Twisted integral orbit parametrizations

Aaron Pollack
Institute for Advanced Study

4 October 2017

Disclaimer

All statements are to be understood as essentially true (i.e., true once the statement is modified slightly).

Arithmetic invariant theory

This talk is about arithmetic invariant theory.
Suppose:

- G is a linear algebraic group (e.g., $\mathrm{GL}_{2}, \mathrm{GL}_{6}$)
- V is a finite-dimensional rational representation of G (e.g. $\left.\operatorname{Sym}^{2}\left(V_{2}\right), \wedge^{3} V_{6}\right)$

Definition

Arithmetic invariant theory is the study of

- Parametrizing the orbits $G(\mathbf{Q})$ on $V(\mathbf{Q})$ or
- Parametrizing the orbits $G(\mathbf{Z})$ on $V(\mathbf{Z})$ if G, V have structures over the integers.

Frequently, the orbits tend to be parametrized by interesting arithmetic objects.

Binary quadratic forms

Example

$$
G=\mathrm{GL}_{2}, V=\operatorname{Sym}^{2}\left(V_{2}\right) \otimes \operatorname{det}^{-1} .
$$

$\mathrm{GL}_{2}(\mathbf{Q})$ acts on $\operatorname{Sym}^{2}\left(\mathbf{Q}^{2}\right)=2 \times 2$ symmetric matrices:

$$
g \cdot\left(\begin{array}{cc}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array}\right)=\operatorname{det}(g)^{-1} g\left(\begin{array}{cc}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array}\right) g^{t} .
$$

Make integral:

- $G(\mathbf{Z})=\mathrm{GL}_{2}(\mathbf{Z}) \subseteq \mathrm{GL}_{2}(\mathbf{Q})$
- $V_{\mathbf{Z}}=\left\{\left(\begin{array}{cc}a & \frac{b}{2} \\ \frac{b}{2} & c\end{array}\right): a, b, c \in \mathbf{Z}\right\}$, lattice inside $\operatorname{Sym}^{2}\left(\mathbf{R}^{2}\right)$
- Equivalently: $V_{\mathbf{Z}}=\left\{a x^{2}+b x y+c y^{2}: a, b, c \in \mathbf{Z}\right\}$

$$
f((x, y))=a x^{2}+b x y+c y^{2} \mapsto(g \cdot f)((x, y))=\operatorname{det}(g)^{-1} f((x, y) g) .
$$

Orbits on binary quadratic forms over \mathbf{Q}

If $f(x, y)=a x^{2}+b x y+c y^{2}$, then

$$
\operatorname{Disc}(\mathrm{f}):=b^{2}-4 a c=-4 \operatorname{det}\left(\begin{array}{cc}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array}\right)
$$

is an invariant of the orbit: l.e.,

$$
\operatorname{Disc}(f)=\operatorname{Disc}(g \cdot f) \text { for } g \in \mathrm{GL}_{2} .
$$

Orbits over \mathbf{Q} (with $\operatorname{Disc}(s) \neq 0)$:

- If $s_{1}, s_{2} \in \operatorname{Sym}^{2}\left(\mathbf{Q}^{2}\right)$ and $\operatorname{Disc}\left(s_{1}\right)=\operatorname{Disc}\left(s_{2}\right) \neq 0$, then $\exists g \in \mathrm{GL}_{2}(\mathbf{Q})$ with $\operatorname{det}(g)^{-1} g s_{1}{ }^{t} g=s_{2}$.
- Orbits parametrized by Disc, or quadratic étale algebras over $\mathbf{Q}, \mathrm{GL}_{2}(\mathbf{Q}) s \mapsto \mathbf{Q}(\sqrt{\operatorname{Disc}(s)})$.

Orbits on binary quadratic forms over \mathbf{Z}

For $D \in \mathbf{Z}$, set
$V_{\mathbf{Z}}^{D}=\{f(x, y): \operatorname{Disc}(f)=D\}=\left\{s=\left(\begin{array}{cc}a & \frac{b}{2} \\ \frac{b}{2} & c\end{array}\right):-4 \operatorname{det}(s)=D\right\}$.
D must be a square modulo 4 for this set to be nonempty; i.e.,
$D \equiv 0,1$ modulo 4 .
Orbits over Z:
(1) quadratic rings S_{D} over \mathbf{Z},

$$
\mathrm{GL}_{2}(\mathbf{Z}) s \mapsto S_{D}:=\mathbf{Z}[x] /\left(x^{2}-D x+\frac{D^{2}-D}{4}\right), D=\operatorname{Disc}(s) ;
$$

(3) plus elements in $\mathrm{Cl}\left(S_{D}\right)$: explicit module for S_{D}.

Bhargava's HCL

- There is no a priori reason to believe parametrizing orbits $G(\mathbf{Z})$ on $V(\mathbf{Z})$ would yield interesting results
- However, Bhargava found many examples of such interesting parametrizations

Example (Bhargava)

(1) $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z})$ acting on $\mathbf{Z}^{2} \otimes \operatorname{Sym}^{2}\left(\mathbf{Z}^{3}\right)$
(2) $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z})$ acting on $\mathbf{Z}^{2} \otimes \mathbf{Z}^{3} \otimes \mathbf{Z}^{3}$
(3) $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{6}(\mathbf{Z})$ acting on $\mathbf{Z}^{2} \otimes \wedge^{2}\left(\mathbf{Z}^{6}\right)$.

- Orbits parametrize cubic rings T over \mathbf{Z} (e.g. $\mathbf{Z}\left[7^{1 / 3}\right]$), plus finer data
- For example, in case 2 , orbits parametrize $\left(T, I_{1}, I_{2}\right)$ with $I_{1}, I_{2} \in \mathrm{Cl}(T), I_{1} I_{2}=1$.

Twisted orbit problems

Work in arithmetic invariant theory over \mathbf{Z}, i.e., parametrizations $G(\mathbf{Z})$ on $V(\mathbf{Z})$, has occurred when the group G is split, e.g.
Split

- $G(\mathbf{Z})=\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z})$
- $V(\mathbf{Z})=\mathbf{Z}^{2} \otimes \mathbf{Z}^{3} \otimes \mathbf{Z}^{3}=\mathbf{Z}^{2} \otimes M_{3}(\mathbf{Z})$.

Problem

What about "twisted", or non-split cases?

Twisted

- Let S be a quadratic ring over \mathbf{Z},

$$
\mathrm{SL}_{3}(\mathbf{Z}) \times \mathrm{SL}_{3}(\mathbf{Z})=\mathrm{SL}_{3}(\mathbf{Z} \times \mathbf{Z}) \rightsquigarrow \mathrm{SL}_{3}(S) .
$$

- $\sigma: S \rightarrow S, \sigma(a+b \sqrt{D})=a-b \sqrt{D}, a, b \in \mathbf{Z}$,

$$
M_{3}(\mathbf{Z}) \rightsquigarrow H_{3}(S)=\left\{h \in M_{3}(S): h={ }^{t} h^{\sigma}\right\}
$$

- $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{3}(S)$ acts on $\mathbf{Z}^{2} \otimes H_{3}(S)$

Sample theorem

Theorem (P.)

The orbits of $\mathrm{GL}_{2}(\mathbf{Z}) \times \mathrm{SL}_{3}(S)$ on $\mathbf{Z}^{2} \otimes H_{3}(S)$ parametrize triples (T, I, β) up to equivalence where

- T is a cubic ring
- I is a $T \otimes_{\mathbf{z}} S$-fractional ideal
- $\beta \in\left(T \otimes_{\mathbf{z}} \mathbf{Q}\right)^{\times}$
- the norm of I in $T \otimes \mathbf{Q}$ is principal, generated by β

Key idea:

- Relate orbits \mathcal{O} in $\mathbf{Z}^{2} \otimes H_{3}(S)$ that are "big" (technically: in the open orbit for $\left.\left(\mathrm{GL}_{2} \times \mathrm{GL}_{3}(S)\right)(\mathbf{Q})\right)$
- To orbits $\widetilde{\mathcal{O}}$ in $H_{3}(S) \otimes T$ that are "small" (technically: for which the stabilizer of the line spanned by an element in the orbit is a parabolic subgroup of $\mathrm{GL}_{3}(T \otimes S)(\mathbf{Q})$.)
- The "lifted" orbits $\widetilde{\mathcal{O}}$ are easier to understand from the point of view of AIT, which is why this helps you

Binary quadratic forms, again

Example

Using lifted orbits $\widetilde{\mathcal{O}}$ for binary quadratic forms
Recall: If $s_{1}, s_{2} \in \operatorname{Sym}^{2}\left(\mathbf{Q}^{2}\right)$, and $\operatorname{Disc}\left(s_{1}\right)=\operatorname{Disc}\left(s_{2}\right) \neq 0$, then $\exists g \in \mathrm{GL}_{2}(\mathbf{Q})$ with $\operatorname{det}(g)^{-1} g s_{1}{ }^{t} g=s_{2}$.
Proof: Suppose

- $s=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$,
- $D=\operatorname{Disc}(s)=-4 \operatorname{det}(s)=b^{2}-4 a c$.

Set

$$
\widetilde{s}=s+\frac{\sqrt{D}}{2}\left(\begin{array}{cc}
& 1 \\
-1 &
\end{array}\right)=\left(\begin{array}{cc}
a & \frac{b+\sqrt{D}}{2} \\
\frac{b-\sqrt{D}}{2} & c
\end{array}\right) .
$$

Then

- $\operatorname{det}(\widetilde{s})=0$, so \widetilde{s} is a rank one matrix in $M_{2}(\mathbf{Q}(\sqrt{D}))$
- Eigenvector property: $s\left({ }_{1}{ }^{-1}\right) \widetilde{s}=\frac{\sqrt{D}}{2} \widetilde{s}$.

Proof, continued

Proof sketch

(1) Suppose $s_{1}, s_{2} \in \operatorname{Sym}^{2}\left(\mathbf{Q}^{2}\right)$ with $\operatorname{Disc}\left(s_{1}\right)=\operatorname{Disc}\left(s_{2}\right)$.
(2) Easy: Since $\widetilde{s_{1}}$ and $\widetilde{s_{2}}$ are rank one, there is $g \in \operatorname{GL}_{2}(\mathbf{Q} \sqrt{D})$ with $g \widetilde{s}_{1}{ }^{t} g^{\sigma}=\widetilde{s_{2}}$.
(3) $g=g_{1}+\frac{\sqrt{D}}{2} g_{2}$, some $g_{1}, g_{2} \in M_{2}(\mathbf{Q})$.
(9) Set $h=g_{1}+g_{2} s\left({ }_{1}{ }^{-1}\right) \in M_{2}(\mathbf{Q})$.
(5) Immediate from Eigenvector property: $h \widetilde{s_{1}}{ }^{t} h=\widetilde{s_{2}}$.
(0) Thus $h s_{1}{ }^{t} h=s_{2}$ and $\operatorname{det}(h)=1$.

Thank you for your attention!

Question

From the point of view of automorphic forms, why might you be interested in arithmetic invariant theory?

Most basic answer: Help you understand the Fourier expansions of automorphic forms.
For example, suppose

$$
f(Z)=\sum_{T \in \operatorname{Sym}^{2}\left(\mathbf{Z}^{3}\right)^{\vee}} a_{f}(T) e^{2 \pi i \operatorname{tr}(T Z)}
$$

is a Siegel modular form of degree three (i.e., for GSp_{6}).
Then if $m \in \operatorname{SL}_{3}(\mathbf{Z}), a_{f}(T)=a_{f}(m \cdot T)$.
Orbits

$$
\mathrm{GL}_{3}(\mathbf{Z}) \backslash \operatorname{Sym}^{2}\left(\mathbf{Z}^{3}\right)^{\vee} \leftrightarrow \text { Orders in quaternion algebras }
$$

Fourier coefficients on GSp_{6}

If \mathcal{O} is a quaternion order, and $T \in \operatorname{Sym}^{2}\left(\mathbf{Z}^{3}\right)^{\vee}, T \leftrightarrow \mathcal{O}$, define $a_{f}(\mathcal{O}):=a_{f}(T)$.

Theorem (Evdokimov $+\epsilon$)

Suppose $f(Z)$ as above, weight k level one Hecke Eigenform. Suppose furthermore that B is a quaternion algebra, ramified at infinity, and B_{0} is a maximal order in B. Then
$\sum_{n \geq 1, \mathcal{O} \subseteq B_{0}} \frac{a_{f}(\mathbf{Z}+n \mathcal{O})}{n^{s}\left[B_{0}: \mathcal{O}\right]^{s-k+3}}=a\left(B_{0}\right) \frac{L(\pi, \text { Spin, } s)}{\zeta(2 s-3 k+6) \zeta^{D_{B}}(2 s-3 k+8)}$
Here $\zeta^{D_{B}}(s)$ is the Riemann zeta function, with the Euler factors at primes dividing the discriminant of B removed, and the sum is over all positive integers n and quaternion orders \mathcal{O} contained in B_{0}.

