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Symplectic geometry

(M2m, ω) is a symplectic manifold, if ω ∈ Ω2(M) is closed, and
nondegenerate ωm

x 6= 0. From definitions:

1. No local invariant:
(R2m, ω0 = dx1 ∧ dx2 + · · ·+ dx2m−1 ∧ dx2m).

2. (i) Homotopically ! almost complex structure (90o rotation)
J : TM → TM with J2 = −1 and ω( , J ) Riemannian metric.

(ii) u : (S , j , x)→ (M, J) is a J-curve, if (du)0,1 = 0.
(iii) Counting J-curves u with markings x = (x1, · · · , xn)

constrained on cycles of M gives Gromov-Witten invariant.

3. (i) H : M × R/Z→ R give vector field XH by dH =: ω(XH , ·).

(ii) Morse theory of AH([x , x̂ ]) := −
∫
D
x̂∗ω −

∫ 1

0
H(x(t), t)dt

gives Floer homology.
(iii) Differential counts perturbed J-cylinders, or (J,H)-cylinders

(du − XH ⊗ dt)0,1 = 0.
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Global invariants via moduli spaces, geom. transversality

Global invariants, GW invariant & Floer homology, are defined:

* Using moduli spaces X := {(perturbed) J-curves}/symmetry.

* Via pulling back the evaluation map ev : X → Y , where Y is a
manifold: M×n, or {closed orbits of XH}, respectively.

Moduli spaces are not nice spaces in the usual sense:

(1) Non-regular: (McDuff:) Simple J-curves t by generic J.
(Floer-Hofer-Salamon:) (J,H)-cylinders t by generic t-dep H.

(2) Noncompact: J-curves can bubble off. Consider {nodal curves}.
(3) (2)⇒ multiple-covers, never t by perturbing structures on M.

(4) Domain-dep pertn makes curve simple, but its compactification
leads (3). Ok if (3) only happens in codim-2 (semi-positivity).

(5) Divide domain-reparam sym (topology/cptness). X orbifold-based.

Outside of special cases of semi-positivity, what can we do?
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Abstract transversality
One major approach is abstract perturbation:

* Polyfold approach (Hofer-Wysocki-Zehnder, ...)
(a) From a space B of all candidates, {J-curves}/iso is cut out by a

section f of Fredholm nature in a bundle E → B.
(b) Brand new smoothness, local models (of jumping dimensions),

and local implicit function theorem.
(c) Easily globalize: patch over diffeos, usual genericity argument.

* Kuranishi-type approach (By early 2014, Fukaya-Oh-Ohta-Ono,
Joyce, McDuff-Wehrheim, Pardon, Y., ...)

(a) (Easy local model) X locally cut out by a section sI in a f.d. bdle.
(b) Coordinate change can increase dimension. ⇒ No precompact

open neighborhood of patched zero sets in patched ambient bases.
(c) Global topological/algebraic solution for (b), when charts patch.

As of Oct 5, 2017, the output from the above is a virtual fund.
chain/cycle over Q, which is a regular replacement of bad compact
zero set f−1(0) or

⊔
I s
−1
I (0)/g. g is the patching identification.

Because the symmetry and transversality don’t get along ⇒
Need symmetric Q-weighted branchwise t multi-sections, or equiv.
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Integral virtual fundamental chains (joint w/ Guangbo Xu)

Example: 2-sphere S w/ an orbifold point {z} := SZ3 of symm. Z3.

1. It fits as a special case of the previous polyfold/Kuranishi
theories, and it is already regular and no room in the 0-bundle
to do much else (like perturbation). Euler char. rational.

2. But we know it has no hole, whose information can be
captured, and indeed, S\{z} is a pseudocyle, and we count 2
for this “virtual” (pseudo-)cycle.

3. The subspace of points with nontrivial stabilizers being of
codimension 2 (in the base) is not enough: We still need to
regularize, and face imcompatibility of symm. & transversality.

4. Another aspect is that the normal bundle NSZ3S has a
complex structure in this example, which generalizes.
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A good coordinate system GCS (of 2 charts)
Any Kuranishi-type theory, you can get a finitely many charts covering

moduli X , a good coordinate system. Consider 2 charts (4 generalizes).

CI := (sI : UI → EI , ψI : s−1
I (0)/ΓI → X ; ΓI} and one for J.

A coordinate change CI → CJ says:

(2) (Enough) open part CI |UJI
of CI embeds in CJ , intertwining all

the data. So sI |UJI
sits in as part of sJ . Images denoted by ·̌.

(2) UJ can have larger dimension. The extra direction is ‘cancelled
out’ by dsJ matching normals of ǓJI in UJ with fiber normals
of ĚI in EJ”, a canonical condition at zeros sJ |ǓJI

.

One way to go up dimension is by improving (2) into condition over
WJI , a tubular neighborhood projecting onto ǓJI (remembering the
fiber linear structure, containing no extra zeros), and extend ĚJ to
ẼJI over WJI , and asking sJ |WJI

/ẼJI t 0. A t perturbation of sI is
immediately lifted to a t peturbation over WJI . After things are in
the same setting in EJ , one can use relative tranversality.

Theorem (Y., Feb 2014)

Can do it globally on GCS via ∃ (! up to refinem’t) of level-1 str.
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Between two group-fixed parts in a chart
After considering dimension changes, we focus on group changes.

Fix a chart C := CI and the group action Γ is effective.
L < H < ΓI subgroups. UH fixed by H. Thus UH ⊂ UL.

* C |UH → C |UL is like coordinate change before, except no normal
matching. In fact, no relation of expected dimensions.

* Suppose normal bundle N of UH in UL, and also normal bundle
Ñ of EH in EL|UH both have complex structures.

* s|UL has two part: s|UH lifted to W LH ⊂ UL near UH as last
page, but also the normal part s which is a map N → Ñ over UH

between C bundles. Group is G := ΓL/L with ΓL normalizer of L.
* (’99 Fukaya-Ono, for 1 chart, 2 groups H and L = {Id}, G = Γ)

s can be fiberwise G -equivariant C-polynomially perturbed s.t.
over N free , G -free part, tranversality can be achieved. When
virtual dim ≤ 1, for “generic” such perturbation s̃, G -free part
of zero set s̃−1(0) is a manifold and closed (does not meet UH).
We improve this to the whole GCS covering moduli space X ,
prove vastly strengthened statements below for all virtual dims.
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between C bundles. Group is G := ΓL/L with ΓL normalizer of L.
* (’99 Fukaya-Ono, for 1 chart, 2 groups H and L = {Id}, G = Γ)

s can be fiberwise G -equivariant C-polynomially perturbed s.t.
over N free , G -free part, tranversality can be achieved. When
virtual dim ≤ 1, for “generic” such perturbation s̃, G -free part
of zero set s̃−1(0) is a manifold and closed (does not meet UH).
We improve this to the whole GCS covering moduli space X ,
prove vastly strengthened statements below for all virtual dims.

7 / 10



Between two group-fixed parts in a chart
After considering dimension changes, we focus on group changes.
Fix a chart C := CI and the group action Γ is effective.
L < H < ΓI subgroups. UH fixed by H. Thus UH ⊂ UL.

* C |UH → C |UL is like coordinate change before, except no normal
matching. In fact, no relation of expected dimensions.

* Suppose normal bundle N of UH in UL, and also normal bundle
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Integral virtual fundamental chains/pseudocycles
Need notion of compatible structure involving W LH

JI → ULH
JI called

group-normal str. providing a common setting at each inductive
layer, & a canonical notion of group-normal complex cond./str. J .

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex J , a J -compatible group-normal
structure exists, ! up to cobordism/refinement.

* ∃ (! up to cob) a single-valued equivariant fiberwise polyn. pertn

{s̃I}I with zero set X̃ :=
⊔

I s̃
−1
I (0)/g, s.t. space ˚̃X [L] of points

with exact [L]-stabilizers is a manifold (with compactification X̃ [L]),

X̃ [L]\˚̃X [L] has codimR ≥ 2 (even) and is covered by maps from

manifolds fibering over ˚̃X [H] for all L � H (up to conj. & ident.)

* “Floer chain”- and GW-moduli spaces for general symplectic
mflds have group-normal complex str. J , ! up to quasi-iso/cob.

* Using the stabilizer-free moduli spaces ˚̃X [{Id}] with L = {Id},
the Z-VFC, Floer homology and GW are well-defined over Z.
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Some further directions
Other part worth exploring:

1. How to make use of ˚̃M [L] for other groups [L] with L 6= {Id}.
Maybe use pseudocycle stratification to relate to homotopy
quotient defined using universal family-dependent J in certain
situations.

2. Since multiple branch-covers can be stabilizer-free, so integral
GW (defined for all, not just for CY3) is not GV. What is the
geometric meaning on the curve counting side?

3. Define Zp-version of equivariant p-products, p prime, possibly
encoding quantum chain-level commutativity.

4. Do it for SFT, relative(/Leg.) SFT, and LG.

5. Use forgetful functor (Y.), one gets a polyfold version, but
one should be able to directly with some simplification (soon).

6. Find alternative condition (to group-normal complex)
applicable to other moduli spaces of geometric PDE.
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Thank you!
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