IAS, April 29, 2019

Globally consistent three-family Standard Models in F-theory

Mirjam Cvetič

Univerza v Ljubljani
Fakulteta za matematiko in fiziko

Outline

I. F-theory: key ingredients
(non-)Abelian gauge symmetries, matter \& Yukawa couplings [Recent developments: global constraints on gauge symmetry
\rightarrow implications for F-theory "swampland"]
II. Particle physics model building in F-theory:

Building blocks (via toric techniques)
First globally consistent three family Standard Models
III. Landscape of three family Standard Models: Globally consistent models via toric techniques Highlight
IV. Outlook: work in progress \& open issues
I. Global constrains on gauge symmetry in F-theory
M.C. and Ling Lin, ' 'The Global Gauge Group Structure of F-theory Compactification with U(1)s," JHEP, arXiv:1706.08521 [hep-th]

Review:

M.C. and Ling Lin, arXiv:1809.00012[hep-th],
"TASI Lectures on Abelian and Discrete Symmetries in F-theory"
III. First three - family Standard Models:
M.C., Denis Klevers, Damián Kaloni Mayorga Peña, Paul-Konstantin Oehlmann, Jonas Reuter, ' 'Three-Family Particle Physics Models from ${ }^{\prime}$ Global F-theory Compactifications," JHEP, arXiv:1503.02068_hep-th], with Z_{2} matter parity:
M.C., Ling Lin, Muyang Liu and Paul-Konstantin Oehlmann,
 arXiv:180\%.01320 [hep-th]
III.Landscape of three-family Standard Models
M.C., James Halverson, Ling Lin, Muyang Liu and Jiahua Tian,
' A Quadrillion Standard Models from F-theory," arXiv:1903.00009[hep-th]

I. F-theory basic ingredients
 Type IIB string perspective

F-theory compactification to 4D

 [Vafa'96], [Morrison,Vafa'96],... c.f., review [Weigand 1806.01854 Singular elliptically fibered Calabi-Yau manifold XModular parameter of two-torus (elliptic curve)
[SL $(2, Z)$ of Type IIB]
$\tau \equiv C_{0}+i g_{s}^{-1}$

Weierstrass normal form for elliptic fibration of X

$$
y^{2}=x^{3}+f x z^{4}+g z^{6} \quad(x, y, z) \simeq\left(\lambda^{2} x, \lambda^{3} y, \lambda z\right)
$$

[z:x:y] - homogeneous coordinates on $\mathbb{P}^{2}{ }_{[2,3,1]}$
Calabi-Yau conditions:
B-3D Kähler
f, g - sections of $\overline{\mathcal{K}}_{B}{ }^{6}$ and $\overline{\mathcal{K}}_{B}{ }^{4}$ on B
[$\overline{\mathcal{K}}_{B}$ - anti-canonical bundle on B]
[x:y:z]- sections of specific line-bundles on \boldsymbol{B}

F-theory compactification

Singular torus fibered Calabi-Yau manifold X

Modular parameter of two-torus (elliptic curve)
$\tau \equiv C_{0}+i g_{s}^{-1}$

Weierstrass normal form for elliptic fibration of X

$$
y^{2}=x^{3}+f x z^{4}+g z^{6}
$$

Matter
(co-dim 2; chirality- G_{4}-flux)
divisor- singular elliptic-fibration, $\mathrm{g}_{\mathrm{s}} \rightarrow \infty$ location of (p, q) 7-branes
non-Abelian gauge symmetry (co-dim 1) - ADE singularities

Non-Abelian Gauge Symmetry

[Kodaira],[Tate], [Vafa], [Morrison,Vafa],...[Esole,Yau], [Hayashi,Lawrie,Schäfer-Nameki],[Morrison], ...

- Weierstrass normal form for elliptic fibration of X

$$
y^{2}=x^{3}+f x z^{4}+g z^{6}
$$

- Severity of singularity along divisor S in B specified by $\left[\operatorname{ord}_{s}(f), \operatorname{ord}_{s}(g), \operatorname{ord}_{s}(\Delta)\right]$
- Resolution: structure of a tree of \mathbb{P}^{1} 's over S Resolved I_{n}-singularity $\leftarrow \rightarrow S U(\mathrm{n})$ Dynkin diagram

Cartan gauge bosons: supported by $(1,1)$ form $\omega_{i} \leftrightarrow \mathbb{P}_{i}^{1}$ on resolved X (via M-theory Kaluza-Klein reduction of C_{3} potential $C_{3} \supset A^{i} \omega_{i}$)

Non-Abelian gauge bosons: light M2-brane excitations on \mathbb{P}^{1} 's
[Witten] Deformation: [Grassi, Halverson, Shaneson'14-'15]

U(1)'s- Abelian Gauge Symmetry \& Mordell-Weil group

rational sections of elliptic fibr. \Leftrightarrow rational points of elliptic curve

Rational point Q on elliptic curve E with zero point P

- is solution (x_{Q}, y_{Q}, z_{Q}) in field K of Weierstrass form

$$
y^{2}=x^{3}+f x z^{4}+g z^{6}
$$

- Rational points form group (addition) on E

Mordell-Weil group of rational points

$P+Q+R=0$

U(1)'s-Abelian Symmetry \&Mordell-Weil Group

Point Q induces a rational section $\hat{s}_{Q}: B \rightarrow X$ of elliptic fibration

\hat{s}_{Q} gives rise to a second copy of B in X :
new divisor B_{Q} in X

U(1)'s-Abelian Symmetry \&Mordell-Weil Group

Point $\mathrm{Q} E$ induces a rational section $\hat{s}_{Q}: B \rightarrow X$ of elliptic fibration

-

\hat{s}_{Q} gives rise to a second copy of B in X :
new divisor B_{Q} in X
Shioda map of \hat{s}_{Q}, complementary to $\mathcal{B}_{\mathcal{P}}$ - zero section \& \mathcal{E}_{i} - Cartan divisors:
$\sigma\left(\hat{s}_{Q}\right)=B_{Q}-B_{P}-\sum_{i} l_{i} E_{i}+\cdots$
[M.C., Lin, 1706.08521] - a bit more later Implications for global constraints on gauge symmetry \& F-theory "swampland"

Matter

Singularity at codimension-two in B :

Matter

Singularity at codimension-two in B :

III. Particle physics in F-theory

Globally consistent models

Initial focus: F-theory with $\mathrm{SU}(5)$ grand unification

 [10 105 coupling,...] [Donagi,Wijnholt'08][Beasley,Heckman,Vafa'08]...
Model Constructions:

Local [Donagi,Wijnholt'09-10]...[Marsano,Schäfer-Nameki,Saulina'09-11]... Review: [Heckman]
Global
[Blumehagen,Grimm,Jurke,Weigand'09][M.C., Garcia-Etxebarria,Halverson'10]... [Marsano,Schäfer-Nameki'11-12]...[Clemens,Marsano,Pantev,Raby,Tseng '12]... Also SO(10) ... [Buchmüller, Dierigl, Oehlmann, Rühle'1'7]

Other particle physics models:

Standard Model building blocks (via toric techniques)
[Lin,Weigand'l4] SM x U(1) [1604.04292]
First global 3-family Standard, Pati-Salam, Trinification models [M.C., Klevers, Peña, Oehlmann, Reuter, 1503.02068]
Global 3-family Standard Model with Z_{2} matter parity
[M.C., Lin, Liu, Oehlmann, 1807.01320]

Construction of elliptically fibered Calabi-Yau manifold

i. Elliptic curve E

Examples of constructions via toric techniques:
$E_{F_{i}}$ as a Calabi-Yau hypersurface in the two-dimensional toric variety $\mathbb{P}_{F_{i}}$, [generalized weighted projective spaces, associated with16 reflexive polytopes F_{2}]:
c.f., [Klevers, Pena, Oehlmann, Piragua, Reuter '14]

$$
E_{F_{i}}=\left\{p_{F_{i}}=0\right\} \text { in } \mathbb{P}_{F_{i}}
$$

ii. Elliptically fibered Calabi-Yau space: $X_{F_{i}}$

Impose Calabi-Yau condition: coordinates in $\mathbb{P}_{F_{i}}$ and coeffs. of $E_{F_{i}}$ lifted to sections of specific line-bundles on B

$$
E_{F_{i}} \subset \mathbb{P}_{F_{i}} \longrightarrow X_{F_{i}}
$$

iii. Chiral index for $D=4$ matter:

$$
\chi(\mathbf{R})=\int_{\mathcal{C}_{\mathbf{R}}} G_{4}
$$

a) construct G_{4} flux by computing $H_{V}^{(2,2)}(\hat{X})$
 [so-called vertical fluxes - do not induce Gukov-Vafa-Witten potential] b) determine matter surface $\mathcal{C}_{\mathbf{R}}$ (via resultant techniques)
iv. Global consistency - D3 tadpole cancellation:

$$
\frac{\chi(X)}{24}=n_{\mathrm{D} 3}+\frac{1}{2} \int_{X} G_{4} \wedge G_{4}
$$

a) satisfied for integer and positive $\mathrm{n}_{\mathrm{D} 3}$ b) constraint on integer valued flux G_{4}

$$
G_{4}+\frac{1}{2} c_{2}(X) \in H^{4}(\mathbb{Z}, \hat{X})
$$

Standard Model

[M.C., Klevers, Peña, Oehlmann, Reuter,1503.02068]
F_{11} polytope

$P_{F 11}$
\mathbb{P}^{2} [u:v:w] with four non-generic blow-ups $\left[\mathrm{e}_{1}: \mathrm{e}_{2}: \mathrm{e}_{3}: \mathrm{e}_{4}\right]$

Elliptic curve:

$p_{F_{11}}=s_{1} e_{1}^{2} e_{2}^{2} e_{3} e_{4}^{4} u^{3}+s_{2} e_{1} e_{2}^{2} e_{3}^{2} e_{4}^{2} u^{2} v+s_{3} e_{2}^{2} e_{3}^{2} u v^{2}+s_{5} e_{1}^{2} e_{2} e_{4}^{3} u^{2} w+s_{6} e_{1} e_{2} e_{3} e_{4} u v w+s_{9} e_{1} v w^{2}$
hypersurface constraint in $\mathrm{P}_{\mathrm{F} 11}$

Construction of Calabi-Yau four-fold

Construction of Calabi-Yau four-fold

$$
E_{F_{i n}} \subset \mathbb{P}_{F_{i_{i j}}} \longrightarrow X_{F_{i n}}
$$

Coordinates and $s_{i} \rightarrow$ sections of line-bundles of the base B [Toric techniques via Stanley-Reisner ideal] \rightarrow

Section	Line Bundle
u	$\mathcal{O}\left(H-E_{1}-E_{2}-E_{4}+\mathcal{S}_{9}+\left[K_{B}\right]\right)$
v	$\mathcal{O}\left(H-E_{2}-E_{3}+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$
w	$\mathcal{O}\left(H-E_{1}\right)$
e_{1}	$\mathcal{O}\left(E_{1}-E_{4}\right)$
e_{2}	$\mathcal{O}\left(E_{2}-E_{3}\right)$
e_{3}	$\mathcal{O}\left(E_{3}\right)$
e_{4}	$\mathcal{O}\left(E_{4}\right)$

section	Line Bundle
s_{1}	$\mathcal{O}_{B}\left(3\left[K_{B}^{-1}\right]-\mathcal{S}_{7}-\mathcal{S}_{9}\right)$
s_{2}	$\mathcal{O}_{B}\left(2\left[K_{B}^{-1}\right]-\mathcal{S}_{9}\right)$
s_{3}	$\mathcal{O}_{B}\left(\left[K_{B}^{-1}\right]+\mathcal{S}_{7}-\mathcal{S}_{9}\right)$
s_{4}	$\mathcal{O}_{B}\left(2 \mathcal{S}_{7}-\mathcal{S}_{9}\right)$
s_{5}	$\mathcal{O}_{B}\left(2\left[K_{B}^{-1}\right]-\mathcal{S}_{7}\right)$
s_{6}	K_{B}^{-1}
s_{7}	$\mathcal{O}_{B}\left(\mathcal{S}_{7}\right)$
s_{8}	$\mathcal{O}_{B}\left(\left[K_{B}^{-1}\right]+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$
s_{9}	$\mathcal{O}_{B}\left(\mathcal{S}_{9}\right)$
s_{10}	$\mathcal{O}_{B}\left(2 \mathcal{S}_{9}-\mathcal{S}_{7}\right)$

H - hyperplane divisor;
$\mathrm{K}_{\mathrm{B}}{ }^{-1}$-anti-canonical divisor $\overline{\mathcal{K}}$
Fibration depends only on additional S_{7} and S_{9} divisor classes

Construction of Calabi-Yau four-fold \rightarrow Divisors

$$
E_{F_{11} \subset \mathbb{P}_{F_{11}} \longrightarrow X_{F_{11}},}
$$

Over the locus $\mathrm{s}_{3}=0 \rightarrow$ fiber degenerates to I_{2} - fiber $\rightarrow \mathrm{SU}(2)$
Over the locus $\mathrm{S}_{9}=0 \rightarrow$ fiber degenerates to $\mathrm{I}_{3}-$ fiber $\rightarrow \mathrm{SU}(3)$
Cartan divisors of these gauge groups:

$$
\mathrm{E}_{1}^{\mathrm{SU}(2)}=\left[e_{1}\right], \quad \mathrm{E}_{1}^{\mathrm{SU}(3)}=\left[e_{2}\right] \quad \mathrm{E}_{2}^{\mathrm{SU}(3)}=[u]
$$

Two rational sections:
[u:v:w: $\left.e_{1}: e_{2}: e_{3}: e_{4}\right]$
$\hat{s}_{0}=X_{F_{11}} \cap\{v=0\}: \quad\left[1: 0: s_{1}: 1: 1:-s_{5}: 1\right]$ - zero section
$\hat{s}_{1}=X_{F_{11}} \cap\left\{e_{4}=0\right\}: \quad\left[s_{9}: 1: 1:-s_{3}: 1: 1: 0\right]$ - section associated with $\mathrm{U}(1)$

Standard Model Gauge Symmetry \& Matter Reps.

 gauge algebra $\mathfrak{s u}(3) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1)$[M.C., Lin, 1706.08521]
Shioda map: C-central element
$\sigma\left(\hat{s}_{1}\right)=S_{1}-S_{0}+\frac{1}{2} E_{1}^{\mathfrak{s u}(2)}+\frac{1}{3}\left(2 E_{1}^{\mathfrak{s u}(3)}+E_{2}^{\mathfrak{s u}(3)}\right)$

Matter:
$(\mathbf{3}, \mathbf{2})_{\frac{1}{6}},(\mathbf{1}, \mathbf{2})_{-\frac{1}{2}},(\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}}, \quad(\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}},(\mathbf{1}, \mathbf{1})_{1}$
Compatible with the Z_{6} global constraint

Construct G_{4} for chiral index \& D3-tadpole constraint

Hyperplane divisor class $H=4 \overline{\mathcal{K}}$

$$
\begin{aligned}
\text { Base } \mathrm{B}=\mathbb{P}^{3} \text { Divisors in the base: } \begin{array}{l}
\mathcal{S}_{7}=n_{7} H \\
\mathcal{S}_{9}=n_{9} H
\end{array}
\end{aligned}
$$

Solutions (\#(families); $\mathrm{n}_{\mathrm{D} 3}$) for allowed ($\mathrm{n}_{7}, \mathrm{n}_{\mathrm{g}}$):
$n_{7}, n_{9} \in \mathbb{Z}$

$n_{7} \backslash^{n_{9}}$	1	2	3	4	5	6	7
7	-	$(27 ; 16)$	-	-			
6	-	$(12 ; 81)$	$(21 ; 42)$	-	-		
5	-	-	$(12 ; 57)$	$(30 ; 8)$	-	$(3 ; 46)$	-
4	$(42 ; 4)$	-	$(30 ; 32)$	-	-	-	-
3	-	$(21 ; 72)$	-	-	-	$(15 ; 30)$	
2	$(45 ; 16)$	$(24 ; 79)$	$(21 ; 66)$	$(24 ; 44)$	$(3 ; 64)$		
1	-	-	-	-			
0	-	-	$(12 ; 112)$				
-1	$(36 ; 91)$	$(33 ; 74)$					
-2	-						

Further features:

Higgs doublets - vector pairs
[$\mathrm{C}_{3} \mathrm{w} / \mathrm{G}_{4=} \mathrm{dC}_{3}=0$, encoded in the intermediate Jacobian of Y ; higher genus matter curves \rightarrow hard to calculate] c.f., [Bies, Mayrhofer, Weigand, 1706.04616]

Vector exotics [ditto; but for quark doublets $\mathrm{g}=1 \rightarrow \mathrm{n} \leq 1$]
Yukawa Couplings (co-dimension 3 singularities) expected to be generically there for all gauge invariant couplings \rightarrow could lead to R-parity violation couplings

Three Family Standard Model with Z_{2} matter symmetry
[M.C., Lin, Liu, Oehlmann,1807.01320]
Polytope F_{2} (biquadric in $\mathbb{p}^{1} \mathrm{XP}^{1}$; fibration with bi-section $\rightarrow Z_{2}$; further specialize fibration to obtain SM

III. Landscape of Standard Models
 Toric analysis

[M.C., J. Halverson, L. Lin, M. Liu and J. Tian, arXiv:1903.0009]
a) Take the same toric elliptic fibration as before: hyperplane constraint in 2 D reflexive polytope $\mathrm{F}_{11}\left(\mathrm{dP}_{4}\right)$: $\frac{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)}{\mathbb{Z}_{6}}$
Gauge symmetry:
$\mathbb{Z}_{6} \quad$ Global Gauge Symmetry
b) Take bases B, associated with 3D reflexive polytopes.

[Batyrev;
Kreuzer-Skarke]
For each reflexive polytope, different bases B are associated with different fine-star-regular triangulations of a chosen polytope.
[Triangulations determine intersections of divisors.]
Triangulations grow exponentially with the complexity of a polytope.
c) Specific choice of divisors: $S_{7,9}=\overline{\mathcal{K}}$ [anti-canonical divisor of the base B - fixed by the polytope]

SU (3) and SU (2) divisors S_{9} and S_{3} with class $\overline{\mathcal{K}} \rightarrow$

$$
g_{3,2}^{2}=2 / \operatorname{vol}(\overline{\mathcal{K}})
$$

$U(1)$ - (height-pairing) divisor volume $5 \overline{\mathcal{K}} / 6 \rightarrow$
(accounting for a factor of 2 mismatch w/ Cartan generators)

$$
\frac{5}{3} g_{Y}^{2}=\frac{2}{\operatorname{vol}(\overline{\mathcal{K}})}
$$

Standard Model with gauge coupling unification

$$
g_{3}^{2}=g_{2}^{2}=5 / 3 g_{Y}^{2}
$$

Fibration connected to $\operatorname{SU}(4) \times S U(2) x S U(2)$ Pati-Salam [but did not find manifest SO(10) GUT]
c.f., [M.C., Klevers, Peña, Oehlmann, Reuter,1503.02068]

d) Remaining conditions:

iii. 3-families of quarks and leptons
iv. D3-tadpole constraints
G_{4} in terms of (1,1)-forms, Poincaré dual to divisor classes:

$$
\begin{aligned}
G_{4}(a, \omega)=a G_{4}^{a}+\pi^{*} \omega \wedge \sigma \quad G_{4}^{a} & =\left[e_{4}\right] \wedge\left(\left[e_{4}\right]+\pi^{*}\left[s_{6}\right]\right) \\
& +\frac{\left[e_{1}\right] \wedge \pi^{*}\left[s_{9}\right]}{2}+\frac{\pi^{*}\left[s_{3}\right] \wedge\left(\left[e_{2}\right]+2[u]\right)}{3} \\
\omega & \in H^{1,1}\left(B_{3}\right)
\end{aligned}
$$

Chirality, D3 tadpole and G_{4} integrality expressed in terms of intersection numbers of divisors in the base \rightarrow
Geometric conditions:
In the case $S_{7,9}=\overline{\mathcal{K}}$ and 3 -families $\quad \chi(\mathbf{R})=-\frac{a}{\overline{5}} \int_{B_{3}} \overline{\bar{K}} \wedge \overline{\mathcal{K}} \wedge \overline{\mathcal{K}}=:-\frac{a}{5} \overline{\bar{K}} \bar{B}^{3}$ it reduces to:

$$
n_{\mathrm{D} 3}=12+\frac{5}{8} \overline{\mathcal{K}}^{3}-\frac{45}{2 \overline{\mathcal{K}}^{3}} \in \mathbb{Z}_{\geq 0}
$$

Depends only on polytope and not on triangulation!

Landscape count:

$$
12+\frac{5}{8} \overline{\mathcal{K}}^{3}-\frac{45}{2 \overline{\mathcal{K}}^{3}} \in \mathbb{Z}_{\geq 0}
$$

- Out of 4319 3D reflective polytopes $\rightarrow 708$ satisfy the constraint. (many of them with large number of lattice points)

Triangulation of polytopes can be handled combinatorially. (each corresponds to a different bases B)
It can be implemented on computer, e.g., in SageMath:
i) for 237 polytopes $w /<15$ lattice points $\rightarrow 414310$ MSSM models
ii) for 471 polytopes $w / \geq 15$ lattice points \rightarrow exponentially growing computation time

- Provide bound: counting via fine-regular triangulation of each facets \rightarrow estimate on regular fine-star-triangulation:

$$
7.667 \times 10^{13} \lesssim N_{\mathrm{SM}}^{\text {toric }} \lesssim 1.622 \times 10^{16}
$$

(dominated by P_{8} polytope)

Outlook

Work in progress:
Number of vector pairs:
Higgs doublets on matter curves w/ $g=1+9 / 2 \overline{\mathcal{K}}^{3}>0$
\rightarrow technically difficult
\rightarrow number of vector exotics
work in progress, M.C., Bies, Lin, Liu
Continuous Data:
Yukawa Couplings [ratios and overall magnitudes]
work in progress, M.C., Lin, Liu, Zoccarato, Zhang
Expected to have R-parity suppressed couplings as it is a Higgs from Pati-Salam.

Outstanding issues: moduli stabilization,...supersymmetry breaking,...

Further studies

Thank you!

