Lévy Matrices

Patrick Lopatto

Institute for Advanced Study

September 25, 2020

Question How are the eigenvectors of a random matrix distributed?

Eigenvectors of Random Matrices

- Gaussian Orthogonal Ensemble (GOE): An $N \times N$ matrix W; entries $w_{ij} = w_{ji}$ independent, centered Gaussians with Var $h_{ij} = N^{-1}$ for $i \neq j$, Var $h_{ii} = 2N^{-1}$
- Distribution of W is invariant under orthogonal transformations.
- ▶ Then, by rotational symmetry, its normalized eigenvectors are uniformly distributed on the unit sphere \mathbb{S}^{N-1} .

Eigenvectors of Random Matrices

- Let **u** be an eigenvector of the GOE.
- Denote eigenvector coordinates $\mathbf{u} = (\mathbf{u}(1), \mathbf{u}(2), \dots, \mathbf{u}(N))$. We normalize by $\|\mathbf{u}\|_2 = 1$.
- The first coordinate of the uniform measure on the sphere \mathbb{S}^{N-1} is asymptotically Gaussian as $N \to \infty$ after rescaling by \sqrt{N} .
- So, the rescaled eigenvector coordinates are asymptotically standard Gaussian: for any $m \in \mathbb{N}$, $\sqrt{N}\mathbf{u}(m) \to \mathcal{N}(0, 1)$ in distribution.

Eigenvectors of Random Matrices

Question

What happens for other entry distributions?

 Same is true for symmetric random matrices with finite variance entries (Bourgade–Yau, 2017)

Question

What happens when the entry distributions do not have a variance?

Heavy-Tailed Random Matrices

- We consider symmetric power law distributions: ℙ[|X| > t] ~ t^{-α}.
- We consider $\alpha \in (0, 2)$.
- Infinite variance.
- For $\alpha < 1$, infinite mean!

Heavy-Tailed Random Matrices

- We consider a particular class of power law random variables: Lévy distributions.
- Fix $\alpha \in (0, 2)$. Let *X* be a centered α -stable law:

$$\mathbb{E}\left[e^{\mathrm{i}tX}\right] = \exp\left(-C|t|^{\alpha}\right),\,$$

with $C = \pi^{1/\alpha} \left(2 \sin\left(\frac{\pi \alpha}{2}\right) \Gamma(\alpha) \right)^{-1/\alpha} > 0.$

- Lévy Matrix: An $N \times N$ matrix $\mathbf{H} = \{h_{ij}\}$, where $h_{ij} = h_{ji}$ are independent with $h_{ij} \sim N^{-1/\alpha}X$.
- Scaling chosen so spectrum is well behaved as $N \to \infty$.
- Motivated by applications to physics, finance, neural networks.

Eigenvectors of Heavy-Tailed Random Matrices

Theorem (Aggarwal–L.–Marcinek, 2020)

Let **u** denote the eigenvector corresponding to the median eigenvalue. For any $m \in \mathbb{N}$, $\sqrt{N}\mathbf{u}(m)$ converges in moments to

$$\sqrt{\frac{\pi}{\Gamma\left(1+\frac{2}{\alpha}
ight)}} imes rac{1}{\sqrt{S}} imes \mathcal{N},$$

where \mathcal{N} is a standard Gaussian and S is an independent, positive random variable with Laplace transform $\mathbb{E}e^{-tS} = \exp(-t^{\alpha/2}).$

Eigenvectors of Heavy-Tailed Random Matrices

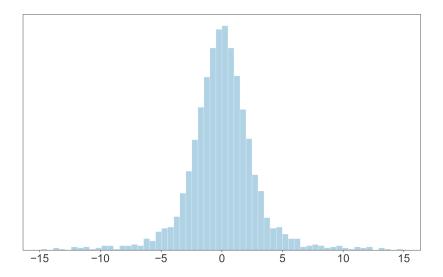
- Eigenvector entries are non-Gaussian for small eigenvalues; one-parameter family of distributions, determined by the location of the corresponding eigenvalue.
- Nearby eigenvectors correlated for small eigenvalues, unlike GOE eigenvectors.
- For α < 1, radically different behavior suspected for large eigenvalues. (Bordenave–Guionnet, 2013: proved for α < 2/3).

Question

How are the eigenvalues distributed?

- Normalization $N^{-1/\alpha}$ ensures that most eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$ are of order one.
- Global spectral distribution converges to a heavy-tailed deterministic measure $\rho_{\alpha}(x)$ (Ben Arous–Guionnet, 2008).

Lévy Matrices



Definition: An eigenvector $\mathbf{v} = (v_1, v_2, \dots, v_N)$ is of **H** with $\|\mathbf{v}\|_2 = 1$ is *completely delocalized* if $\max_{i \le N} |v_i| < N^{\varepsilon - 1/2}$ for large *N*.

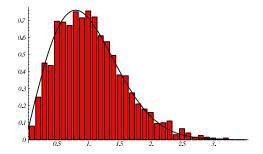
This corresponds to eigenvector mass being "spread out." True for GOE.

Basic Notions

Definition: *Local eigenvalue statistics* are statistics of a finite number of eigenvalues, for example rescaled gaps $N(\lambda_i - \lambda_{i+1})$. GOE eigenvalues are highly correlated and appear to repel each other.

Uncorrelated eigenvalues are said to display "Poisson statistics."

Figure: Distribution of a GOE eigenvalue gap in the bulk of the spectrum.



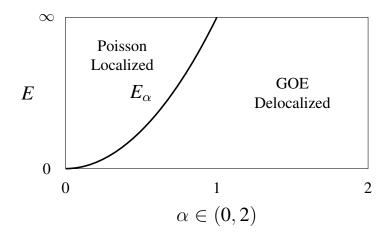
Predictions (Non-rigorous)

Tarquini–Biroli–Tarzia (2016):

- 1. If $\alpha \in [1, 2)$, GOE local statistics and complete eigenvector delocalization.
- 2. If $\alpha \in (0, 1)$, then there exists a *mobility edge* $E_{\alpha} > 0$:
 - ► If |λ| < E_α, GOE local statistics and complete eigenvector delocalization,
 - If |λ| > E_α, Poisson local statistics and complete eigenvector localization,
 - Explicit formula for E_{α} .

Earlier predictions of Cizeau–Bouchaud (1994) were slightly different. For example, a "mixed phase" for $\alpha \in (1, 2)$.

Predictions (Tarquini–Biroli–Tarzia, Non-rigorous)



Mobility Edge

Mobility edge E_{α} predicted by the following equation.

$$K_{\alpha}^{2}(s_{\alpha}^{2} - s_{1/2}^{2})|l(E_{\alpha})|^{2} - 2s_{\alpha}K_{\alpha}[\operatorname{Re} l(E_{\alpha})] + 1 = 0, \quad s_{\alpha} = \sin(\pi\alpha/2)$$
$$K_{\alpha} = \frac{\alpha}{2}\Gamma(1/2 - \alpha/2)^{2}, \quad l(E) = \frac{1}{\pi}\int_{0}^{\infty}k^{\alpha-1}\left[\widehat{L}_{\alpha/2}^{C(E),\beta(E)}(k)\right]e^{ikE}\,dk$$

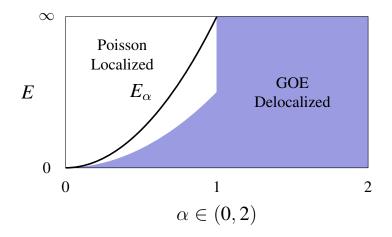
- C(E) and β(E) are parameters that may be determined explicitly from a self-consistent equation.
- $L^{C,\beta}_{\alpha/2}$ is the probability distribution of a general stable law with skewness parameter β and scale parameter *C*.
- Solution only for $\alpha \in (0, 1)$, diverges like $(1 \alpha)^{-1}$ as $\alpha \to 1$.

Rigorous Results

Theorem (Aggarwal–L.–Yau, 2018)

- 1. If $\alpha \in (1, 2)$ then all eigenvectors of **H** are completely delocalized, and local statistics are GOE.
- 2. For almost all $\alpha \in (0, 2)$, there exists a $c_{\alpha} > 0$ such that any eigenvector of **H** with eigenvalue $\lambda \in (-c_{\alpha}, c_{\alpha})$ is completely delocalized, and local statistics around any $E \in (-c_{\alpha}, c_{\alpha})$ are GOE
- Part 1 shows there is no mobility edge for α ∈ (1, 2), validating predictions of Tarquini–Biroli–Tarzia
- Part 2 establishes the existence of a GOE/delocalization regime at small energies when α < 1.</p>
- Builds on investigations of Bordenave–Guionnet (2013, 2017) of the delocalized phase.

Rigorous Results



Purple shading indicates the scope of our results.

Future Work

- Understand the localized phase.
- Understand the mobility edge.