∞
1

∥∥e itHVe−itH0f
∥∥

2
dt ≤

∫ ∞
1
‖V ‖2‖e−itH0f ‖∞ dt

. ‖V ‖2

∫ ∞
1

t−
d
2 ‖f ‖1 dt <∞

Unitarity of evolution, density of L1 ∩ L2(Rd) in L2 shows limit
exists for all f ∈ L2 and W± are isometries.
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Intertwining property of wave operators

f (H)W± = W±f (H0), or

f (H)P = f (H)W±W
∗
± = W±f (H0)W ∗

±,

with P orthogonal projection onto Ran(W±). Easy to see:
Ran(W±) ⊥ L2

pp (eigenfunctions of H). Asymptotic completeness:

Ran(W±) = L2
ac(Rd), L2

sc = {0}.
Iterated resolvent identity:

R(λ) = (H − (λ2 + i0))−1 = R0(λ) + R0(λ)VR(λ) =

= ... = R0(λ) + R0(λ)VR0(λ) + R0(λ)VR0(λ)VR0(λ) + . . .

If V short range, small: R(λ) inherits the limiting absorption

principle. Split V = |V |
1
2 sign(V )|V |

1
2 = |V |

1
2 U.

Large V : R(λ) = R0(λ) + R0(λ)|V |
1
2 (I − UR0(λ)|V |

1
2 )−1UR0(λ).
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Yajima’s Lp theory for the intertwining operator

In the 1990s Kenji Yajima showed that W± : Lp(Rd)→ Rd(Rd),
1 ≤ p ≤ ∞, d ≥ 3, and 1 < p <∞, d = 1, 2. He needed to
assume enough decay (and regularity in d ≥ 4), and no zero energy
eigenvalue/resonance. In dim=3 he needed |V (x)| ≤ 〈x〉−5−ε. If
zero energy singular, then 3/2 < p < 3, |V (x)| ≤ 〈x〉−6−ε.

Corollary: dispersive estimates for e itΦ(H)Pc(H) from those for
e itΦ(H0) via

e itΦ(H)Pc(H) = We itΦ(H0)W ∗

Importance of 0 energy condition implied by this, too. For
example, in dim=3∥∥e itH f ∥∥∞ ≤ ‖W ‖∞→∞‖W ‖1→1 Ct−

3
2 ‖f ‖1, f ⊥ bound states

Possible issues: (i) strong assumptions on potential (ii) in some
nonlinear applications 0 energy singularities do arise.
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Yajima’s proof, expansion of the wave operators
Iterate Duhamel (Fourier transform of iterated resolvent identity)
with f ∈ L2:

Wf = f + W1f + . . .+ Wnf + . . . ,

W1f = i

∫
t>0

e−it∆Ve it∆f dt, . . .

Wnf = in
∫
t>s1>...>sn−1>0

e−i(t−s1)∆Ve−i(s1−s2)∆V . . .

e−isn−1∆Ve it∆f dt ds1 . . . dsn−1

Keel-Tao Strichartz endpoint (in R3)

‖e itH0f ‖
L2
tL

6,2
x

. ‖f ‖L2∥∥∥∫
R
e−isH0F (s) ds

∥∥∥
L2
x

. ‖F‖
L2
tL

6/5,2
x

,

V : L6,2
x (R3)→ L

6/5,2
x (R3), V ∈ L

3
2
,∞(R3)

Dyson series converges in L2 if ‖V ‖3/2 � 1.
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Representations of the summands Wn

Taking Fourier transforms on the previous slides yield, for V , f , g
Schwartz functions, ε > 0:

〈W ε
n f , g〉 =

(−1)n

(2π)3

∫
R3(n+1)

∏n
`=1 V̂ (ξ` − ξ`−1) dξ1 . . . dξn−1∏n

`=1(|η + ξ`|2 − |η|2 + iε)
f̂ (η)ĝ(η + ξn) dη dξn

〈W ε
1+f , g〉 = − 1

(2π)3

∫
R6

V̂ (ξ)

|η + ξ|2 − |η|2 + iε
f̂ (η)ĝ(η + ξ) dη dξ

=

∫
R6

K ε
1 (x , x − y)f (y) dy g(x) dx

K ε
1 (x , z) = c |z |−2

∫ ∞
0

e−isẑ·(x−z/2)V̂ (−sẑ)e−ε
|z|
2s s ds, ẑ = z/|z |

K1(x , z) = c |z |−2L(|z | − 2x · ẑ , ẑ), L(r , ω) =

∫ ∞
0

V̂ (−sẑ)e i
rs
2 s ds
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The structure of W1 in R3

Sωx := x − 2(ω · x)ω reflection about plane ω⊥.

(W1f )(x) =

∫ ∞
0

∫
S2

L(r − 2ω · x , ω)f (x − rω) drdω

=

∫
S2

∫
R
1[r>−2ω·x]L(r , ω)f (Sωx − rω) drdω

=

∫
S2

∫
R3

g1(x , dy , ω)f (Sωx − y) dω

Therefore, with H1
`ω

Hausdorff measure on line along ω

g1(x , dy , ω) := 1[(y+2x)·ω>0]L(y · ω, ω)H1
`ω(dy)∫

S2

‖g1(x , dy , ω)‖MyL∞x dω ≤
∫
S2

∫
R
|L(r , ω)| drdω =: ‖L‖

‖W1f ‖p ≤ ‖L‖‖f ‖p
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Bounding L
Define

‖f ‖Bβ := ‖1[|x |≤1]f ‖2 +
∞∑
j=0

2jβ
∥∥1[2j≤|x |≤2j+1]f

∥∥
2
<∞

Then Ḃ
1
2 ↪→ L

3
2
,1(R3), Ḃ1 ↪→ L

6
5
,1(R3), and

‖L(r , ω)‖L2
r,ω

. ‖V ‖L2

‖L(r , ω)‖L1
r,ω

.
∑
k∈Z

2k/2‖1[2k ,2k+1](|r |)L(r , ω)‖L2
r,ω

. ‖V ‖
Ḃ

1
2
. ‖V ‖

B
1
2

Yajima showed for small potentials that ‖V ‖B1+ε � 1 implies

‖Wnf ‖p ≤ Cn‖V ‖nB1+ε ‖f ‖p

which can be summed. For large potentials he incurred significant
losses by terminating the expansion through the last term which
contains perturbed evolution.
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Structure Theorem I

Theorem (Beceanu-S. 16)

V ∈ B1+ real-valued, zero energy regular for H = −∆ + V . There
exists g(x , dy , ω) ∈ L1

ωMyL
∞
x with∫

S2

‖g(x , dy , ω)‖MyL∞x dω <∞

(W+f )(x) = f (x) +

∫
S2

∫
R3

g(x , dy , ω)f (Sωx − y) dω.

X Banach space of measurable functions on R3, invariant under
translations and reflections, Schwartz functions are dense (or dense
in Y with X = Y ∗). Assume ‖1H f ‖X ≤ A‖f ‖X for all half spaces
H ⊂ R3 and f ∈ X with some uniform constant A. Then

‖W+f ‖X ≤ AC (V )‖f ‖X ∀ f ∈ X

where C (V ) is a constant depending on V alone.
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Structure Theorem II

Theorem (Beceanu-S. 16)

V ∈ B1+2γ , 0 < γ, with 0 energy hypothesis. Then∫
S2

‖g(x , dy , ω)‖MyL∞x dω ≤ C0(1 + ‖V ‖B1+2γ )38+ 105
γ (1 + M0)4+ 3

γ

sup
η∈R3

sup
ε>0

∥∥(I + R0(|η|2 ± iε)V
)−1∥∥

∞→∞ =: M0 <∞

C0 absolute constant.

0 energy regular means that ‖
(
I + (−∆)−1V

)−1∥∥
∞→∞ <∞.

would be desirable to bound M0 through this and size of V is
some sense. Control of M0 is not effective. See
Rodnianski-Tao 2015, effective limiting absorption principles.

Fall short by 1
2 of scaling invariant class Ḃ

1
2 . First theorem

also works in B1, but lose quantitative control there.
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Wiener algebra and inversion

We cannot sum the Dyson series. Instead we use Beceanu’s
operator-valued Wiener formalism. Recall classical Wiener theorem:

Proposition

Let f ∈ L1(Rd). There exists g ∈ L1(Rd) with

(1 + f̂ )(1 + ĝ) = 1 on Rd (1)

iff 1 + f̂ 6= 0 everywhere. Equivalently, there exists g ∈ L1(Rd) so
that

(δ0 + f ) ∗ (δ0 + g) = δ0 (2)

iff 1 + f̂ 6= 0 everywhere on Rd . The function g is unique.

Two critical features (compactness as in Arzela-Ascoli):

uniform L1-modulus of continuity under translation.

vanishing at ∞ in L1 sense.
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Classical Wiener Theorem proof

χ Schwartz function, χ̂(ξ) = 1, |ξ| ≤ 1, χ̂ of compact support.
Take L� 1 so that

‖f1‖1 <
1

2
, f1 := f − Ldχ(L·) ∗ f

Then by a series expansion can write
(δ + f1)−1 = δ − f1 + f1 ∗ f1 − . . .. Thus find g1 ∈ L1 with

(1 + f̂1(ξ))(1 + ĝ1(ξ)) = (1 + f̂ (ξ))(1 + ĝ1(ξ)) = 1, |ξ| � 1

Need to find solution g2 ∈ L1 for |ξ| � 1, then combined by
partition of unity on Fourier side (convolution by Schwartz
functions in the original variable).
Fix ξ0 ∈ Rd , z0 := (1 + f̂ (ξ0))−1. We want to find g ∈ L1 s.t.[

1 + z0(f̂ (ξ)− f̂ (ξ0))
][

1 + ĝ(ξ)
]

= z0, |ξ − ξ0| � 1

This is enough, by covering |ξ| ≤ 100L by finitely many such
intervals, again partition of unity.
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Classical Wiener Theorem, proof continued

For any 1 > ε > 0,

ωε,ξ0(x) := e ix ·ξ0εdχ(εx), ω̂ε,ξ0(ξ) = χ̂(ε−1(ξ − ξ0))

Then

sup
ξ0∈Rd

∥∥f ∗ ωε,ξ0 − f̂ (ξ0)ωε,ξ0

∥∥
1
→ 0 as ε→ 0

Indeed,

f ∗ ωε,ξ0(x)− f̂ (ξ0)ωε,ξ0(x)

=

∫
Rd

f (y)e i(x−y)·ξ0εd [χ(ε(x − y))− χ(εx)] dy

and send ε→ 0 by Lebesgue dominated convergence:∥∥f ∗ ωε,ξ0(x)− f̂ (ξ0)ωε,ξ0(x)
∥∥
L1
x

=

∫
Rd

|f (y)|‖εd [χ(ε(x − y))− χ(εx)]‖L1
x
dy

=

∫
Rd

|f (y)|‖χ(· − εy)− χ(·)‖L1
x
dy
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Classical Wiener Theorem, proof continued

Hence, we may solve[
1 + z0(f̂ (ξ)− f̂ (ξ0))

][
1 + ĝ(ξ)

]
= z0, |ξ − ξ0| � 1

by a series because for ξ near ξ0 we have

z0(f̂ (ξ)− f̂ (ξ0)) = z0F
[
f ∗ ωε,ξ0 − f̂ (ξ0)ωε,ξ0

]
and we can take |ε| � 1 so that

|z0|
∥∥f ∗ ωε,ξ0 − f̂ (ξ0)ωε,ξ0

∥∥
1
<

1

2

Two main ingredients: (i) vanishing at infinity in L1 sense. (ii)
uniform L1 modulus of continuity.
This is the proof scheme we use in the operator setting, i.e., when
functions take values in certain spaces of operators. Dividing by
complex numbers gets replaced by inversion of operators.
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An operator-valued version

X Banach space, WX algebra of bounded linear maps
T : X → L1(R;X ) with convolution

S ∗ T (ρ)f =

∫
R
S(ρ− σ)T (σ)f dσ

Adjoin unit, denote larger algebra W̃X . Fourier transform satisfies

sup
λ
‖T̂ (λ)‖B(X ) ≤ ‖T‖WX

Theorem (Beceanu 2009, Beceanu-Goldberg 2010)

Suppose T ∈ WX satisfies

1 lim
δ→0
‖T (ρ)− T (ρ− δ)‖WX

= 0.

2 lim
R→∞

‖Tχ|ρ|≥R‖WX
= 0.

If I + T̂ (λ) invertible in B(X ) for all λ, then 1 + T possesses an

inverse in W̃X of the form 1 + S .
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Wiener algebra and resolvents

Set R−0 (λ2)(x) = (4π|x |)−1e−iλ|x |, T̂−(λ) = VR−0 (λ2). Then

T−(ρ)f (x) = (4πρ)−1V (x)

∫
|x−y |=ρ

f (y) dy (3)

and thus∫
R3

∫
R
|T−(ρ)f (x)| dx dρ ≤ 1

4π

∫
R3

∫
R3

|V (x)|
|x − y |

|f (y)| dy dx

≤ 1

4π
‖V ‖K‖f ‖1.

where ‖V ‖K = ‖|x |−1 ∗ |V |‖∞. Algebra is WL1 , pointwise
invertibility condition on Fourier side:

(I + VR−0 (λ2))−1 ∈ B(L1)

Spectral theory/zero energy assumption. Beceanu-Goldberg thus
prove dispersive estimates for Schrödinger in R3 for ‖V ‖K <∞.
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Small versus large Kato norm

Rodnianski-S. 2000 show that if

sup
x∈R3

∫
R3

|V (y)|
|x − y |

dy < 4π

then for V real valued one has dispersive estimate

‖e itH f ‖∞ ≤ C |t|−
3
2 ‖f ‖1, H = −∆ + V

Strategy: write evolution via functional calculus, density of
spectral measure is imaginary part of the resolvent, expand
resolvent into an infinite Born series, derive time decay from
oscillatory integrals.
Open problem was then to do something similar for large V of this
type. Beceanu-Goldberg did that (assuming zero energy regular)
by means of the Wiener algebra on the previous slide.
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Algebra for intertwining operators

The formulas for Wn suggest using three-variable kernels. Set

Z := {T (x0, x1, y) ∈ S ′(R9) | FyT (x0, x1, η) ∈ L∞η L∞x1
L1
x0
}

‖T‖Z := sup
η∈R3

‖FyT (x0, x1, η)‖L∞x1
L1
x0

Operation ~ on T1,T2 ∈ Z

(T1 ~ T2)(x0, x2, y) = F−1
η

[ ∫
R3

FyT1(x0, x1, η)FyT2(x1, x2, η) dx1

]
(y)

Seminormed space V−1B defined as

V−1B = {f measurable | V (x)f (x) ∈ Bσ}

with the seminorm ‖f ‖V−1B := ‖Vf ‖Bσ . Set Xx ,y := L1
yV
−1Bx .

Then L1
yL
∞
x dense in Xx ,y .
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Xx ,y and Y spaces

Let Y be the space (algebra under ~) of three-variable kernels

Y :=
{
T (x0, x1, y) ∈ Z | ∀f ∈ L∞

(fT )(x1, y) :=

∫
R3

f (x0)T (x0, x1, y) dx0 ∈ Xx1,y

}
,

with norm

‖T‖Y := ‖T‖Z + ‖T‖B(V−1Bx0 ,Xx1,y )

For X ∈ L1
yL
∞
x , define contraction of T ∈ Y by X to be

(XT )(x , y) :=

∫
R6

X(x0, y0)T (x0, x , y − y0) dx0 dy0.

Then XT ∈ Xx ,y , ‖XT‖X ≤ ‖T‖Y ‖X‖X . This turns Y into an
algebra.
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Y and Wn

Reason behind these structures: define

FyT
ε
1+(x0, x1, η) = e−ix1η R0(|η|2 − iε)(x0, x1)V (x0) e ix0η

T ε
2+ = T ε

1+ ~ T ε
1+, T

ε
3+ = T ε

2+ ~ T ε
1+ etc.

Then

〈W ε
n+f , g〉 =

(−1)n

(2π)3

∫
R6

F−1
x0
Fxn,yT

ε
n+(0, ξn, η)f̂ (η)ĝ(η + ξn) dη dξn

= (−1)n
∫
R9

F−1
x0

T ε
n+(0, x , y)f (x − y)g(x) dy dx .

as well as

〈W ε
+f , g〉

= 〈f , g〉 − 1

(2π)3

∫
R6

F−1
x0
Fx1,yT

ε
+(0, ξ1, η)f̂ (η)ĝ(η + ξ1) dη dξn

= 〈f , g〉 −
∫
R9

F−1
x0

T ε
+(0, x , y)f (x − y)g(x) dy dx .
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Key invertibility problem

Here

FyT
ε
±(x0, x1, η) := e ix0η

(
RV (|η|2 ∓ iε)V

)
(x0, x1)e−ix1η

T ε
1+,T

ε
+ ∈ Z and resolvent identity reads as follows:

(I + T ε
1+) ~ (I − T ε

+) = (I − T ε
+) ~ (I + T ε

1+) = I

We need to invert this in the smaller algebra Y , otherwise too
little control of wave operators.

If I + T ε
1+ is invertible in Y , hence in Z , its inverse is I −T ε

+ both
in Z and in Y , hence we obtain that T ε

+ ∈ Y uniformly in ε > 0.
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Small potentials in B1+

Define Y with σ ≥ 1
2 fixed. Then

sup
ε>0
‖T ε

1+‖Y . ‖V ‖
B

1
2 +σ whence by induction

sup
ε>0
‖T ε

n+‖Y ≤ Cn‖V ‖n
B

1
2 +σ

for all n ≥ 1

and

(Wn+f )(x) =

∫
S2

∫
R3

g εn(x , dy , ω)f (Sωx − y) dω

where for fixed x ∈ R3, ω ∈ S2 the expression g εn(x , ·, ω) is a
measure satisfying

sup
ε>0

∫
S2

‖g εn(x , dy , ω)‖MyL∞x dω ≤ Cn‖V ‖n
B

1
2 +σ
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Recursive definition of the structure functions

Identifying operator W ε
n+ with its kernel one has

W ε
n+ = (−1)n1R3T ε

n+ = (−1)n1R3(T ε
(n−1)+ ~ T ε

1+)

= −((−1)n−1
1R3T ε

(n−1)+)T ε
1+ = −W ε

(n−1)+T
ε
1+

Second line: contraction of a kernel in Y by an element of X .
Thus

sup
ε>0
‖W ε

n+‖X ≤ ‖1R3‖V−1B sup
ε>0
‖T ε

n+‖Y ≤ Cn‖V ‖n+1

B
1
2 +σ (4)

and with f εy ′(x
′) = W ε

(n−1)+(x ′, y ′) we have

g εn(x , dy , ω) :=

∫
R3

g ε1,f ε
y′

(x , d(y − Sωy
′), ω) dy ′

and g ε1,f ε
y′

is the structure function for the potential f εy ′V .
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Wiener theorem in Y

Proposition

V ∈ Bσ with 1
2 ≤ σ < 1, define Y with this σ,V . Suppose S ∈ Y

satisfies, for some N ≥ 1

lim
ε→0
‖ε−3χ(·/ε) ∗ SN − SN‖Y = 0

lim
L→∞

‖(1− χ̂(y/L))S(y)‖Y = 0

Assume I + Ŝ(η) has inverse in B(L∞) of the form
(I + Ŝ(η))−1 = I + U(η), with U(η) ∈ FY for all η ∈ R3, and
uniformly so, i.e.,

sup
η∈R3

‖U(η)‖FY <∞

Finally, suppose η 7→ Ŝ(η) is uniformly continuous R3 → B(L∞).
Then I + S is invertible in Y under ~.
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A scaling invariant condition

Schwartz V , set |||V ||| := ‖LV ‖L1
t,ω

. Recall

LV (t, ω) =

∫ ∞
0

V̂ (−τω)e
i
2
tτ τ dτ

For any Schwartz function v in R3

‖v‖B := sup
Π

∫ ∞
−∞
|||δΠ(t) v(x)||| dt

where Π is a 2-dimensional plane through the origin, and
Π(t) = Π + t ~N, ~N being the unit norm to Π. Then

‖v‖B . sup
ω∈S2

∫ ∞
−∞

∑
k∈Z

2
k
2

∥∥ψ(2−kx ′)v(x ′ + sω)‖
Ḣ

1
2 (ω⊥)

ds

This is finite on Schwartz functions.

W. S. Structure theorems for intertwining operators



A scaling invariant theorem for small potentials

Theorem (Beceanu-S. 17)

There exists c0 > 0 so that for any real-valued V with
‖V ‖B + ‖V ‖

Ḃ
1
2
≤ c0, there exists g(x , y , ω) ∈ L1

ωMyL
∞
x with∫

S2

‖g(x , dy , ω)‖MyL∞x dω . c0

such that for any f ∈ L2 one has the representation formula

(W+f )(x) = f (x) +

∫
S2

∫
R3

g(x , dy , ω)f (Sωx − y) dω.

No theorem for large scaling invariant potentials yet. Requires
redoing all the spectral theory in this new norm.

W. S. Structure theorems for intertwining operators


