Integral virtual fundamental chains

via finer virtual structures on moduli spaces

Dingyu Yang

Oct 6, 2017

 (M^{2m}, ω) is a symplectic manifold, if $\omega \in \Omega^2(M)$ is closed, and nondegenerate $\omega_x^m \neq 0$. From definitions:

 (M^{2m}, ω) is a symplectic manifold, if $\omega \in \Omega^2(M)$ is closed, and nondegenerate $\omega_x^m \neq 0$. From definitions:

1. No local invariant:

$$(\mathbb{R}^{2m}, \omega_0 = dx_1 \wedge dx_2 + \cdots + dx_{2m-1} \wedge dx_{2m}).$$

 (M^{2m}, ω) is a symplectic manifold, if $\omega \in \Omega^2(M)$ is closed, and nondegenerate $\omega_x^m \neq 0$. From definitions:

1. No local invariant:

$$(\mathbb{R}^{2m},\omega_0=dx_1\wedge dx_2+\cdots+dx_{2m-1}\wedge dx_{2m}).$$

- 2. (i) Homotopically ! almost complex structure (90° rotation) $J: TM \to TM$ with $J^2 = -1$ and $\omega(\cdot, J)$ Riemannian metric.
 - (ii) $u:(S,j,\mathbf{x})\to (M,J)$ is a *J*-curve, if $(du)^{0,1}=0$.
 - (iii) Counting *J*-curves *u* with markings $\mathbf{x} = (x_1, \dots, x_n)$ constrained on cycles of *M* gives Gromov-Witten invariant.

 (M^{2m}, ω) is a symplectic manifold, if $\omega \in \Omega^2(M)$ is closed, and nondegenerate $\omega_x^m \neq 0$. From definitions:

- 1. No local invariant:
 - $(\mathbb{R}^{2m}, \omega_0 = dx_1 \wedge dx_2 + \cdots + dx_{2m-1} \wedge dx_{2m}).$
- 2. (i) Homotopically ! almost complex structure (90° rotation) $J: TM \to TM$ with $J^2 = -1$ and $\omega(\cdot, J)$ Riemannian metric.
 - (ii) $u:(S,j,\mathbf{x})\to (M,J)$ is a *J*-curve, if $(du)^{0,1}=0$.
 - (iii) Counting *J*-curves *u* with markings $\mathbf{x} = (x_1, \dots, x_n)$ constrained on cycles of *M* gives Gromov-Witten invariant.
- 3. (i) $H: M \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ give vector field X_H by $dH =: \omega(X_H, \cdot)$.
 - (ii) Morse theory of $A_H([x,\hat{x}]) := -\int_D \hat{x}^*\omega \int_0^1 H(x(t),t)dt$ gives Floer homology.
 - (iii) Differential counts perturbed *J*-cylinders, or (J, H)-cylinders $(du X_H \otimes dt)^{0,1} = 0$.

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

Moduli spaces are not nice spaces in the usual sense:

(1) Non-regular: (McDuff:) Simple *J*-curves \pitchfork by generic *J*. (Floer-Hofer-Salamon:) (*J*, *H*)-cylinders \pitchfork by generic *t*-dep *H*.

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

- (1) Non-regular: (McDuff:) Simple *J*-curves \pitchfork by generic *J*. (Floer-Hofer-Salamon:) (*J*, *H*)-cylinders \pitchfork by generic *t*-dep *H*.
- (2) Noncompact: *J*-curves can bubble off. Consider {nodal curves}.

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

- (1) Non-regular: (McDuff:) Simple *J*-curves \pitchfork by generic *J*. (Floer-Hofer-Salamon:) (*J*, *H*)-cylinders \pitchfork by generic *t*-dep *H*.
- (2) Noncompact: *J*-curves can bubble off. Consider {nodal curves}.
- (3) (2) \Rightarrow multiple-covers, never \pitchfork by perturbing structures on M.

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

- (1) Non-regular: (McDuff:) Simple *J*-curves \pitchfork by generic *J*. (Floer-Hofer-Salamon:) (*J*, *H*)-cylinders \pitchfork by generic *t*-dep *H*.
- (2) Noncompact: *J*-curves can bubble off. Consider {nodal curves}.
- (3) (2) \Rightarrow multiple-covers, never \pitchfork by perturbing structures on M.
- (4) Domain-dep pertⁿ makes curve simple, but its compactification leads (3). Ok if (3) only happens in codim-2 (semi-positivity).

Global invariants, GW invariant & Floer homology, are defined:

- * Using moduli spaces $X := \{(perturbed) J-curves\}/symmetry.$
- * Via pulling back the evaluation map $ev: X \to Y$, where Y is a manifold: $M^{\times n}$, or {closed orbits of X_H }, respectively.

- (1) Non-regular: (McDuff:) Simple *J*-curves \pitchfork by generic *J*. (Floer-Hofer-Salamon:) (*J*, *H*)-cylinders \pitchfork by generic *t*-dep *H*.
- (2) Noncompact: *J*-curves can bubble off. Consider {nodal curves}.
- (3) (2) \Rightarrow multiple-covers, never \pitchfork by perturbing structures on M.
- (4) Domain-dep pertⁿ makes curve simple, but its compactification leads (3). Ok if (3) only happens in codim-2 (semi-positivity).
- (5) Divide domain-reparam sym (topology/cptness). X orbifold-based. Outside of special cases of semi-positivity, what can we do?

One major approach is abstract perturbation:

One major approach is abstract perturbation:

- * Polyfold approach (Hofer-Wysocki-Zehnder, ...)
 - (a) From a space $\mathcal B$ of all candidates, $\{J\text{-curves}\}/\text{iso}$ is cut out by a section $\mathbf f$ of Fredholm nature in a bundle $\mathcal E \to \mathcal B$.
 - (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.
 - (c) Easily globalize: patch over diffeos, usual genericity argument.

One major approach is abstract perturbation:

- * Polyfold approach (Hofer-Wysocki-Zehnder, ...)
 - (a) From a space $\mathcal B$ of all candidates, $\{J\text{-curves}\}/\text{iso}$ is cut out by a section $\mathbf f$ of Fredholm nature in a bundle $\mathcal E \to \mathcal B$.
 - (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.
 - (c) Easily globalize: patch over diffeos, usual genericity argument.
- * Kuranishi-type approach (By early 2014, Fukaya-Oh-Ohta-Ono, Joyce, McDuff-Wehrheim, Pardon, Y., ...)
 - (a) (Easy local model) X locally cut out by a section s_l in a f.d. bdle.
 - (b) Coordinate change can increase dimension. ⇒ No precompact open neighborhood of patched zero sets in patched ambient bases.
 - (c) Global topological/algebraic solution for (b), when charts patch.

One major approach is abstract perturbation:

- * Polyfold approach (Hofer-Wysocki-Zehnder, ...)
 - (a) From a space \mathcal{B} of all candidates, $\{J\text{-curves}\}/\text{iso}$ is cut out by a section \mathbf{f} of Fredholm nature in a bundle $\mathcal{E} \to \mathcal{B}$.
 - (b) Brand new smoothness, local models (of jumping dimensions), and local implicit function theorem.
 - (c) Easily globalize: patch over diffeos, usual genericity argument.
- * Kuranishi-type approach (By early 2014, Fukaya-Oh-Ohta-Ono, Joyce, McDuff-Wehrheim, Pardon, Y., ...)
 - (a) (Easy local model) X locally cut out by a section s_l in a f.d. bdle.
 - (b) Coordinate change can increase dimension. ⇒ No precompact open neighborhood of patched zero sets in patched ambient bases.
 - (c) Global topological/algebraic solution for (b), when charts patch.

As of Oct 5, 2017, the output from the above is a virtual fund. chain/cycle over \mathbb{Q} , which is a regular replacement of bad compact zero set $\mathbf{f}^{-1}(0)$ or $\coprod_I s_I^{-1}(0)/\Upsilon$. Υ is the patching identification. Because the symmetry and transversality don't get along \Rightarrow Need symmetric \mathbb{Q} -weighted branchwise \pitchfork multi-sections, or equiv.

Integral virtual fundamental chains (joint w/ Guangbo Xu)

Example: 2-sphere S w/ an orbifold point $\{z\} := S^{\mathbb{Z}_3}$ of symm. \mathbb{Z}_3 .

- 1. It fits as a special case of the previous polyfold/Kuranishi theories, and it is already regular and no room in the 0-bundle to do much else (like perturbation). Euler char. rational.
- 2. But we know it has no hole, whose information can be captured, and indeed, $S\setminus\{z\}$ is a pseudocyle, and we count 2 for this "virtual" (pseudo-)cycle.
- The subspace of points with nontrivial stabilizers being of codimension 2 (in the base) is not enough: We still need to regularize, and face imcompatibility of symm. & transversality.
- 4. Another aspect is that the normal bundle $N_{S\mathbb{Z}_3}S$ has a complex structure in this example, which generalizes.

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes). $C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$ and one for J.

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes). $C_I := (s_I: U_I \to E_I, \underline{\psi}_I: s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$ and one for J. A coordinate change $C_I \to C_I$ says:

- (2) (Enough) open part $C_I|_{U_{JI}}$ of C_I embeds in C_J , intertwining all the data. So $s_I|_{U_{JI}}$ sits in as part of s_J . Images denoted by \dot{s} .
- (2) U_J can have larger dimension. The extra direction is 'cancelled out' by ds_J matching normals of \check{U}_{JI} in U_J with fiber normals of \check{E}_I in E_J ", a canonical condition at zeros $s_J|_{\check{U}_{II}}$.

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes). $C_I := (s_I : U_I \to E_I, \underline{\psi}_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$ and one for J. A coordinate change $C_I \to C_I$ says:

- (2) (Enough) open part $C_I|_{U_{JI}}$ of C_I embeds in C_J , intertwining all the data. So $s_I|_{U_{JI}}$ sits in as part of s_J . Images denoted by $\dot{\cdot}$.
- (2) U_J can have larger dimension. The extra direction is 'cancelled out' by ds_J matching normals of \check{U}_{JI} in U_J with fiber normals of \check{E}_I in E_J ", a canonical condition at zeros $s_J|_{\check{U}_{II}}$.

One way to go up dimension is by improving (2) into condition over W_{JI} , a tubular neighborhood projecting onto \check{U}_{JI} (remembering the fiber linear structure, containing no extra zeros), and extend \check{E}_J to \check{E}_{JI} over W_{JI} , and asking $s_J|_{W_{JI}}/\check{E}_{JI} \pitchfork 0$. A \pitchfork perturbation of s_I is immediately lifted to a \pitchfork peturbation over W_{JI} . After things are in the same setting in E_J , one can use relative tranversality.

Any Kuranishi-type theory, you can get a finitely many charts covering moduli X, a good coordinate system. Consider 2 charts (4 generalizes). $C_I := (s_I : U_I \to E_I, \psi_I : s_I^{-1}(0)/\Gamma_I \to X; \Gamma_I)$ and one for J.

A coordinate change $\overline{C_I} \rightarrow C_I$ says:

- (2) (Enough) open part $C_I|_{U_{JI}}$ of C_I embeds in C_J , intertwining all the data. So $s_I|_{U_{JI}}$ sits in as part of s_J . Images denoted by $\check{\cdot}$.
- (2) U_J can have larger dimension. The extra direction is 'cancelled out' by ds_J matching normals of \check{U}_{JI} in U_J with fiber normals of \check{E}_I in E_J ", a canonical condition at zeros $s_J|_{\check{U}_{II}}$.

One way to go up dimension is by improving (2) into condition over W_{JI} , a tubular neighborhood projecting onto \check{U}_{JI} (remembering the fiber linear structure, containing no extra zeros), and extend \check{E}_J to \check{E}_{JI} over W_{JI} , and asking $s_J|_{W_{JI}}/\check{E}_{JI} \pitchfork 0$. A \pitchfork perturbation of s_I is immediately lifted to a \pitchfork peturbation over W_{JI} . After things are in the same setting in E_J , one can use relative tranversality.

Theorem (Y., Feb 2014)

Can do it globally on GCS via \exists (! up to refinem't) of level-1 str.

After considering dimension changes, we focus on group changes.

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective. $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

After considering dimension changes, we focus on group changes.

Fix a chart $C := C_I$ and the group action Γ is effective.

 $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

* $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.

After considering dimension changes, we focus on group changes.

Fix a chart $C := C_I$ and the group action Γ is effective.

 $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

- * $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
- * Suppose normal bundle N of U^H in U^L , and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.

After considering dimension changes, we focus on group changes. Fix a chart $C := C_1$ and the group action Γ is effective.

 $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

- * $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
- * Suppose normal bundle N of U^H in U^L , and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.
- * $s|_{U^L}$ has two part: $s|_{U^H}$ lifted to $W^{LH} \subset U^L$ near U^H as last page, but also the normal part $\mathfrak s$ which is a map $N \to \tilde N$ over U^H between $\mathbb C$ bundles. Group is $G := \Gamma^L/L$ with Γ^L normalizer of L.

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective. $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

- * $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
- * Suppose normal bundle N of U^H in U^L , and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.
- * $s|_{U^L}$ has two part: $s|_{U^H}$ lifted to $W^{LH} \subset U^L$ near U^H as last page, but also the normal part $\mathfrak s$ which is a map $N \to \tilde N$ over U^H between $\mathbb C$ bundles. Group is $G := \Gamma^L/L$ with Γ^L normalizer of L.
- * ('99 Fukaya-Ono, for 1 chart, 2 groups H and $L = \{Id\}$, $G = \Gamma$) $\mathfrak s$ can be fiberwise G-equivariant $\mathbb C$ -polynomially perturbed s.t. over N^{free} , G-free part, tranversality can be achieved. When virtual $dim \leq 1$, for "generic" such perturbation $\mathfrak s$, G-free part of zero set $\mathfrak s^{-1}(0)$ is a manifold and closed (does not meet U^H).

After considering dimension changes, we focus on group changes. Fix a chart $C := C_I$ and the group action Γ is effective. $L < H < \Gamma_I$ subgroups. U^H fixed by H. Thus $U^H \subset U^L$.

- * $C|_{U^H} \to C|_{U^L}$ is like coordinate change before, except no normal matching. In fact, no relation of expected dimensions.
- * Suppose normal bundle N of U^H in U^L , and also normal bundle \tilde{N} of E^H in $E^L|_{U^H}$ both have complex structures.
- * $s|_{U^L}$ has two part: $s|_{U^H}$ lifted to $W^{LH} \subset U^L$ near U^H as last page, but also the normal part $\mathfrak s$ which is a map $N \to \tilde N$ over U^H between $\mathbb C$ bundles. Group is $G := \Gamma^L/L$ with Γ^L normalizer of L.
- * ('99 Fukaya-Ono, for 1 chart, 2 groups H and $L = \{Id\}$, $G = \Gamma$) $\mathfrak s$ can be fiberwise G-equivariant $\mathbb C$ -polynomially perturbed s.t. over N^{free} , G-free part, tranversality can be achieved. When virtual $dim \leq 1$, for "generic" such perturbation $\mathfrak s$, G-free part of zero set $\mathfrak s^{-1}(0)$ is a manifold and closed (does not meet U^H). We improve this to the whole GCS covering moduli space X, prove vastly strengthened statements below for all virtual dims.

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J} .

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J} .

Theorem (Guangbo Xu - Y.)

* Given a group-normal complex \mathcal{J} , a \mathcal{J} -compatible group-normal structure exists, ! up to cobordism/refinement.

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J} .

Theorem (Guangbo Xu - Y.)

- * Given a group-normal complex \mathcal{J} , a \mathcal{J} -compatible group-normal structure exists, ! up to cobordism/refinement.
- * \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\Upsilon$, s.t. space $\mathring{\tilde{X}}^{[L]}$ of points with exact [L]-stabilizers is a manifold (with compactification $\tilde{X}^{[L]}$), $\tilde{X}^{[L]} \setminus \mathring{\tilde{X}}^{[L]}$ has codim $\mathbb{R} \geq 2$ (even) and is covered by maps from manifolds fibering over $\mathring{\tilde{X}}^{[H]}$ for all $L \not\subseteq H$ (up to conj. & ident.)

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J} .

Theorem (Guangbo Xu - Y.)

- * Given a group-normal complex \mathcal{J} , a \mathcal{J} -compatible group-normal structure exists, ! up to cobordism/refinement.
- * \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\Upsilon$, s.t. space $\mathring{\tilde{X}}^{[L]}$ of points with exact [L]-stabilizers is a manifold (with compactification $\tilde{X}^{[L]}$), $\tilde{X}^{[L]} \setminus \mathring{\tilde{X}}^{[L]}$ has codim $\mathbb{R} \geq 2$ (even) and is covered by maps from manifolds fibering over $\mathring{\tilde{X}}^{[H]}$ for all $L \not\subseteq H$ (up to conj. & ident.)
- * "Floer chain" and GW-moduli spaces for general symplectic mflds have group-normal complex str. J,! up to quasi-iso/cob.

Need notion of compatible structure involving $W_{JI}^{LH} \to U_{JI}^{LH}$ called group-normal str. providing a common setting at each inductive layer, & a canonical notion of group-normal complex cond./str. \mathcal{J} .

Theorem (Guangbo Xu - Y.)

- * Given a group-normal complex \mathcal{J} , a \mathcal{J} -compatible group-normal structure exists, ! up to cobordism/refinement.
- * \exists (! up to cob) a single-valued equivariant fiberwise polyn. pertn $\{\tilde{s}_I\}_I$ with zero set $\tilde{X} := \bigsqcup_I \tilde{s}_I^{-1}(0)/\Upsilon$, s.t. space $\mathring{\tilde{X}}^{[L]}$ of points with exact [L]-stabilizers is a manifold (with compactification $\tilde{X}^{[L]}$), $\tilde{X}^{[L]} \setminus \mathring{\tilde{X}}^{[L]}$ has codim $\mathbb{R} \geq 2$ (even) and is covered by maps from manifolds fibering over $\mathring{\tilde{X}}^{[H]}$ for all $L \not\subseteq H$ (up to conj. & ident.)
- * "Floer chain" and GW-moduli spaces for general symplectic mflds have group-normal complex str. J,! up to quasi-iso/cob.
- * Using the stabilizer-free moduli spaces $\mathring{\tilde{X}}^{[\{ld\}]}$ with $L=\{ld\}$, the \mathbb{Z} -VFC, Floer homology and GW are well-defined over \mathbb{Z} .

Some further directions

Other part worth exploring:

- 1. How to make use of $\tilde{M}^{[L]}$ for other groups [L] with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.
- 2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?
- 3. Define \mathbb{Z}_p -version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.

Some further directions

Other part worth exploring:

- 1. How to make use of $\mathring{M}^{[L]}$ for other groups [L] with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.
- 2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?
- 3. Define \mathbb{Z}_p -version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.
- 4. Do it for SFT, relative(/Leg.) SFT, and LG.
- 5. Use forgetful functor (Y.), one gets a polyfold version, but one should be able to directly with some simplification (soon).

Some further directions

Other part worth exploring:

- 1. How to make use of $\mathring{M}^{[L]}$ for other groups [L] with $L \neq \{Id\}$. Maybe use pseudocycle stratification to relate to homotopy quotient defined using universal family-dependent J in certain situations.
- 2. Since multiple branch-covers can be stabilizer-free, so integral GW (defined for all, not just for CY3) is not GV. What is the geometric meaning on the curve counting side?
- 3. Define \mathbb{Z}_p -version of equivariant p-products, p prime, possibly encoding quantum chain-level commutativity.
- 4. Do it for SFT, relative(/Leg.) SFT, and LG.
- 5. Use forgetful functor (Y.), one gets a polyfold version, but one should be able to directly with some simplification (soon).
- 6. Find alternative condition (to group-normal complex) applicable to other moduli spaces of geometric PDE.

Thank you!