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Question
How are the eigenvectors of a random matrix distributed?



Eigenvectors of Random Matrices

I Gaussian Orthogonal Ensemble (GOE): An N × N matrix
W; entries wij = wji independent, centered Gaussians with
Var hij = N−1 for i 6= j, Var hii = 2N−1

I Distribution of W is invariant under orthogonal
transformations.

I Then, by rotational symmetry, its normalized eigenvectors
are uniformly distributed on the unit sphere SN−1.



Eigenvectors of Random Matrices

I Let u be an eigenvector of the GOE.
I Denote eigenvector coordinates

u = (u(1),u(2), . . . ,u(N)). We normalize by ‖u‖2 = 1.
I The first coordinate of the uniform measure on the sphere

SN−1 is asymptotically Gaussian as N →∞ after rescaling
by
√

N.
I So, the rescaled eigenvector coordinates are asymptotically

standard Gaussian: for any m ∈ N,
√

Nu(m)→ N (0, 1) in
distribution.



Eigenvectors of Random Matrices

Question
What happens for other entry distributions?

I Same is true for symmetric random matrices with finite
variance entries (Bourgade–Yau, 2017)

Question
What happens when the entry distributions do not have a
variance?



Heavy-Tailed Random Matrices

I We consider symmetric power law distributions:
P [|X| > t] ∼ t−α.

I We consider α ∈ (0, 2).
I Infinite variance.
I For α < 1, infinite mean!



Heavy-Tailed Random Matrices

I We consider a particular class of power law random
variables: Lévy distributions.

I Fix α ∈ (0, 2). Let X be a centered α-stable law:

E
[
eitX] = exp (−C|t|α) ,

with C = π1/α
(
2 sin

(
πα
2

)
Γ(α)

)−1/α
> 0.

I Lévy Matrix: An N × N matrix H = {hij}, where hij = hji

are independent with hij ∼ N−1/αX.
I Scaling chosen so spectrum is well behaved as N →∞.
I Motivated by applications to physics, finance, neural

networks.



Eigenvectors of Heavy-Tailed Random Matrices

Theorem (Aggarwal–L.–Marcinek, 2020)
Let u denote the eigenvector corresponding to the median
eigenvalue. For any m ∈ N,

√
Nu(m) converges in moments to√

π

Γ
(
1 + 2

α

) × 1√
S
×N ,

where N is a standard Gaussian and S is an independent,
positive random variable with Laplace transform
Ee−tS = exp

(
−tα/2

)
.



Eigenvectors of Heavy-Tailed Random Matrices

I Eigenvector entries are non-Gaussian for small
eigenvalues; one-parameter family of distributions,
determined by the location of the corresponding
eigenvalue.

I Nearby eigenvectors correlated for small eigenvalues,
unlike GOE eigenvectors.

I For α < 1, radically different behavior suspected for large
eigenvalues. (Bordenave–Guionnet, 2013: proved for
α < 2/3).



Lévy Matrices

Question
How are the eigenvalues distributed?

I Normalization N−1/α ensures that most eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λN are of order one.

I Global spectral distribution converges to a heavy-tailed
deterministic measure ρα(x) (Ben Arous–Guionnet, 2008).



Lévy Matrices



Basic Notions

Definition: An eigenvector v = (v1, v2, . . . , vN) is of H with
‖v‖2 = 1 is completely delocalized if maxi≤N |vi| < Nε−1/2 for
large N.

This corresponds to eigenvector mass being “spread out.” True
for GOE.



Basic Notions
Definition: Local eigenvalue statistics are statistics of a finite
number of eigenvalues, for example rescaled gaps N(λi − λi+1).

GOE eigenvalues are highly correlated and appear to repel each
other.

Uncorrelated eigenvalues are said to display “Poisson statistics.”

Figure: Distribution of a GOE eigenvalue gap in the bulk of the
spectrum.



Predictions (Non-rigorous)

Tarquini–Biroli–Tarzia (2016):
1. If α ∈ [1, 2), GOE local statistics and complete

eigenvector delocalization.
2. If α ∈ (0, 1), then there exists a mobility edge Eα > 0:

I If |λ| < Eα, GOE local statistics and complete eigenvector
delocalization,

I If |λ| > Eα, Poisson local statistics and complete
eigenvector localization,

I Explicit formula for Eα.

Earlier predictions of Cizeau–Bouchaud (1994) were slightly
different. For example, a “mixed phase” for α ∈ (1, 2).



Predictions (Tarquini–Biroli–Tarzia,
Non-rigorous)
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Mobility Edge

Mobility edge Eα predicted by the following equation.

K2
α(s2

α − s2
1/2)|l(Eα)|2 − 2sαKα[Re l(Eα)] + 1 = 0, sα = sin(πα/2)

Kα =
α

2
Γ(1/2− α/2)2, l(E) =

1
π

∫ ∞
0

kα−1
[
L̂C(E),β(E)
α/2 (k)

]
eikE dk

I C(E) and β(E) are parameters that may be determined
explicitly from a self-consistent equation.

I LC,β
α/2 is the probability distribution of a general stable law

with skewness parameter β and scale parameter C.
I Solution only for α ∈ (0, 1), diverges like (1− α)−1 as
α→ 1.



Rigorous Results

Theorem (Aggarwal–L.–Yau, 2018)
1. If α ∈ (1, 2) then all eigenvectors of H are completely

delocalized, and local statistics are GOE.
2. For almost all α ∈ (0, 2), there exists a cα > 0 such that

any eigenvector of H with eigenvalue λ ∈ (−cα, cα) is
completely delocalized, and local statistics around any
E ∈ (−cα, cα) are GOE

I Part 1 shows there is no mobility edge for α ∈ (1, 2),
validating predictions of Tarquini–Biroli–Tarzia

I Part 2 establishes the existence of a GOE/delocalization
regime at small energies when α < 1.

I Builds on investigations of Bordenave–Guionnet (2013,
2017) of the delocalized phase.



Rigorous Results
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Purple shading indicates the scope of our results.



Future Work

I Understand the localized phase.
I Understand the mobility edge.


