Interactive Visualization of 2D Persistence Modules

Michael Lesnick, Columbia

w/ Matthew Wright, St. Olaf

IAS, November 7, 2015

Persistent homology:

- provides invariants of data called barcodes
- used for exploratory data analysis/visualization
- many practical tools are available

Multi-D Persistent Homology

- Associates to data a multi-parameter family of topology spaces.
- arises naturally in applications
- no practical tools yet available

Fig. by Matthew Wright.

RIVET: A practical tool for interactive visualization of 2D persistent homology.

- expected public release: winter 2016
- paper this month

RIVET: A practical tool for interactive visualization of 2D persistent homology.

- expected public release: winter 2016
- paper this month

Mathematical contributions:

- Theoretical/algorithmic framework for **efficient queries** of barcodes of 1-D slices of 2-D persistence objects.
- $O(n^3)$ algorithm for computation of **bigraded Betti numbers**.
- Algorithms for computing 1-parameter families of barcodes.

Agenda:

- Introduce multidimensional persistent homology
- Explain our tool
- Briefly discuss theoretical and algorithmic underpinnings

1-D Persistent Homology

Persistent Homology

Persistent homology associates **barcodes** to data.

Data:

- Finite metric space (point cloud data)
- function $\gamma: T \to \mathbb{R}$, T an arbitrary topological space.

Persistence Diagrams

Usually all intervals in a barcode of the form [b, d).

Then we can regard the barcode as a collection of points (b, d) in the plane with b < d.

constructing barcodes

Pipeline for 1-D Persistence

Filtrations and Persistence Modules

A filtration \mathcal{F} is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.

Filtrations and Persistence Modules

A filtration \mathcal{F} is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.

In $\mathbb Z\text{-indexed}$ case, this is a diagram of spaces:

$$\dots \hookrightarrow F_0 \hookrightarrow F_1 \hookrightarrow F_2 \hookrightarrow \dots$$

Fix a field k.

A **persistence module** M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) and commuting linear maps

$$\{M(a,b): M_a \to M_b\}_{a < b}.$$

 $\dots \to M_0 \to M_1 \to M_2 \to \dots$

Pipeline for 1-D Persistence

Rips Filtrations

For P a metric space, and $a \in \mathbb{R}$, define simplicial complex $\operatorname{Rips}(P)_a$ by:

- Vertex set of $\operatorname{Rips}(P)_a$ is P.
- Rips $(P)_a$ contains edge [q,r] iff $d_P(q,r) \leq \frac{a}{2}$.
- $\operatorname{Rips}(P)_a$ is the clique complex on this 1-skeleton.

 $\operatorname{Rips}(P)_a\subseteq\operatorname{Rips}(P)_b$ whenever $a\leq b,$ so we obtain a filtration

 $\operatorname{Rips}(P) = \{\operatorname{Rips}(P)_a\}_{a \in \mathbb{R}}.$

[Fig. from M. Wright's "Introduction to Persistent Homology," Youtube.]

Pipeline for 1-D Persistence

Applying i^{th} homology to each space and inclusion map in a filtration yields a persistence module.

structure theorem for persistent homology (\mathbb{Z} -indexed case)

For $a < b \in \mathbb{Z}$,

- call [a, b) a discrete interval,
- define the interval module $I^{[a,b)}$ by

 $\cdots \longrightarrow 0 \longrightarrow k \xrightarrow{\mathsf{Id}_k} k \xrightarrow{\mathsf{Id}_k} \cdots \xrightarrow{\mathsf{Id}_k} k \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$ $\mathbf{a} \qquad \qquad \mathbf{b}$

• define infinite discrete intervals, interval modules similarly.

Decomposition Thm. [Webb '85]: For M a \mathbb{Z} -indexed persistence module w/ finite dim. vector spaces, \exists unique collection of discrete intervals $\mathcal{B}(M)$ s.t.

 $M \simeq \oplus_{\mathcal{J} \in \mathcal{B}(M)} I^{\mathcal{J}}$

We call $\mathcal{B}(M)$ the **barcode** of M.

Persistent Homology

Figure by Ulrich Bauer.

Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff distance on finite metric spaces.

Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff distance on finite metric spaces.

Limits of Stability

Persistent homology is NOT stable with respect to outliers.

This leads us to multi-D persistence.

Multi-D Persistent Homology

Pipeline for 2D Persistence

Bifiltrations

• Define a partial order on \mathbb{R}^2 by

$$(a_1, a_2) \le (b_1, b_2)$$
 iff $a_i \le b_i$ for $i = 1, 2;$

• A bifiltration is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.

A 2-D persistence module M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) and commuting linear maps

 $\{M(a,b): M_a \to M_b\}_{a < b}.$

A 2-D persistence module M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) and commuting linear maps

 $\{M(a,b): M_a \to M_b\}_{a < b}.$

Pipeline for 2D Persistence

Applying i^{th} homology to a bifiltration \mathcal{F} yields a 2D persistence module $H_i\mathcal{F}$.

Limits of Stability

Persistent homology is NOT stable with respect to outliers.

This leads us to multi-D persistence.

For P a finite metric space, let $\gamma:P\to \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.

For P a finite metric space, let $\gamma:P\to \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix K>0 and let $\gamma(x)=$ distance to the $K^{\rm th}$ nearest neighbor of P.

For P a finite metric space, let $\gamma:P\to \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix K>0 and let $\gamma(x)=$ distance to the $K^{\rm th}$ nearest neighbor of P.

For P a finite metric space, let $\gamma:P\to \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix K>0 and let $\gamma(x)=$ distance to the $K^{\rm th}$ nearest neighbor of P.

For $a \in \mathbb{R}$, define the *a*-sublevelset

$$\gamma_a := \{ y \in P \mid \gamma(y) \le a \}.$$

For P a finite metric space, let $\gamma:P\to \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix K>0 and let $\gamma(x)=$ distance to the $K^{\rm th}$ nearest neighbor of P.

For $a \in \mathbb{R}$, define the *a*-sublevelset

$$\gamma_a := \{ y \in P \mid \gamma(y) \le a \}.$$

For $(a,b) \in \mathbb{R}^2$, let

$$\mathcal{F}_{(a,b)} = \operatorname{Rips}(\gamma_a)_b.$$

 $\{\mathcal{F}_{(a,b)}\}_{(a,b)\in\mathbb{R}^2}$, together w/ inclusion maps, is a bifiltration.

Pipeline for 2D Persistence

Barcodes of Bifiltration?

Can we define the barcode of 2D persistence module as a collection of nice regions in $\mathbb{R}^2?$

Not without making some significant compromises.

Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables M_1, \ldots, M_k , unique up to iso., such that:

$$M \simeq \oplus_{i=1}^k M_i.$$

Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables M_1, \ldots, M_k , unique up to iso., such that:

$$M \simeq \oplus_{i=1}^k M_i.$$

Lesson from quiver theory: The set of possible M_i is **extremely** complicated.

Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables M_1, \ldots, M_k , unique up to iso., such that:

$$M \simeq \oplus_{i=1}^k M_i.$$

Lesson from quiver theory: The set of possible M_i is **extremely** complicated.

The upshot: There's no entirely satisfactory way to define barcode of M.

Potentially useful invariants of 2-D persistence modules

Our tool visualizes three invariants of a 2D persistence module:

- Dimension of vector space at each index
- Barcodes of 1-D affine slices of the module
- Multigraded Betti numbers

Dimension of vector space at each index:

- simple, intuitive, easy to visualize,
- Can compute in time cubic in the size of the input,
- tells us nothing about **persistent** features,
- not stable.

• Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L .

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L .
- Thus M^L has a barcode $\mathcal{B}(M^L)$, a set of intervals in L.

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L .
- Thus M^L has a barcode $\mathcal{B}(M^L)$, a set of intervals in L.

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L .
- Thus M^L has a barcode $\mathcal{B}(M^L)$, a set of intervals in L.

Barcodes $\mathcal{B}(M^L)$ is stable [Landi 2014, Cerri et al. 2011, Cerri et al. 2013].

Multigraded Betti Numbers

For M an $n\text{-}\mathsf{D}$ persistence module, $i\in\{0,1,\ldots n\},$ one defines functions $\xi_i(M):\mathbb{R}^n\to\mathbb{N}$ by

$$\xi_i(M)_a = \dim \operatorname{Tor}_i(M, k)_a.$$

For $a \in \mathbb{R}^n$,

- $\xi_0(M)(a)$ is the dimension of what is born at a,
- $\xi_1(M)(a)$ is the dimension of what dies at a,

Bigraded Betti Numbers

Let M be a \mathbb{Z}^2 -indexed persistence module, $(a,b) \in \mathbb{Z}^2$.

$$\begin{array}{c} M_{(a-1,b)} \longrightarrow M_{(a,b)} \\ \uparrow & \uparrow \\ M_{(a-1,b-1)} \longrightarrow M_{(a,b-1)} \end{array}$$

We have induced maps

with

$$M_{(a-1,b-1)} \xrightarrow{\text{split}} M_{(a-1,b)} \oplus M_{(a,b-1)} \xrightarrow{\text{merge}} M_{(a,b)}$$

 $merge \circ split = 0.$

Bigraded Betti Numbers

Let M be a \mathbb{Z}^2 -indexed persistence module, $(a,b) \in \mathbb{Z}^2$.

$$M_{(a-1,b)} \longrightarrow M_{(a,b)}$$

$$\uparrow \qquad \uparrow$$

$$M_{(a-1,b-1)} \longrightarrow M_{(a,b-1)}$$

We have induced maps

with

$$M_{(a-1,b-1)} \xrightarrow{\text{split}} M_{(a-1,b)} \oplus M_{(a,b-1)} \xrightarrow{\text{merge}} M_{(a,b)}$$

 $merge \circ split = 0.$

For
$$i = 0, 1, 2$$
, define $\xi_i(M) : \mathbb{R}^2 \to \mathbb{N}$ by
 $\xi_0(M)(a, b) = \dim M_{(a,b)} / \operatorname{im} \operatorname{merge}$
 $\xi_1(M)(a, b) = \dim \operatorname{ker} \operatorname{merge} / \operatorname{im} \operatorname{split}$
 $\xi_2(M)(a, b) = \dim \operatorname{ker} \operatorname{split}$.

RIVET

An Example

- Codensity-Rips Bifiltration on noisy PCD circle
- 240 points
- \sim 200,000 simplices
- Round distances and codensities to lie on a 30×30 grid,
- 1^{st} persistent homology

Mathematical contributions:

- Theoretical and algorithmic framework for interactive visualization of barcodes of 1-D slices,
- Novel algorithm for fast computation of multigraded Betti numbers.
- Algorithms for computing 1-parameter families of barcodes.

Data Structure for Interactive Visualization

Let M be a 2D persistence module.

We define a data structure $\mathcal{A}(M)$, the **augmented arrangement of** M, on which can perform fast queries of $\mathcal{B}(M^L)$ for any line L.

 $\mathcal{A}(M)$ consists of:

• a line arrangement in $(0,\infty) imes \mathbb{R}$,

• for each 2-cell e, a collection \mathcal{P}^e of pairs $(a,b) \in \mathbb{R}^2 \times (\mathbb{R}^2 \cup \infty)$.

We call the \mathcal{P}^e the **barcode template** at e.

Point-Line Duality Let Λ = the set of affine lines with finite, positive slope.

Define dual maps

 $D_{\ell} : \Lambda \to (0, \infty) \times \mathbb{R}, \qquad \mathcal{D}_p : (0, \infty) \times \mathbb{R} \to \Lambda$

$$\mathcal{D}_{\ell}(\mathbf{y} = m\mathbf{x} + b) = (m, -b)$$
$$\mathcal{D}_{p}(m, b) = (\mathbf{y} = m\mathbf{x} - b).$$

Push Maps

For any $L \in \Lambda$, we have a map

$$\operatorname{push}_L : \mathbb{R}^2 \to L,$$

which sends each $u \in \mathbb{R}^2$ to the closest point of L above or to the right of u.

Main Theorem

Theorem [L., Wright 2015]: For M a 2-D persistence module, $L \in \Lambda$, and e any 2-D coface of the cell in $\mathcal{A}(M)$ containing $\mathcal{D}_{\ell}(L)$,

 $\mathcal{B}(M^L) = \{ [\operatorname{push}_L(a), \operatorname{push}_L(b)) \mid (a, b) \in \mathcal{P}^e \},\$

Ex:
$$\mathcal{B}(M^L) = \{I_1, I_2\}$$
 $\mathcal{P}^e = \{(a_1, b_1), (a_2, b_2)\}$

complexity

Queries

Let κ be minimal number of vertices in a rectangular grid containing $\operatorname{supp} \xi_0(M) \cup \operatorname{supp} \xi_1(M)$.

Proposition: For a generic line *L*, we can perform a query of $\mathcal{A}(M)$ in time $O(\log \kappa + |\mathcal{B}(M^L)|)$.

Constructing the Augmented Arrangement

Proposition: For fixed *i* and \mathcal{F} a bifiltration of size *m*, constructing $\mathcal{A}(H_i\mathcal{F})$ requires

$$O(m^3\kappa + (m + \log \kappa)\kappa^2)$$

elementary operations and

$$O(m^2 + m\kappa^2)$$

storage.

Constructing the Augmented Arrangement

Proposition: For fixed *i* and \mathcal{F} a bifiltration of size *m*, constructing $\mathcal{A}(H_i\mathcal{F})$ requires

$$O(m^3\kappa + (m + \log \kappa)\kappa^2)$$

elementary operations and

$$O(m^2+m\kappa^2)$$

storage.

Remarks:

- most expensive steps are embarrassingly parallizable
- Algorithm involves computation of the Betti numbers.

Preliminary Timing Results

A snapshot from our current code. Several important optimizations are not yet implemented; substantial speedups are ahead.

Data:

- Codensity-Rips Bifiltration on noisy PCD circle
- codensity and distance each coarsened to lie on 20x20 grid
- Truncated Rips filtration on 400 points,
- 6,00,000 simplices
- (slow) 800 MHz processor

Betti numbers:

- *H*₀: 4 Sec.
- H₁: 13 minutes

Augmented arrangement

- *H*₀: 11 minutes
- *H*₁: 16.4 hours

thank you!!