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Type IIB string perspective
I. F-theory basic ingredients



Singular elliptically fibered Calabi-Yau manifold X

Modular parameter of two-torus 
(elliptic curve) 

B⌧ ⌘ C0 + ig�1
s

Weierstrass normal form for elliptic fibration of X

[z:x:y] - homogeneous coordinates on !2
[2,3,1]

Calabi-Yau conditions:
f, g - sections of    B

6  and B
4 on B

[ B – anti-canonical bundle on B] 
[x:y:z]- sections of specific line-bundles on B

y

2 = x

3 + fxz

4 + gz

6

[Vafa’96], [Morrison,Vafa’96],…
c.f., review [Weigand 1806.01854]

F-theory compactification to 4D

CY four-fold

B-3D Kähler



F-theory compactification

Singular torus fibered Calabi-Yau manifold X

Modular parameter of two-torus
(elliptic curve)

B
⌧ ⌘ C0 + ig�1

s

Weierstrass normal form for elliptic fibration of X

divisor- singular elliptic-fibration, gsà∞
location of (p,q) 7-branes

Yukawa couplings 
(co-dim 3)

non-Abelian gauge symmetry
(co-dim 1) – ADE singularities

Matter
(co-dim 2; chirality- G4-flux) 
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Non-Abelian Gauge Symmetry

• Weierstrass normal form for elliptic fibration of X

• Severity of singularity along divisor S in B

• Resolution: structure of a tree of     ‘s over S
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3 + fxz

4 + gz
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[Kodaira],[Tate], [Vafa], [Morrison,Vafa],...[Esole,Yau], 
[Hayashi,Lawrie,Schäfer-Nameki],[Morrison], …

P1

Resolved In-singularity ßà SU(n) Dynkin diagram

specified by  [ordS(f),ordS(g),ordS(Δ)] 

B

P1
1 P1

2 P1
3 P1

4

Cartan gauge bosons: supported by (1,1) form                 on resolved X  

(via M-theory  Kaluza-Klein reduction of C3 potential                   )C3 � Ai!i

!i $ P1
i

Deformation: [Grassi, Halverson, Shaneson’14-’15] 

n=5

Non-Abelian  gauge bosons: light M2-brane excitations on     ‘sP1 [Witten]



1. Rational point Q on elliptic curve E with zero point P
• is solution                         in field K of Weierstrass form

• Rational points form group (addition) on E
y

2 = x

3 + fxz

4 + gz
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(xQ, yQ, zQ)

EMordell-Weil group of rational points

U(1)’s- Abelian Gauge Symmetry & Mordell-Weil group

rational sections of elliptic fibr.       rational points of elliptic curve



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X 

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

ŝQ
ŝQ

QPoint



2.   Q on E induces a rational section                       of elliptic fibration 

 

•         gives rise to a second copy of B in X:  

       new divisor BQ in X   

        (1,1)-form             constructed from divisor BQ (Shioda map) 

            indeed  (1,1) - form                    rational section  

!m

ŝQ

 B 

ŝQ
ŝQ

 BQ 

ŝQ : B ! X

!U(1)’s<Abelian!Symmetry!&Mordell<Weil!Group!

!m

QPoint

Shioda map of      ,  complementary to BP - zero section & Ei - Cartan divisors:� (ŝQ) = BQ � BP �
X

i

li Ei + · · · (1)

li = C�1
ij (BQ � BP ) .P1

j (2)

I. CURIR’S SPIN SYSTEM ANALOGY

Anna Curir regards a rotating black hole as a double system with contributions to the

thermodynamics from the outer and inner horizon. The outer horizon is taken to have

positive temperature and the inner horizon to have a negative temperature. The mass M

and angular momentum J are common to both systems.

Anna Curir claims 1[1].

⌦± =
4⇡J

MA±
, T± = ±A+ � A�

32⇡MA±
(3)

note that her T± is out by a factor of 1/4 from the standard formula

dM = T±dA± + ⌦±dJ (4)

Note that this lacks a factor of 1/4 in front of the first term compared with the Hawking

value .

Moreover

A+A� = 64⇡2J2 (5)

which agrees with [10].

More interestingly Curir claims that there is a modified Smarr formula

M = T+A+ + T�A� + ⌦+J + ⌦�J = ⌦+J + ⌦�J (6)

where the second equation in (6) follows from the second equation of (3).

Curir also claims

M2 =
A+

16⇡
+

A�

16⇡
(7)

1 Our J is Anna Curir’s L.
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Implications for global constraints on gauge symmetry & F-theory ``swampland’’ 
[M.C., Lin, 1706.08521] – a bit more later



Matter

Singularity at codimension-two in B:  

I2 fiber                          Singular fiber 

ByQ = 0

fz

4
Q + 3x2

Q = 0

resolved



Matter

Singularity at codimension-two in B:  

cmat

I2 fiber                          Singular fiber 

ByQ = 0

fz

4
Q + 3x2

Q = 0

w/isolated (M2-matter) curve wrapping      à charged matter
(determine rep. via intersection theory)

resolved

P1



III. Particle physics in F-theory
Globally consistent models



Model Constructions:
[Donagi,Wijnholt’09-10]…[Marsano,Schäfer-Nameki,Saulina’09-11]…

Review: [Heckman]

Initial focus: F-theory with SU(5) grand unification           
[10 10 5 coupling,...] [Donagi,Wijnholt’08][Beasley,Heckman,Vafa’08]…

[Blumehagen,Grimm,Jurke,Weigand’09][M.C., Garcia-Etxebarria,Halverson’10]…  
[Marsano,Schäfer-Nameki’11-12]…[Clemens,Marsano,Pantev,Raby,Tseng ’12]…
Also SO(10) …[Buchmüller, Dierigl, Oehlmann, Rühle’17]

First global 3-family Standard, Pati-Salam, Trinification models 
[M.C., Klevers, Penã, Oehlmann, Reuter, 1503.02068]

Other particle physics models:
Standard Model building blocks  (via toric techniques) 
[Lin,Weigand’14]   SM x U(1) [1604.04292] 

Local

Global

Global 3-family Standard Model with Z2 matter parity
[M.C., Lin, Liu, Oehlmann, 1807.01320]



Construction of elliptically fibered Calabi-Yau manifold 

i. Elliptic curve      
Examples of constructions via toric techniques: 

as a Calabi-Yau hypersurface in the two-dimensional toric variety      ,               
[generalized weighted projective spaces, associated with16 reflexive polytopes    ]:

✤ Combinatorics of      encodes geometry of toric variety                  
➡ representation as generalized projective space

✤ Genus-one curve as CY-hypersurfaces in                                 

✤ Three different types of        and curves 
1. cubics in       = blow-ups of       (14 cases)
2. quartic in       =                              (1 case)
3. biquadric in       =                          (1 case)

Toric varieties and their genus one curves
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the mirror dual polytopes are

F
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constructing the dual polytope for Fi leads to F17�i , 1  i  6
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smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula

pFi =
X

q2F⇤
i \M

aq

Y

k

x

hvk ,qi+1
k

Jonas Reuter 9 / 28

PFi

P2

P2(1, 1, 2)

P1 ⇥ P1

PFi
CFi = {pFi = 0}

PFi
CFi

in

PFi

PF4

PF2

✤ Combinatorics of      encodes geometry of toric variety                  
➡ representation as generalized projective space

✤ Genus-one curve as CY-hypersurfaces in                                 

✤ Three different types of        and curves 
1. cubics in       = blow-ups of       (14 cases)
2. quartic in       =                              (1 case)
3. biquadric in       =                          (1 case)

Toric varieties and their genus one curves

Fi

PFi

PFi

Dual Polytopes and Mirror Symmetry

the mirror dual polytopes are

F

⇤
i = {q 2 M ⌦ R|hy , qi � �1, 8y 2 Fi}

constructing the dual polytope for Fi leads to F17�i , 1  i  6

Fi , 7  i  10, are selfdual

smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula

pFi =
X

q2F⇤
i \M

aq

Y

k

x

hvk ,qi+1
k

Jonas Reuter 9 / 28

PFi

P2

P2(1, 1, 2)

P1 ⇥ P1

PFi
CFi = {pFi = 0}

PFi
CFi

in

PFi

PF4

PF2

✤ Combinatorics of      encodes geometry of toric variety                  
➡ representation as generalized projective space

✤ Genus-one curve as CY-hypersurfaces in                                 

✤ Three different types of        and curves 
1. cubics in       = blow-ups of       (14 cases)
2. quartic in       =                              (1 case)
3. biquadric in       =                          (1 case)

Toric varieties and their genus one curves

Fi

PFi

PFi

Dual Polytopes and Mirror Symmetry

the mirror dual polytopes are

F

⇤
i = {q 2 M ⌦ R|hy , qi � �1, 8y 2 Fi}

constructing the dual polytope for Fi leads to F17�i , 1  i  6

Fi , 7  i  10, are selfdual

smooth toric variety corresponding to polytopes defined by

PFi =
Cm+2\SR
(C⇤)m

= {xk ⇠
mY

a=1

�
`
(a)
k
a xk | x /2 SR ,�a 2 C⇤}

Calabi-Yau hypersurface obtained by Batyrev formula

pFi =
X

q2F⇤
i \M

aq

Y

k

x

hvk ,qi+1
k

Jonas Reuter 9 / 28

PFi

P2

P2(1, 1, 2)

P1 ⇥ P1

PFi
CFi = {pFi = 0}

PFi
CFi

in

PFi

PF4

PF2

ii.  Elliptically fibered Calabi-Yau space:

Impose Calabi-Yau condition: 
coordinates in         and coeffs. of        lifted to
sections of specific line-bundles on  B

1. Ambient space: fiber        over B

✤ Fibration completely determined by  
two divisors       and       on B 

‣ parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of        

✤ impose CY-eq.                 in fiber:

✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
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in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
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In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
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this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
certain specialization of the hypersurface of XF1 with some aq ⌘ 0. We will be more explicit
about this in the following subsection (Section 3.1.2).
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1 Introduction

n1, n2, n6, n7 2 Z EFi E (1)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣

4
Y

i=1

Qi + J

2
⌘

, (2)

S+ S� = 4⇡2
⇣

3
Y

i=1

Qi + J1J2

⌘

, (3)

(4)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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iii. Chiral index for D=4 matter: 

a) construct G4 flux by computing 
[so-called vertical fluxes – do not induce Gukov-Vafa-Witten potential] 

b) determine matter surface      (via resultant techniques)

4D'ma\er'spectrum:'summary'

4D>ma\er'representa+ons'the'same'(all'in'the'fiber)'
4D'ma\er'chirali+es!='codim.'2'ma\er'loci in'B'+'G4>flux:

Geometry:'I.Ma\er'surfaces:'

'''''''''''''''''''points'in'B2''ma\er'curves'''''''''in'B3'
''''''''''''''''''(2)'Ma\er'surfaces'found'

''''''''''''''''''(1)'Ma\er>hard'

'''''''''''''II.'G4>flux:''

'''''''''''''''''Construc+on'of'ver+cal'middle'homology''''''''''''''''''''''''

''''''''''''''''''First'construc+on'of'G4>flux'with'non>holomorphic'zero>sec+on''

⌃R

Here we extend this geometric analysis to fourfolds. The main di↵erence to the 6D
case is that matter is not localized anymore at points in B, but on in general rather
complicated matter curves. The determination of these matter curves and some of their
associated matter surfaces, along with the Yukawa points, is presented in section 3.1.
Then, in section 3.2 we present a method to determine the cohomology ring of the
fourfold X̂. We use these techniques to derive general expressions for the Euler number
of X̂ and its second Chern class. For the example of B = P3 we finally compute the full
vertical cohomology group. These calculations serve as a preparation for the computation
of 4D chiralities in section 4, which requires the construction of G4-flux.

3.1 Singularities of the Fibration: Matter Surfaces & Yukawa
Points

3.1.1 Matter: Codimension Two

In general, the determination of the matter sector in F-theory vacua with general gauge
group requires a detailed analysis of singularities of the elliptic fibration of the Calabi-Yau
fourfold at codimension two in the base B, where the elliptic fiber E becomes reducible.
Then one has to identify the isolated rational curve cw in the fiber over these loci,
since these correspond in F-theory to matter in a representation R from wrapped M2-
brane states. These curves are in one-to-one correspondence to the weights w of the
representations R and accordingly labeled. In the case of elliptically fibered Calabi-Yau
fourfolds, the codimension two matter loci are Riemann surfaces of genus g, the so-called
matter curves ⌃R in B conveniently labeled by the corresponding matter representation
R. In addition, for the determination of four-dimensional chirality, compare section ??,
we have to know the homology classes of the associated matter surfaces [?]

cmat
// CR

✏✏

⌃R

(3.1)

which are constructed as the fibration of the rational curve cw corresponding to a given
weight w of the representation R fibered over ⌃R.

In this section we determine the matter curves ⌃R and the matter surfaces Cw
R for the

six representations occurring in the Calabi-Yau fourfold X̂. As we demonstrate, their
determination is complicated by the fact that three of the six the codimension two loci in
the base B where the elliptic fiber E becomes reducible are themselves reducible curves.
Their irreducible components are multiple di↵erent matter curves ⌃R. Some of these
matter curves, denoted ⌃R0 , fail to be complete intersection and can only be described in
terms of their prime ideals. However, these prime ideals are straightforwardly constructed
from the two equations of the original reducible codimension two locus. However, the
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iv. Global consistency – D3 tadpole cancellation:

a) satisfied for integer and positive nD3 
b) constraint on integer valued flux G4
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quantization condition [81]:

G4 +
c2(X)

2
2 H4(X,Z) . (2.1)

Second, the cancelation of M2-brane tadpoles, which lift to D3-brane tadpoles in Type IIB
strings and F-theory, requires the equality [82,83]

�(X)

24
= nD3 +

1

2

Z

X

G4 ^G4 , (2.2)

where nD3 denotes the number of D3-branes. As mentioned before, we will focus here on special
G4-flux that is entirely in the subgroup H

(2,2)
V (X).3

For compatibility with the duality between M- and F-theory, we need to impose additional
conditions on the G4-flux. These are most easily formulated in terms of conditions on the
Chern-Simons (CS) terms for the three-dimensional vectors on the Coulomb branch of the
effective action of the M-theory compactification on the CY-fourfold X. On the M-theory side,
these CS-terms are given by [87]

⇥M
AB =

Z

X

G4 ^DA ^DB , (2.3)

where here and in the following, Poincaré duality is always understood. We note that the 3D
CS-terms have obey the quantization condition ⇥M

AB 2 Z or Z/2, see e.g. [88, 89] for recent
discussions. We note that these quantization conditions are expected to be equivalent to the
G4-flux quantization conditions (2.1) [85].

In the dual F-theory side the same CS-terms, denoted now by ⇥F
AB, have two contributions.

First, we can have classical CS-terms ⇥F
cl, AB, which either descend from 4D to 3D from gaugings

of axions or which correspond to circle fluxes [90]. Second, CS-terms on the 3D Coulomb
branch receive one-loop corrections from integrating out massive fermions [91–93]. In the
duality between M- and F-theory, it is crucial to include all Kaluza-Klein (KK) states in the
loop [15,54],4 yielding the full loop corrected CS-terms expression

⇥F
AB = ⇥F

cl, AB +
1

2

X

q

n(q)qAqB sign(qA⇣A) . (2.4)

Here n(q) is the number of 3D fermions with charge vector q = (q0, q↵, qi, qm). It includes
the charge q0 w.r.t. the 3D graviphoton, i.e. the KK-level of states, the charges q↵, ↵ =
1, . . . , h(1,1)(B), under 3D vectors dual to the Kähler moduli of B, the charges qi, i = 1, . . . , rk(G),
and qm, m = 1, . . . , r, w.r.t. to 4D Cartan gauge fields of the non-Abelian gauge group G of
F-theory and the r U(1) gauge fields, respectively. The real parameters ⇣A are the Coulomb
branch parameters.

Duality requires an identification of the CS-terms on the F-theory side with those in (2.3)
on the M-theory side [14,15,51,54,94,95],

⇥AB ⌘ ⇥M
AB

!
= ⇥F

AB . (2.5)
3For recent analyses of horizontal G4-flux in F-theory, see [77,84–86].
4See also [57] for the case of CS-terms in 5D M-/F-theory duality.
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This immediately leads to additional restrictions on the CS-terms in F-theory [15, 37, 51, 54],
because certain CS-terms ⇥F

AB in F-theory computed according to (2.4) are identically zero.
Physically, the implied constraints on the G4-flux ensure the absence of circle flux in the circle
compactification from F- to M-theory, an unbroken non-Abelian gauge group in 4D due to the
absence of axion gaugings and the absence of non-geometric effects,

⇥0↵ = ⇥i↵ = ⇥↵� = 0 . (2.6)

Here we have to chose the basis DA of H(1,1)(X) so that index 0 corresponds to the zero section
ŝ0 of the fibration of X, ↵ = 1, . . . , h(1,1,)(B), labels the vertical divisors induced from the base
B, i = 1, . . . , rk(G) labels the Cartan divisors of X, where G as before is non-Abelian part of
the F-theory gauge group, and m = 1, . . . , r labels the r U(1)-factors corresponding to Shioda
maps �(ŝm) of the rank r Mordell-Weil (MW) group of rational sections ŝm of X.

Chiralities in F-theory and G4-flux quantization: In order to calculate the matter chiral-
ities �(R) for a given matter representation R in a four-dimensional F-theory compactification,
we need to integrate the G4-flux over a corresponding matter surface in X. The relevant matter
surface Cw

R is given as the rational surface constructed by fibering a P1 carrying the weight w
of the representation R over the corresponding matter curve in the base B. The 4D chirality
of R is computed as

�(R) = n(R)� n(R̄) =

Z

Cw
R

G4 , (2.7)

where n(R) denotes the number of left-chiral Weyl fermions in the representation R.
Technically, the determination of the Cw

R can be involved and requires the computation of
the homology class of prime ideals describing the given matter surface. This can be done using
the resultant technique that was applied first in [15, 56] for F-theory and will be exemplify for
the three examples studied in this work. As a consistency check of our geometric computations,
following [15, 51, 54], we use the matching condition (2.5) of the CS-terms to double-check the
4D chiralities calculated using (2.7).

Finally, let us comment on G4-flux quantization. In principal, in order to address G4-
flux quantization we have to expand G4 and c2(X) in an integral basis for H

(2,2)
V (X) and

check the condition (2.1). This integral basis can be determined employing mirror symmetry
techniques [77, 84, 86]. Since this is beyond the scope of this work, we will apply an indirect
approach to ensure integral G4-flux.

Here we exploit that G4-flux quantization (2.1), the integrality of the number nD3 of D3-
branes, that is a necessary condition for quantized G4-flux [81], the integrality of the CS-terms
(2.3) and of the chiralities (2.7) are obviously linked to each other. Thus, our strategy will be
the following. First, we compute all chiralities �(R) using (2.7). Then, we parametrize the
coefficients in the expansion of the G4-flux w.r.t. a basis of H(2,2)

V (X) in terms of these integral
chiralities. We then impose the necessary condition of integrality and positivity of nD3. This
will yield in turn constraints in form of lower bounds on the 4D chiralities. Next, we impose,
if possible, a family structure on our model. Finally, we check that for this phenomenologi-
cally preferred choice of G4-flux all CS-terms are integral, which ensures that the quantization
condition (2.1) is obeyed.
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1 Introduction

n1, n2, n6, n7 2 Z EFi E (1)

G4 +
1

2
c2(X̂) 2 H4(Z, X̂) G4 +

1

2
c2(X) /2 H4(Z, X̂) (2)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣

4
Y

i=1

Qi + J2
⌘

, (3)

S+ S� = 4⇡2
⇣

3
Y

i=1

Qi + J1J2

⌘

, (4)

(5)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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F11 polytope

Construction of  Calabi-Yau four-fold

In Section 3.1 we elaborate on the basic geometrical properties of XF11 that encode the
gauge symmetry, including the U(1) generator, as well as the matter representations. While
these observations are model independent, we further specialize to the simple base B = P3. For
this specific case we compute the vertical cohomology H

(2,2)
V (XF11) in Section 3.2. Using these

results, we explicitly construct G4-flux consistent with all F-theory consistency constraints.
We compute the induced 4D chiralities of the matter representations, that we double-check
employing 3D CS-terms and M-/F-theory duality. Next in Section 3.3 we discuss 4D anomaly
cancelation and the properties of models which exhibit a complete family structure, in particular
the existence of three family models with positive and integral D3-brane charge and quantized
G4-flux. In Section 3.4 we conclude with some comments on the phenomenology of the three
family models we found.

The elliptic fibration XF11 has been completely analyzed in [22], to which we refer for
more details on its codimension one, two and three singularities and the corresponding 6D
F-theory compactification. The relevant results are summarized in Section 3.1. The reader
less interested in the technical details can directly jump to the 4D chiralities in (3.17) and the
following discussions.

3.1 The Geometry of Gauge Symmetry and Particle Representations

Section Line Bundle
u O(H � E1 � E2 � E4 + S9 + [KB ])
v O(H � E2 � E3 + S9 � S7)
w O(H � E1)
e1 O(E1 � E4)
e2 O(E2 � E3)
e3 O(E3)
e4 O(E4)

Figure 1: The toric diagram of polyhedron F11 and its dual. The zero section is indicated by
the dot. In the accompanying table we indicate the divisor classes of the fiber coordinates.

The elliptic fiber which is used to engineer F-theory models that naturally exhibit the gauge
symmetry of the standard model is given as the CY-hypersurface

pF11 = s1e
2
1e

2
2e3e

4
4u

3 + s2e1e
2
2e

2
3e

2
4u

2v + s3e
2
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2
3uv

2 + s5e
2
1e2e

3
4u

2w + s6e1e2e3e4uvw + s9e1vw
2

(3.1)

in the toric ambient space PF11 . Its toric data is summarized in Figure 1. The divisor classes
in PF11 are H, the hyperplane class of P2, as well as the four exceptional divisors E1, E2, E3

and E4.
Next, an elliptically fibered CY-fourfold XF11 with the elliptic fiber (3.1) is constructed by

promoting the coefficients si in the CY-equation to sections of the line bundles of B given in
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Construction of Calabi-Yau four-fold

1. Ambient space: fiber        over B

✤ Fibration completely determined by  
two divisors       and       on B 

‣ parametrize divisor classes of the two local coordinates on the fiber.

2. Calabi-Yau hypersurface eq. of        

✤ impose CY-eq.                 in fiber:

✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a

17
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research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣

4
Y

i=1

Qi + J

2
⌘

, (2)

S+ S� = 4⇡2
⇣

3
Y

i=1

Qi + J1J2

⌘

, (3)

(4)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.
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✤ impose CY condition on total space 

➡get discrete families of Calabi-Yau manifolds

3. Derive the effective theory of F-theory for all these        .

3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

PFi
// PB

Fi
(S7,S9)

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
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S7 S9
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3.1 Three basic ingredients: the cubic, biquadric and quartic
3.1.1 Constructing Toric Hypersurface Fibration

In this section we explain the general construction of the Calabi-Yau manifolds XFi with toric
hypersurface fiber CFi and base B. The following discussion applies to Calabi-Yau n-folds XFi

with a general (n � 1)-dimensional base B. The cases of most relevance for F-theory and for
this work are n = 3, 4. We refer to [37,39] for more details on the following discussion.

The starting point of the construction of the genus-one fibered Calabi-Yau manifold XFi is
the hypersurface equation (2.23) of the curve CFi . In order to obtain the equation of XFi , the
coefficients aq and the variables xi of (2.23) have to be promoted to sections of appropriate line
bundles of the base B. We determine these line bundles, by first constructing a fibration of the
2D toric variety PFi , which is the ambient space of CFi , over the same base B,

CFi ⇢ PFi
// XFi

✏✏
B

. (3.1)

Here PB
Fi
(D, D̃) denotes the total space of this fibration. The structure of its fibration is

parametrized by two divisors in B, denoted by D and D̃. This can be seen by noting that all
m + 2 coordinates xk on the fiber PFi are in general non-trivial sections of line bundles on B.
Then, we can use the (C⇤)m-action of the toric variety PFi to set m variables to transform in
the trivial bundle of B. The divisors dual to the two remaining line bundles are precisely D, D̃.

Next we impose equation (2.23) in PFi(D, D̃). Consistency fixes the line bundles in which
the coefficients aq have to take values in terms of the two divisors D and D̃. Then, we require
(2.23) to be a section of the anti-canonical bundle K�1

PB
Fi

, which is the Calabi-Yau condition.

In addition, equation (2.23) imposed in PB
Fi
(D, D̃) clearly describes a genus-one fibration over

B, since for every generic point on B, the hypersurface (2.23) describes exactly the curve CFi

in PFi . The total Calabi-Yau space resulting from the fibration of the toric hypersurface Ci is
denoted by XFi in the following. It enjoys the fibration structure

CFi
// XFi

✏✏
B

. (3.2)

In principle, this procedure has to be carried out for all Calabi-Yau manifolds XFi associated
to the 16 2D toric polyhedra Fi. However, we observe that all the hypersurface constraints of
the XFi , except for XF2 and XF4 , can be obtained from the hypersurface constraint for XF1 ,
after setting appropriate coefficients to zero. This is possible because if F1 is a sub-polyhedron
of Fi, then the corresponding toric variety PFi is the blow-up of PF1 = P2 at a given number of
points, with the additional rays in Fi corresponding to the blow-up divisors. However, adding
rays to the polyhedron F1 removes rays from its dual polyhedron F ⇤

1 = F16. By means of (2.23),
this removes coefficients from hypersurface equation for XF1 , i.e. the hypersurface for XFi is a
certain specialization of the hypersurface of XF1 with some aq ⌘ 0. We will be more explicit
about this in the following subsection (Section 3.1.2).
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XFi

XFi

XFi(S7,S9)

PFi

1 Introduction

n1, n2, n6, n7 2 Z EFi E (1)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣

4
Y

i=1

Qi + J

2
⌘

, (2)

S+ S� = 4⇡2
⇣

3
Y

i=1

Qi + J1J2

⌘

, (3)

(4)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

In parallel developments Ansorg and collaborators (see, e.g., [11, 12] and references

therein) studied axi-symmetric solutions of Einstein-Maxwell gravity, with sources external

to the outside horizon. They obtained striking universal formulae expressing the entropy

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.

11 11 11

Over the locus  s3 = 0 à fiber degenerates to I2 - fiber à SU(2)
Over the locus  s9 = 0 à fiber degenerates to I3 – fiber à SU(3) 
Cartan divisors of these gauge groups:

Two rational sections: 

- zero section
- section associated with U(1)

Standard Model gauge symmetry: SU(3) x SU(2) x U(1)

[u : v : w : e1 : e2 : e3 : e4]

EEE



Standard Model Gauge Symmetry & Matter Reps.

Matter:

Construct G4 for chiral index & D3-tadpole constraint 

[M.C., Lin, 1706.08521]
Shioda map: 

Global gauge group structure of F-theory compactifications

Example: F-theory ‘Standard Model’

Toric construction with gauge algebra su(3)� su(2)� u(1). [Klevers et al ’14], [Cvetič et al ’15]

'(�) = S � S

0

+ 1

2

E

su(2)
1

+ 1

3

(2E su(3)
1

+ E

su(3)
2

) ) C

6 = 1,
so G

global

= [SU(3)⇥ SU(2)⇥ U(1)]/hC i ⇠= [SU(3)⇥ SU(2)⇥ U(1)]/Z
6

.
Rsu(3)�su(2) (3, 2) (3, 1) (1, 2) (1, 1)

L(R) 1/6 2/3 1/2 0

geometrically realized matter: (3, 2)
1/6 , (1, 2)�1/2 , (3, 1)

2/3 , (3, 1)�1/3 , (1, 1)
1

= (physical) Standard Model representations.
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Compatible with the Z6 global constraint

1



Classify'all''vacua'with'fixed'E'in'dP2''&'chosen'base'B'in'D=6'and'D=4''
Example:'D=4,''

:'

1.''!X'''generic'[all'si'exist,'generic]:'U(1)'x'U(1)'

2.'!X''non>generic'[si,realize'SU(5)'at't=0]:'SU(5)'x'U(1)'x'U(1)'

S7 = n7HP3

S9 = n9HP3

s3 = t2s03

s2 = t2s02

s5 = ts05

s1 = t3s01

Construc+on'of'CY''Ellip+c'Fibra+ons'

B = P3

Can construct and  
study entire family  
of CY’s explicitly 

Base B = Divisors in the base:

n7\n9 1 2 3 4 5 6 7

7 - (27; 16) - -
6 - (12; 81) (21; 42) - -
5 - - (12; 57) (30; 8) - (3; 46)

4 (42; 4) - (30; 32) - - - -
3 - (21; 72) - - - (15; 30)

2 (45; 16) (24; 79) (21; 66) (24; 44) (3; 64)

1 - - - -
0 - - (12; 112)

-1 (36; 91) (33; 74)

-2 -
Table 2: The entries (b, n

D3

) show the minimal number of families b for which the number
n

D3

of D3-branes is integral and positive for integral 3D CS-terms. At the allowed points for
(n7, n9) marked as "-" the number of D3-branes is negative for all positive integral values of b.

and compute the individual numbers of left- and right-chiral fermions for the G4-flux (3.14).
Unfortunately, these techniques are not available as of now, see however [100] for promising
recent advancements in this direction. Thus, we work in the following under the assumption
that the desired vector-like pair is indeed part of the massless spectrum. Then it would be
possible to induce the following bilinear coupling

W ⇢ µHuHd + �iHuLi . (3.25)

These two terms could be generated by tuning the complex structure of our model to a model
with enhanced (non-Abelian or Abelian) gauge symmetry and a SM-singlet 1, that admits
Yukawa couplings with Hu, Hd and Li, respectively. Then if 1 acquires a VEV, which breaks
the enhanced gauge symmetry, the superpotential (3.25) could be generated. While the µ-
term has to be very small in order to be consistent with electroweak symmetry breaking, the
�i terms are lepton violating and hence they must be adequately suppressed. We note that
both these coefficients are moduli dependent functions, that cannot be computed by known
techniques. However, we expect that in a sufficiently generic geometry the moduli of XF11

allow for appropriate tunings providing a phenomenologically viable scenario. At this point,
we must remark that the geometry of XF11 offers no obvious way by which we could assign a
quantum number to forbid the µ-term or the �i terms.

Regarding the trilinear couplings we note that it was shown in [22] that all gauge invariant
trilinear couplings are realized geometrically, see Table 3.
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Solutions (#(families);nD3) for allowed (n7,n9):

Standard Model:

S7 = n7HP3

S9 = n9HP3

Hyperplane divisor class

1 Introduction

n1, n2, n7, n9 2 Z EFi E (1)

G4 +
1

2
c2(X̂) 2 H4(Z, X̂) G4 +

1

2
c2(X) /2 H4(Z, X̂) (2)

n7 n9 (3)

Understanding black hole entropy at the microscopic level has been a major focus of

research in string theory and M-theory in the past years. While the microscopics of asymp-

totically flat PBS black holes in four and five dimensions is by now well understood [1]

(For review, see, e.g., [2] and references therein), the internal properties of general non-

extremal black holes are less understood. However, it has been known for a long time

that general asymptotically flat multi-charged rotating black holes in four [3] and five [4]

dimensions 1 have a tantalizing entropy formula [3] and the first law of thermodynamics

[7, 8, 9] associated with the inner and outer black hole horizons, which are highly sugges-

tive of a possible microscopic interpretation in terms of a two-dimensional conformal field

theory (CFT). Specifically, entropies S± of outer and inner horizon are of the form [3, 8, 9]:

S± = 2⇡(
p
NL ±

p
NR), where the quantities NL and NR may be viewed as the excitation

numbers of the left and right moving modes of a weakly-coupled two-dimensional conformal

field theory. The product S+ S� = 4⇡2(NL � NR) should therefore by quantised in an

integer multiple of 4⇡2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S� = 4⇡2
⇣

4
Y

i=1

Qi + J2
⌘

, (4)

S+ S� = 4⇡2
⇣

3
Y

i=1

Qi + J1J2

⌘

, (5)

(6)

for four and five dimensional black holes, respectively. (These results were implicit in

[8, 9], though not explicitly evaluated.) These expressions are moduli independent and are

expressed solely in terms of the quantized duality invariant quartic (cubic) charge form and

quantised angular momenta.

1Those black hole solutions are generating solutions of maximally supersymmetric N = 4 (N =

8)supergravity theories obtained as toroidal compactifications of the heterotic string (or of Type IIA string

or M-theory). In addition to the mass M , these solutions are specified in four dimensions by four charges Qi

(i = 1, ,4) and one angular mementum J , and in five dimensions by three charges Qi (i = 1, 2, 3) and two

angular momenta J1,2. It turns out that in four-dimensions the complete generating solution is specified by

an additional fifth charge, which has been obtained only in the BPS [5] and static [6] cases.

H=4



Further features:

Higgs doublets - vector pairs 
[C3 w/ G4=dC3=0, encoded in the intermediate Jacobian of Y;
higher genus matter curves à hard to calculate]

Vector exotics [ditto; but for quark doublets g=1 à n≤ 1]

Yukawa Couplings (co-dimension 3 singularities)     
expected to be generically there for all gauge invariant   
couplings à could lead to R-parity violation couplings 

Three Family Standard Model with Z2 matter symmetry
[M.C., Lin, Liu, Oehlmann,1807.01320]

Skip details
Polytope F2 (biquadric in !1 x!1;  fibration with bi-section à Z2;
further specialize fibration to obtain SM

c.f., [Bies, Mayrhofer, Weigand, 1706.04616]



III. Landscape of Standard Models 
Toric analysis    



[M.C., J. Halverson, L. Lin, M. Liu and  J. Tian, arXiv:1903.0009]

a) Take the same toric elliptic fibration as before:    

hyperplane constraint in 2D reflexive polytope F11 (dP4):

Gauge symmetry:
Global Gauge Symmetry

Toric hypersurface fibrations for 4D chiral F-theory models: In order to introduce
some notation used throughout this work, we conclude this introductory section with a very
brief review of CY-fourfolds X constructed as toric hypersurface fibrations. A detailed account
on this subject can be found in [22].

We consider here elliptically fibered Calabi-Yau manifolds XFi whose elliptic fiber is realized
as the general CY-hypersurface in a 2D toric variety PFi associated to one of the 2D reflexive
polyhedra Fi. Here we focus on the polyhedra F11, F13 and F16 in [22], that naturally yield
phenomenologically interesting models. In these cases, the corresponding toric ambient vari-
eties PFi of the elliptic fiber are blow-ups of P2. The elliptic curves in all considered cases is
consequently given as an appropriate specialization of the general cubic

p = s1u
3 + s2u

2v + s3uv
2 + s4v

3 + s5u
2w + s6uvw + s7v

2w + s8uw
2 + s9vw

2 + s10w
3 . (2.8)

Here the coefficients si take values in a field K and [u : v : w] are projective coordinates on P2.
An elliptic fibration XFi with fiber given by (2.8) or specializations thereof is constructed by

first fibering the toric ambient space PFi over a chosen base B, then imposing (2.8) and finally
demanding the CY-condition. In this procedure, the coordinates [u : v : w] and the coefficients
si in (2.8) are lifted to sections of appropriate line bundles on B. The CY-condition fixes these
line bundles to the following:

section Line Bundle
u O(H + S9 + [KB])

v O(H + S9 � S7)

w O(H)

section Line Bundle
s1 OB(3[K

�1
B ]� S7 � S9)

s2 OB(2[K
�1
B ]� S9)

s3 OB([K
�1
B ] + S7 � S9)

s4 OB(2S7 � S9)

s5 OB(2[K
�1
B ]� S7)

s6 K�1
B

s7 OB(S7)

s8 OB([K
�1
B ] + S9 � S7)

s9 OB(S9)

s10 OB(2S9 � S7)

(2.9)

Here, O(D) denotes the line bundle associated to a divisor D,5 H is the hyperplane on P2,
[K�1

B ] is the anti-canonical divisor of B and S7, S9 are the divisor classes of s7, s9, respectively.
We note that the table on the right hand side in (2.9) applies for all examples studied below.

3 Minimal Supersymmetric Standard Model:
GF11 = SU(3) ⇥ SU(2) ⇥ U(1)

In this section we discuss an F-theory compactification on the elliptically fibered CY-manifold
XF11 which yields precisely the gauge group and representation content of the Minimal Super-
symmetric Standard Model (MSSM) [22].

5A subscript indicates the space over which this line bundle is defined, e.g. OB(D) denotes a line bundle
over B. If a subscript is omitted, the line bundle lives on the ambient space of X.
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F0

pF2 = (b1 y
2 + b2 s y + b3 s

2) x2 + (b5 y
2 + b6 s y + b7 s

2) x t+ (b8 y
2 + b9 s y + b10 s

2) t2 .

x, y, s, t bi
[x] [y]

DZ2 =[x]

DU(1) = [x]� [y] .

U(1)⇥Z2

SU(2) : {e0, e1}
SU(3) : {f0, f1, f2}

b1 = e0f1f
2
2d1 b3 = e0f0f2d3 b6 = d6 b8 = e1f1d8 b10 = e1f

2
0 f1d10

b2 = e0f2d2 b5 = f1f2d5 b7 = f0d7 b9 = e1f0f1d9

DZ2 =[x]

DU(1) =[x]� [y]� 1

2
E1 � (

1

3
F1 +

2

3
F2)

G =
SU(3)⇥ SU(2)⇥ U(1)

Z6
⇥ Z2

[d1] = 3KB � S7 � S9 �W2 [d2] = 2KB � S9 �W2 [d3] = KB + S7 � S9 �W3 �W2

[d5] = 2KB � S7 [d6] = KB [d7] = S7 �W3

[d8] = KB + S9 � S7 [d9] = S9 �W3 [d10] = S9 + S7 �KB � 2W3

K�1
B

W2

W3

S7, S9

b) Take bases B, associated with 3D reflexive polytopes. 

For each reflexive polytope, different bases B are associated

with different fine-star-regular triangulations of a chosen polytope.

[Triangulations determine intersections of divisors.]

Triangulations grow exponentially with the complexity of a polytope.

E.g.,

[Batyrev;
Kreuzer-Skarke]



c)  Specific choice of divisors:                  
[anti-canonical divisor of the base B – fixed by the polytope]

U(1) - (height-pairing) divisor volume               à
(accounting for a factor of 2 mismatch w/ Cartan generators)

SU (3) and SU (2) divisors S9 and S3 with class            à

Standard Model with gauge coupling unification 

Fibration connected to SU(4)xSU(2)xSU(2) Pati-Salam
[but did not find manifest SO(10) GUT]

c.f., [M.C., Klevers, Peña, Oehlmann, Reuter,1503.02068]



d) Remaining conditions: 
iii. 3-families of quarks and leptons 
iv.  D3-tadpole constraints

Depends only on polytope and not on triangulation!

G4  in terms of (1,1)-forms, Poincaré dual to divisor classes:

In the case                and 3-families                                  
it reduces  to: 

Chirality, D3 tadpole and G4 integrality expressed in terms 
of intersection numbers of divisors in the base à
Geometric conditions:



• Triangulation of polytopes can be handled combinatorially.
(each corresponds to a  different bases B)
It can be implemented on computer, e.g., in SageMath: 

i) for 237 polytopes w/  < 15 lattice points à414310 MSSM models
ii) for 471 polytopes w/ ≥  15 lattice points à

exponentially growing computation time

• Out of 4319 3D reflective polytopes à 708 satisfy the constraint.
(many of them with large number of lattice points)

Landscape count:

• Provide bound: counting via fine-regular triangulation of each 
facets à estimate on regular fine-star-triangulation:

(dominated by P8 polytope)

c.f., [Halverson, Tian, 1610.08864]



Work in progress: 

Number of vector pairs:

Higgs doublets on matter curves w/

à technically difficult  

à number of  vector exotics 

work in progress, M.C.,  Bies, Lin, Liu
Continuous Data:

Yukawa Couplings [ratios and overall magnitudes] 

work in progress, M.C., Lin, Liu, Zoccarato, Zhang
Expected to have R-parity suppressed couplings as it is a Higgs

from Pati-Salam. 

Outstanding issues:

moduli stabilization,…supersymmetry breaking,…

Outlook

Further studies



Thank you!


