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Disclaimer

All statements are to be understood as essentially true (i.e., true
once the statement is modified slightly).
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Arithmetic invariant theory

This talk is about arithmetic invariant theory.

Suppose:

G is a linear algebraic group (e.g., GL2, GL6)

V is a finite-dimensional rational representation of G (e.g.
Sym2(V2), ∧3V6)

Definition

Arithmetic invariant theory is the study of
Parametrizing the orbits G (Q) on V (Q) or
Parametrizing the orbits G (Z) on V (Z) if G ,V have
structures over the integers.

Frequently, the orbits tend to be parametrized by interesting
arithmetic objects.
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Binary quadratic forms

Example

G = GL2, V = Sym2(V2)⊗ det−1.

GL2(Q) acts on Sym2(Q2) = 2× 2 symmetric matrices:

g ·
(

a b
2

b
2 c

)
= det(g)−1g

(
a b

2
b
2 c

)
g t .

Make integral:

G (Z) = GL2(Z) ⊆ GL2(Q)

VZ =

{(
a b

2
b
2 c

)
: a, b, c ∈ Z

}
, lattice inside Sym2(R2)

Equivalently: VZ = {ax2 + bxy + cy2 : a, b, c ∈ Z}

f ((x , y)) = ax2+bxy+cy2 7→ (g ·f )((x , y)) = det(g)−1f ((x , y)g).
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Orbits on binary quadratic forms over Q

If f (x , y) = ax2 + bxy + cy2, then

Disc(f) := b2 − 4ac = −4 det

(
a b

2
b
2 c

)
is an invariant of the orbit: I.e.,

Disc(f ) = Disc(g · f ) for g ∈ GL2 .

Orbits over Q (with Disc(s) 6= 0):

If s1, s2 ∈ Sym2(Q2) and Disc(s1) = Disc(s2) 6= 0, then
∃g ∈ GL2(Q) with det(g)−1gs1

tg = s2.

Orbits parametrized by Disc, or quadratic étale algebras over
Q, GL2(Q)s 7→ Q(

√
Disc(s)).
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Orbits on binary quadratic forms over Z

For D ∈ Z, set

VD
Z = {f (x , y) : Disc(f ) = D} =

{
s =

(
a b

2
b
2 c

)
: −4 det(s) = D

}
.

D must be a square modulo 4 for this set to be nonempty; i.e.,
D ≡ 0, 1 modulo 4.

Orbits over Z:

1 quadratic rings SD over Z,
GL2(Z)s 7→ SD := Z[x ]/(x2 − Dx + D2−D

4 ), D = Disc(s);

2 plus elements in Cl(SD): explicit module for SD .
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Bhargava’s HCL

There is no a priori reason to believe parametrizing orbits
G (Z) on V (Z) would yield interesting results

However, Bhargava found many examples of such interesting
parametrizations

Example (Bhargava)

1 GL2(Z)× SL3(Z) acting on Z2 ⊗ Sym2(Z3)
2 GL2(Z)× SL3(Z)× SL3(Z) acting on Z2 ⊗ Z3 ⊗ Z3

3 GL2(Z)× SL6(Z) acting on Z2 ⊗ ∧2(Z6).

Orbits parametrize cubic rings T over Z (e.g. Z[71/3]), plus
finer data

For example, in case 2, orbits parametrize (T , I1, I2) with
I1, I2 ∈ Cl(T ), I1I2 = 1.
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Twisted orbit problems

Work in arithmetic invariant theory over Z, i.e., parametrizations
G (Z) on V (Z), has occurred when the group G is split, e.g.

Split

G (Z) = GL2(Z)× SL3(Z)× SL3(Z)

V (Z) = Z2 ⊗ Z3 ⊗ Z3 = Z2 ⊗M3(Z).

Problem

What about “twisted”, or non-split cases?

Twisted

Let S be a quadratic ring over Z,

SL3(Z)× SL3(Z) = SL3(Z× Z) SL3(S).

σ : S → S , σ(a + b
√
D) = a− b

√
D, a, b ∈ Z,

M3(Z) H3(S) = {h ∈ M3(S) : h = thσ}

GL2(Z)× SL3(S) acts on Z2 ⊗ H3(S)
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Sample theorem

Theorem (P.)

The orbits of GL2(Z)× SL3(S) on Z2 ⊗ H3(S) parametrize triples
(T , I , β) up to equivalence where

T is a cubic ring
I is a T ⊗Z S-fractional ideal
β ∈ (T ⊗Z Q)×

the norm of I in T ⊗Q is principal, generated by β

Key idea:

Relate orbits O in Z2 ⊗ H3(S) that are “big” (technically: in
the open orbit for (GL2×GL3(S))(Q))

To orbits Õ in H3(S)⊗ T that are “small” (technically: for
which the stabilizer of the line spanned by an element in the
orbit is a parabolic subgroup of GL3(T ⊗ S)(Q).)

The “lifted” orbits Õ are easier to understand from the point
of view of AIT, which is why this helps you
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Binary quadratic forms, again

Example

Using lifted orbits Õ for binary quadratic forms

Recall: If s1, s2 ∈ Sym2(Q2), and Disc(s1) = Disc(s2) 6= 0, then
∃g ∈ GL2(Q) with det(g)−1gs1

tg = s2.

Proof: Suppose

s =
(

a b/2
b/2 c

)
,

D = Disc(s) = −4 det(s) = b2 − 4ac.

Set

s̃ = s +

√
D

2

(
1

−1

)
=

(
a b+

√
D

2
b−
√
D

2 c

)
.

Then

det(s̃) = 0, so s̃ is a rank one matrix in M2(Q(
√
D))

Eigenvector property: s
( −1
1

)
s̃ =

√
D
2 s̃.
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Proof, continued

Proof sketch

1 Suppose s1, s2 ∈ Sym2(Q2) with Disc(s1) = Disc(s2).

2 Easy: Since s̃1 and s̃2 are rank one, there is g ∈ GL2(Q
√
D)

with g s̃1
tgσ = s̃2.

3 g = g1 +
√
D
2 g2, some g1, g2 ∈ M2(Q).

4 Set h = g1 + g2s
( −1
1

)
∈ M2(Q).

5 Immediate from Eigenvector property: hs̃1
th = s̃2.

6 Thus hs1
th = s2 and det(h) = 1.
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Thank you

Thank you for your attention!
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From the point of view of automorphic forms...

Question

From the point of view of automorphic forms, why might you be
interested in arithmetic invariant theory?

Most basic answer: Help you understand the Fourier expansions
of automorphic forms.

For example, suppose

f (Z ) =
∑

T∈Sym2(Z3)∨

af (T )e2πi tr(TZ)

is a Siegel modular form of degree three (i.e., for GSp6).

Then if m ∈ SL3(Z), af (T ) = af (m · T ).

Orbits

GL3(Z)\Sym2(Z3)∨ ↔ Orders in quaternion algebras
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Fourier coefficients on GSp6

If O is a quaternion order, and T ∈ Sym2(Z3)∨, T ↔ O, define
af (O) := af (T ).

Theorem (Evdokimov + ε)

Suppose f (Z ) as above, weight k level one Hecke Eigenform.
Suppose furthermore that B is a quaternion algebra, ramified at
infinity, and B0 is a maximal order in B. Then∑
n≥1,O⊆B0

af (Z + nO)

ns [B0 : O]s−k+3
= a(B0)

L(π,Spin, s)

ζ(2s − 3k + 6)ζDB (2s − 3k + 8)
.

Here ζDB (s) is the Riemann zeta function, with the Euler factors at
primes dividing the discriminant of B removed, and the sum is over
all positive integers n and quaternion orders O contained in B0.

Aaron Pollack Twisted integral orbit parametrizations


