Twisted integral orbit parametrizations

Aaron Pollack

Institute for Advanced Study

4 October 2017

Aaron Pollack Twisted integral orbit parametrizations

All statements are to be understood as essentially true (i.e., true once the statement is modified slightly).

(□) ▶ (● ●

This talk is about **arithmetic invariant theory**. Suppose:

- G is a linear algebraic group (e.g., GL_2 , GL_6)
- V is a finite-dimensional rational representation of G (e.g. $\operatorname{Sym}^2(V_2), \wedge^3 V_6$)

Definition

Arithmetic invariant theory is the study of

- Parametrizing the orbits $G(\mathbf{Q})$ on $V(\mathbf{Q})$ or
- Parametrizing the orbits G(Z) on V(Z) if G, V have structures over the integers.

Frequently, the orbits tend to be parametrized by interesting arithmetic objects.

Binary quadratic forms

Example

$$G = \operatorname{GL}_2, \ V = \operatorname{Sym}^2(V_2) \otimes \operatorname{det}^{-1}.$$

 $\mathsf{GL}_2({\bm Q})$ acts on $\operatorname{Sym}^2({\bm Q}^2)=2\times 2$ symmetric matrices:

$$g \cdot \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} = \det(g)^{-1}g \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} g^t.$$

Make integral:

•
$$G(\mathbf{Z}) = \operatorname{GL}_2(\mathbf{Z}) \subseteq \operatorname{GL}_2(\mathbf{Q})$$

• $V_{\mathbf{Z}} = \left\{ \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix} : a, b, c \in \mathbf{Z} \right\}$, lattice inside $\operatorname{Sym}^2(\mathbf{R}^2)$

• Equivalently: $V_{\mathbf{Z}} = \{ax^2 + bxy + cy^2 : a, b, c \in \mathbf{Z}\}$

$$f((x,y)) = ax^2 + bxy + cy^2 \mapsto (g \cdot f)((x,y)) = \det(g)^{-1}f((x,y)g).$$

Orbits on binary quadratic forms over Q

If
$$f(x, y) = ax^2 + bxy + cy^2$$
, then
 $\operatorname{Disc}(f) := b^2 - 4ac = -4 \operatorname{det} \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$

is an invariant of the orbit: I.e.,

$$\operatorname{Disc}(f) = \operatorname{Disc}(g \cdot f)$$
 for $g \in \operatorname{GL}_2$.

Orbits over Q (with $\text{Disc}(s) \neq 0$):

- If $s_1, s_2 \in \text{Sym}^2(\mathbf{Q}^2)$ and $\text{Disc}(s_1) = \text{Disc}(s_2) \neq 0$, then $\exists g \in \text{GL}_2(\mathbf{Q})$ with $\det(g)^{-1}gs_1 {}^tg = s_2$.
- Orbits parametrized by Disc, or quadratic étale algebras over \mathbf{Q} , $GL_2(\mathbf{Q})s \mapsto \mathbf{Q}(\sqrt{\mathrm{Disc}(s)})$.

For $D \in \mathbf{Z}$, set

$$V_{\mathbf{Z}}^{D} = \{f(x, y) : \operatorname{Disc}(f) = D\} = \left\{s = \left(\begin{array}{cc}a & \frac{b}{2}\\ \frac{b}{2} & c\end{array}\right) : -4\det(s) = D\right\}.$$

D must be a square modulo 4 for this set to be nonempty; i.e., $D\equiv 0,1$ modulo 4.

Orbits over **Z**:

- quadratic rings S_D over Z, $GL_2(Z)s \mapsto S_D := Z[x]/(x^2 - Dx + \frac{D^2 - D}{4}), D = Disc(s);$
- **2** plus elements in $Cl(S_D)$: explicit module for S_D .

- There is no a priori reason to believe parametrizing orbits G(Z) on V(Z) would yield interesting results
- However, Bhargava found many examples of such interesting parametrizations

Example (Bhargava)

- Orbits parametrize cubic rings T over Z (e.g. Z[7^{1/3}]), plus finer data
- For example, in case 2, orbits parametrize (T, I_1, I_2) with $I_1, I_2 \in Cl(T), I_1I_2 = 1$.

伺 ト イ ヨ ト イ ヨ ト

Twisted orbit problems

Work in arithmetic invariant theory over Z, i.e., parametrizations G(Z) on V(Z), has occurred when the group G is *split*, e.g. **Split**

•
$$G(\mathbf{Z}) = GL_2(\mathbf{Z}) \times SL_3(\mathbf{Z}) \times SL_3(\mathbf{Z})$$

•
$$V(\mathbf{Z}) = \mathbf{Z}^2 \otimes \mathbf{Z}^3 \otimes \mathbf{Z}^3 = \mathbf{Z}^2 \otimes M_3(\mathbf{Z}).$$

Problem

What about "twisted", or non-split cases?

Twisted

• Let S be a quadratic ring over Z,

$$\mathsf{SL}_3(\mathsf{Z}) imes \mathsf{SL}_3(\mathsf{Z}) = \mathsf{SL}_3(\mathsf{Z} imes \mathsf{Z}) \rightsquigarrow \mathsf{SL}_3(S).$$

•
$$\sigma:S
ightarrow S$$
, $\sigma(a+b\sqrt{D})=a-b\sqrt{D}$, $a,b\in$ Z,

$$M_3(\mathbf{Z}) \rightsquigarrow H_3(S) = \{h \in M_3(S) : h = {}^t h^{\sigma}\}$$

•
$$\mathsf{GL}_2(\mathbf{Z}) imes\mathsf{SL}_3(S)$$
 acts on $\mathbf{Z}^2\otimes H_3(S)$

Sample theorem

Theorem (P.)

The orbits of $GL_2(\mathbf{Z}) \times SL_3(S)$ on $\mathbf{Z}^2 \otimes H_3(S)$ parametrize triples (T, I, β) up to equivalence where

- T is a cubic ring
- I is a T ⊗_Z S-fractional ideal
- $\beta \in (T \otimes_{\mathsf{Z}} \mathsf{Q})^{\times}$
- the norm of I in $T \otimes \mathbf{Q}$ is principal, generated by β

Key idea:

- Relate orbits \mathcal{O} in $\mathbb{Z}^2 \otimes H_3(S)$ that are "big" (technically: in the open orbit for $(GL_2 \times GL_3(S))(\mathbb{Q}))$
- To orbits Õ in H₃(S) ⊗ T that are "small" (technically: for which the stabilizer of the line spanned by an element in the orbit is a parabolic subgroup of GL₃(T ⊗ S)(Q).)

Binary quadratic forms, again

Example

Using lifted orbits $\widetilde{\mathcal{O}}$ for binary quadratic forms

Recall: If $s_1, s_2 \in \text{Sym}^2(\mathbf{Q}^2)$, and $\text{Disc}(s_1) = \text{Disc}(s_2) \neq 0$, then $\exists g \in \text{GL}_2(\mathbf{Q})$ with $\det(g)^{-1}gs_1 {}^tg = s_2$.

Proof: Suppose

•
$$s = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$$
,
• $D = \operatorname{Disc}(s) = -4 \operatorname{det}(s) = b^2 - 4ac$.

Set

$$\widetilde{s} = s + rac{\sqrt{D}}{2} \left(egin{array}{c} 1 \\ -1 \end{array}
ight) = \left(egin{array}{c} a & rac{b+\sqrt{D}}{2} \\ rac{b-\sqrt{D}}{2} & c \end{array}
ight).$$

Then

- det $(\tilde{s}) = 0$, so \tilde{s} is a rank one matrix in $M_2(\mathbf{Q}(\sqrt{D}))$
- Eigenvector property: $s \begin{pmatrix} 1 \\ 1 \end{pmatrix} \widetilde{s} = \frac{\sqrt{D}}{2} \widetilde{s}$.

Proof sketch

- Suppose $s_1, s_2 \in \text{Sym}^2(\mathbf{Q}^2)$ with $\text{Disc}(s_1) = \text{Disc}(s_2)$.
- **2** Easy: Since $\tilde{s_1}$ and $\tilde{s_2}$ are rank one, there is $g \in GL_2(\mathbf{Q}\sqrt{D})$ with $g\tilde{s_1}^t g^\sigma = \tilde{s_2}$.
- **3** $g = g_1 + \frac{\sqrt{D}}{2}g_2$, some $g_1, g_2 \in M_2(\mathbf{Q})$.
- Set $h = g_1 + g_2 s \begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \in M_2(\mathbf{Q}).$
- **(5)** Immediate from Eigenvector property: $h\widetilde{s_1}^t h = \widetilde{s_2}$.
- Thus $hs_1 {}^t h = s_2$ and det(h) = 1.

Thank you for your attention!

æ

- ● ● ●

From the point of view of automorphic forms...

Question

From the point of view of automorphic forms, why **might** you be interested in arithmetic invariant theory?

Most basic answer: Help you understand the Fourier expansions of automorphic forms.

For example, suppose

$$f(Z) = \sum_{T \in \operatorname{Sym}^2(\mathbf{Z}^3)^{\vee}} a_f(T) e^{2\pi i \operatorname{tr}(TZ)}$$

is a Siegel modular form of degree three (i.e., for GSp_6). Then if $m \in SL_3(\mathbb{Z})$, $a_f(T) = a_f(m \cdot T)$. Orbits

 $\mathsf{GL}_3(Z) \backslash \mathrm{Sym}^2(Z^3)^{\vee} \leftrightarrow \ \text{Orders in quaternion algebras}$

If \mathcal{O} is a quaternion order, and $T \in \operatorname{Sym}^2(\mathbf{Z}^3)^{\vee}$, $T \leftrightarrow \mathcal{O}$, define $a_f(\mathcal{O}) := a_f(T)$.

Theorem (Evdokimov + ϵ)

Suppose f(Z) as above, weight k level one Hecke Eigenform. Suppose furthermore that B is a quaternion algebra, ramified at infinity, and B_0 is a maximal order in B. Then

$$\sum_{n \ge 1, \mathcal{O} \subseteq B_0} \frac{a_f(\mathbf{Z} + n\mathcal{O})}{n^s [B_0 : \mathcal{O}]^{s-k+3}} = a(B_0) \frac{L(\pi, Spin, s)}{\zeta(2s - 3k + 6)\zeta^{D_B}(2s - 3k + 8)}$$

Here $\zeta^{D_B}(s)$ is the Riemann zeta function, with the Euler factors at primes dividing the discriminant of B removed, and the sum is over all positive integers n and quaternion orders \mathcal{O} contained in B_0 .