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Persistent homology:
e provides invariants of data called barcodes
e used for exploratory data analysis/visualization
e many practical tools are available
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Fig. by Ulrich Bauer.



Multi-D Persistent Homology
e Associates to data a multi-parameter family of topology spaces.
e arises naturally in applications

e no practical tools yet available
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Fig. by Matthew Wright.



RIVET: A practical tool for interactive visualization of 2D persistent

homology.
e expected public release: winter 2016

e paper this month
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RIVET: A practical tool for interactive visualization of 2D persistent
homology.

e expected public release: winter 2016

e paper this month

homology dimension: 1
cicle_data_240pss_inv_densitytxt

Mathematical contributions:
e Theoretical /algorithmic framework for efficient queries of barcodes
of 1-D slices of 2-D persistence objects.
e O(n?) algorithm for computation of bigraded Betti numbers.
e Algorithms for computing 1-parameter families of barcodes.



Agenda:
¢ Introduce multidimensional persistent homology
e Explain our tool

e Briefly discuss theoretical and algorithmic underpinnings



1-D Persistent Homology



Persistent Homology
Persistent homology associates barcodes to data.

Data:
e Finite metric space (point cloud data)
e function v : T — R, T an arbitrary topological space.
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Persistence Diagrams

Usually all intervals in a barcode of the form [b,d).

Then we can regard the barcode as a collection of points (b, d) in the
plane with b < d.



constructing barcodes
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Filtrations and Persistence Modules

A filtration F is a collection of topological spaces {F,} indexed by R
(or by Z) such that F, C F, whenever a < b.



Filtrations and Persistence Modules

A filtration F is a collection of topological spaces {F,} indexed by R
(or by Z) such that F, C F, whenever a < b.

In Z-indexed case, this is a diagram of spaces:
e By = Fl = Fy — -

Fix a field k.

A persistence module M is a collection of k-vector spaces {M,}
indexed by R (or by Z) and commuting linear maps

{M(a, b) : Ma — Mb}a<b-

o> My — My — My — - -+
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Rips Filtrations

For P a metric space, and a € R, define simplicial complex Rips(P), by:
e Vertex set of Rips(P), is P.
 Rips(P), contains edge [q,r] iff dp(q,7) < §.
e Rips(P), is the clique complex on this 1-skeleton.

A7)

Rips(P), C Rips(P), whenever a < b, so we obtain a filtration

Rips(P) = {Rips(P)a}ack-

[Fig. from M. Wright's “Introduction to Persistent Homology,” Youtube.]



Pipeline for 1-D Persistence
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Applying i** homology to each space and inclusion map in a filtration
yields a persistence module.



structure theorem for persistent homology (Z-indexed case)



Fora < beZ,
e call [a,b) a discrete interval,
e define the interval module 71*? by

Idy, Idy, Id

0 k k

a b

e define infinite discrete intervals, interval modules similarly.

Decomposition Thm. [Webb '85]: For M a Z-indexed persistence
module w/ finite dim. vector spaces, 3 unique collection of discrete
intervals B(M) s.t.

M ~ @jeB(M)Ij

We call B(M) the barcode of M.



Persistent Homology
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Figure by Ulrich Bauer.
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Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff
distance on finite metric spaces.
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Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff
distance on finite metric spaces.
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Persistent homology is NOT stable with respect to outliers.

Limits of Stability

This leads us to multi-D persistence.
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Multi-D Persistent Homology
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Bifiltrations

e Define a partial order on R? by
(al,ag) S (bl,bg) iff a; S bz for i = 1,2;

e A bifiltration is a collection of topological spaces {F,} indexed by
R? (or by Z?) such that F, C F, whenever a < b.
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A 2-D persistence module M is a collection of k-vector spaces { M, }
indexed by R? (or by Z?) and commuting linear maps

{M(a,b): My — Mp}a<p.

—>=My3—> M3 —> M3z —>"---

—=Myg—> My —> M3y —"---

)

=M1 —> My —= Mz —---

f f f



A 2-D persistence module M is a collection of k-vector spaces { M, }
indexed by R? (or by Z?) and commuting linear maps

{M(a,b): My — Mp}a<p.

—>=My3—> M3 —> M3z —>"---

—=Myg—> My —> M3y —"---
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Applying i homology to a bifiltration F yields a 2D persistence module
H,F.



Point cloud data — Bifiltration
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Persistent homology is NOT stable with respect to outliers.

Limits of Stability

This leads us to multi-D persistence.
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Point cloud data — Bifiltration

For P a finite metric space, let v: P — R be a codensity function on
P.
e i.e., v is high at outliers and low at dense points.



Point cloud data — Bifiltration
For P a finite metric space, let v: P — R be a codensity function on
P.
e i.e., v is high at outliers and low at dense points.

e example: fix K > 0 and let () = distance to the K*'I" nearest
neighbor of P.



Point cloud data — Bifiltration
For P a finite metric space, let v: P — R be a codensity function on
P.
e i.e., v is high at outliers and low at dense points.

e example: fix K > 0 and let () = distance to the K*'I" nearest
neighbor of P.



Point cloud data — Bifiltration

For P a finite metric space, let v: P — R be a codensity function on
P.
e i.e., v is high at outliers and low at dense points.
e example: fix K > 0 and let () = distance to the K*'I" nearest
neighbor of P.

For a € R, define the a-sublevelset

Yo :={y € P[7(y) < a}.




Point cloud data — Bifiltration

For P a finite metric space, let v: P — R be a codensity function on
P.
e i.e., v is high at outliers and low at dense points.
e example: fix K > 0 and let () = distance to the K*'I" nearest
neighbor of P.

For a € R, define the a-sublevelset

Yo :={y € P[7(y) < a}.

For (a,b) € R, let
Flap) = Rips(7a)p-

{F(ap) }(ap)cr2, together w/ inclusion maps, is a bifiltration.
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Barcodes of Bifiltration?

Can we define the barcode of 2D persistence module as a collection of
nice regions in R??
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Not without making some significant compromises.



Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence
module, 3 collection of indecomposables M, ... M}, unique up to iso.,
such that:

M~ aF M.



Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence
module, 3 collection of indecomposables M, ... M}, unique up to iso.,
such that:

M~ aF M,

Lesson from quiver theory: The set of possible M; is extremely
complicated.




Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence
module, 3 collection of indecomposables M, ... M}, unique up to iso.,
such that:

M~ aF M,

Lesson from quiver theory: The set of possible M; is extremely
complicated.

The upshot: There's no entirely satisfactory way to define barcode of M.



Potentially useful invariants of 2-D persistence modules



Our tool visualizes three invariants of a 2D persistence module:
e Dimension of vector space at each index
e Barcodes of 1-D affine slices of the module

e Multigraded Betti numbers
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Dimension of vector space at each index:
e simple, intuitive, easy to visualize,
e Can compute in time cubic in the size of the input,
e tells us nothing about persistent features,
e not stable.




Barcodes of 1-D Slices

e Let L be an affine line in R? w/ non-negative slope.

codensity 36.75



Barcodes of 1-D Slices

e Let L be an affine line in R? w/ non-negative slope.

e Restriction of M to L is a 1-D persistence module M~.

codensity 36.75



Barcodes of 1-D Slices

e Let L be an affine line in R? w/ non-negative slope.
e Restriction of M to L is a 1-D persistence module M~.
e Thus M* has a barcode B(MF), a set of intervals in L.

codensity 36.75
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e Let L be an affine line in R? w/ non-negative slope.
e Restriction of M to L is a 1-D persistence module M~.
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Barcodes of 1-D Slices

e Let L be an affine line in R? w/ non-negative slope.
e Restriction of M to L is a 1-D persistence module M~.
e Thus M* has a barcode B(MF), a set of intervals in L.

codensity 36.75

Barcodes B(M') is stable [Landi 2014, Cerri et al. 2011, Cerri et al.
2013].



Multigraded Betti Numbers
For M an n-D persistence module, i € {0,1,...n}, one defines functions
& (M) :R"™ — N by
& (M), = dim Tor; (M, k)g.
For a € R™,

e {o(M)(a) is the dimension of what is born at a,
e £ (M)(a) is the dimension of what dies at a,

ms’s



Bigraded Betti Numbers
Let M be a Z*-indexed persistence module, (a,b) € Z>.

Mg_1p) — Map)

T |

M@a-1p-1) — M@p-1)

We have induced maps

lit
o Mg1p) @ Mgy

merge

M-1p-1) — My

with
merge o split = 0.



Bigraded Betti Numbers
Let M be a Z*-indexed persistence module, (a,b) € Z>.

Mg_1p) — Map)

T |

M@a-1p-1) — M@p-1)

We have induced maps

split

— Ma—1) ® M@ap-1)

merge

M-1p-1) — My

with
merge o split = 0.

For i =0, 1,2, define &(M) : R? = N by
§o(M)(a,b) = dim M, s/ im merge

&1 (M)
)

(M)
(a,b
(a,b) = dim ker merge / im split
& (M)(a,b) = dim ker split .



RIVET



An Example

Codensity-Rips Bifiltration on noisy PCD circle

~200,000 simplices
Round distances and codensities to lie on a 30 x 30 grid,
15 persistent homology
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Mathematical contributions:

e Theoretical and algorithmic framework for interactive visualization
of barcodes of 1-D slices,

e Novel algorithm for fast computation of multigraded Betti numbers.

e Algorithms for computing 1-parameter families of barcodes.



Data Structure for Interactive Visualization

Let M be a 2D persistence module.

We define a data structure A(M), the augmented arrangement of 1/,
on which can perform fast queries of B(M') for any line L.

A(M) consists of:
e a line arrangement in (0,00) x R,
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o for each 2-cell e, a collection P¢ of pairs (a,b) € R? x (R? U c0).

q

We call the P¢ the barcode template at e.



Point-Line Duality
Let A = the set of affine lines with finite, positive slope.

Define dual maps

Dy A= (0,00) xR, D,:(0,00) x R— A

Dy(y = mx+0b) = (m, —b)
Dp(m,b) = (y = mx —b).

T)p (w) Dy(v)




Push Maps

For any L € A, we have a map
push; : R? — L,

which sends each u € R? to the closest point of L above or to the right
of u.




Main Theorem

Theorem [L., Wright 2015]: For M a 2-D persistence module, L € A,
and e any 2-D coface of the cell in A(M) containing Dy(L),
B(M") = {[pushy (a),push; (b)) | (a,b) € P},

L
I

[ b

az
I

Ex: B(MLY) = {I,,}  P¢={(a1,b), (az,by)}



complexity



Queries

Let x be minimal number of vertices in a rectangular grid containing
supp &o(M) U supp &1(M).

Proposition: For a generic line L, we can perform a query of A(M) in
time O(log k + |B(MF)|).



Constructing the Augmented Arrangement

Proposition: For fixed ¢ and F a bifiltration of size m, constructing
A(H;F) requires
O(m3k + (m + log k)k?)

elementary operations and
O(m? + mk?)

storage.



Constructing the Augmented Arrangement

Proposition: For fixed ¢ and F a bifiltration of size m, constructing
A(H;F) requires
O(m3k + (m + log k)k?)

elementary operations and
O(m? + mk?)
storage.

Remarks:
e most expensive steps are embarrassingly parallizable
e Algorithm involves computation of the Betti numbers.



Preliminary Timing Results

A snapshot from our current code. Several important optimizations are
not yet implemented; substantial speedups are ahead.

Data:
Codensity-Rips Bifiltration on noisy PCD circle

codensity and distance each coarsened to lie on 20x20 grid
Truncated Rips filtration on 400 points,

6,00,000 simplices

(slow) 800 MHz processor

Betti numbers:
e Hy: 4 Sec.
e Hi: 13 minutes

Augmented arrangement
e Hp: 11 minutes
e Hy: 16.4 hours



thank you!!



