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Basic example

The modular curve M is the quotient of H by the group Γ of
fractional linear transformations z 7→ az+b

cz+d with integer coefficients.
It has many interesting and interlocking structures.

It is the complex moduli space of elliptic curves.
It is a Riemannian manifold of constant negative curvature.

For now:
Γ is this group or a finite index congruence subgroup, and
M = H/Γ, an “arithmetic locally symmetric space.”
M ′ is a small perturbation of M, e.g. H/Γ′ for a generic Γ′

(nothing to do with integers).
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In this talk I will explain some curious analytic features of such
M, discovered in the study of quantum chaos – curious in that
they differ from M ′.

Then we will talk about some curious topological features,
which actually are rather parallel to the analytic features
above.
To conclude, I will discuss how the topology of these spaces is
related to algebraic geometry, and describe some of the issues
which I hope to study over the course of this year.
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∆

On H the Riemannian Laplacian is given by −y2(∂xx + ∂yy ).

On L2(H/Γ) this has infinitely many eigenvalues

0 < λ1 < λ2 < λ3 < . . .

and they satisfy Weyl’s law : their mean spacing is 4π
area .
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Some eigenvalues

Here are 27 eigenvalues after 640, 000, as computed by H. Then:

1.1, 8.8, 56.3, 76.5, 77.4, 107.8, 111.6, 120.6, 121.3,

132.0, 134.3, 134.8, 154.4, 156.15, 158.8, 166.6, 202.4, 207.4, 216.0

218.07, 225.02, 231.28, 266.36, 272.17, 296.53, 310.28, 316.29

The mean spacing is 12 = 4π
area according to Weyl’s law. Here is a

picture; do you notice anything surprising?
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Eigenvalues of Laplacian operators on negatively curved
manifolds have a strong tendency to resemble eigenvalues of a
random symmetric matrix (GOE). Here is a picture of some:

Eigenvalues repel! Two in an interval of length ε with
probability ∼ ε3; k of them with probability ∼ εk(k+1)/2.
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In fact, it is surprising that there exist eigenvalues at all, because
Γ\H is noncompact.

To show the existence of eigenvalues for the modular surface,
Selberg introduced the trace formula. His proof applies only to
Γ used special properties of the Riemann ζ-function;

After the work of Phillips and Sarnak it is generally believed
that a small deformation Γ′ of Γ destroys all eigenvalues, i.e.
there are no Laplacian eigenfunctions at all in L2(H/Γ′).
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Explanation: extra symmetry

The surface M has a certain class of hidden symmetries, the
“Hecke operators.”

These reduce the influence of one eigenvalue on another.
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What is a Hecke operator

The map z 7→ pz doesn’t give a map M → M, but it almost
does:
For each prime p we have a multi-valued function
Tp : M → M:

Tp(z) = {z1, . . . , zp+1}.

Locally, each map z 7→ zi is isometric.
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Arithmetic locally symmetric spaces

The space H/Γ is just the first example:

Going up one dimension: SL2(Z[i ]) acts on H3, and
H3/SL2(Z[i ]) is another example.
More generally, if Γ is an arithmetic subgroup of a semisimple
Lie group – e.g. SLn(Z), Sp2g (Z) – then Γ acts on a canonical
space of curvature ≤ 0, the Riemannian symmetric space H.
An arithmetic locally symmetric space is any such quotient
H/Γ. It has a canonical Riemannian structure. Many natural
spaces arise thus.
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Now take Γ to be a congruence subgroup of SL2(Z[i ]). In this
case H3/Γ is a Bianchi manifold.

Lineare Substitutionen mit ganzen  complexen Coeffieienten II. 361 

- -  '2 -f- ~ ~2'' 
Tipo I) a 1 ~ 1 ~  a ~ l ,  c I~--2, b l ~  D 

2 ~  

Tipo II) a 2 = 0 ,  a j = l - - / ) ,  c 1 = 2 ,  b 1 = 1 -  D .  2 
Le sfere di riflessione qui indicate a), b), c), d), e), f) bastano 

gi~ per i pieeoli valori di / )  a separare il poliedro P cercato, 

w 12. 
I1 gruppo ~(i). 

Bench~ i casi D---~ I~ D ~ 3 siano gi~ s~ati frat~ati nel lavoro 
precedente, non semhra qui inu~ile coordinare la determinazione dei 
poliedri fondamentali corrisponden~i alle osservazioni generali del 
paragrafo precedente. 

Se D ~ 1, si considerino i tre piani di riflessione 
1 (t) ~ = y ,  (2) ~ = o ,  (3) ~ - ~ = o  

:Fig a 1 a 
e si indichi con P il poliedro racchiuso in ~ da ques~i tre pianie- 
sternamente alia sfera 
(4) ~2 + ~/2 + ~2 _____ 1.*) 

*) In  questa come nelle figure seguen t i  si osservano le traccie sul piano S y 
dei piani e delle sfere di riflessioni n u m e r a t i  come nel testo. 
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In this case, there are no deformations, but we can compare
the behavior to general hyperbolic 3-manifolds, i.e. to H3/Γ′

for generic (non-arithmetic) Γ′.

We examine the simplest topological invariant:

H1(M,Z) ' Γab.

Some early computations by Elströdt, Mennicke, Grunewald
and Grunewald, Schwermer for subgroups Γ0(n) of the Bianchi
group It was (relatively) recently that we can easily compute
enough examples to see something interesting.
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H. Sengün’s computations

PSL2(Z[i ])ab ∼= (Z/2Z)2.

Γ0(9 + 4i)ab = Z/5Z⊕ Z/3Z⊕ (Z/2Z)6?;
Γ0(41 + 56i)ab = Z/4078793513671Z ⊕ Z/292306033Z ⊕ Z/22037Z ⊕ Z/7741Z . . . ;
it is of order > 1043;
Γ0(32 + 63i)ab = Z/18513420749Z ⊕ Z/5995036891Z ⊕ Z/798569Z ⊕ Z/173Z . . .

Γ0(118 + 175i)ab = Z⊕ T where |T | > 10310.
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Bergeron and I conjecture (2010) that “torsion grows exponentially
with the volume”

log (#H1(M,Z)tors)

vol(M)
→ 1

6π
.

Anyway, let us look at some data computed by Brock -Dunfield on
how this conjecture shapes up for arithmetic versus nonarithmetic
M.
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Figure 4.4. Congruence covers of arithmetic twist-knot orbifolds. The blue dots are
covers where b1 = 0 and the red dots covers where b1 > 0.
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Figure 4.5. Congruence covers of nonarithmetic twist-knot orbifolds; as before, blue
dots indicate b1 = 0 and red dots b1 > 0.
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Repulsion of mod p classes

In topology there is a surprising parallel to “repulsion of
eigenvalues.”

Dunfield and Thurston have proven that, for a certain model
of “random” hyperbolic M ′, factors of Z/pZ in H1(M ′,Z)
repel;

the chance of (Z/pZ)k is ∼ p−k(k+1)/2.
By contrast – eyeballing data – factors of (Z/pZ)k with k � 1
are much more frequent for arithmetic M. Again, this should
be attributed to the influence of Hecke operators.
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Summary

In both the analytic and topological case, the distribution of
eigenvalues/homology is controlled by a certain linear map: the
Laplacian, or the differential in the chain complex. These can be
modeled by random symmetric or p-adic matrices in general; but
being forced to commute with Hecke operators causes rigid and
unusual behavior.
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Return to M = H/Γ.
This M has the structure of an algebraic curve over Q, i.e.
M = X(C) for X ⊂ PN

Q .

Eichler-Shimura relation:

(p+1)−number of points on X mod p =
trace(Tp|H1(M;Q))

2
.

or more succinctly

number of points on 2[P1]− 2[X] = trace(Tp).

The correct context to take these virtual combinations is the
theory of pure motives:

algebraic varieties ↪→ pure motives
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Still more remarkable is the conjecture that the same is true also in
the case of M = H3/Γ,

i.e. there exist some “motive” X over Q(i)
with

#X(Fp) = trace of Tp on H1(M;Q).

This is much more mysterious; it is known to hold modulo each
prime power `N (Harris, Lan, Taylor, Thorne and Scholze).

The traces of Tp on H1 and H2 are the same. So the right
hand side cannot be related to a Lefschetz number.
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Some things I’m thinking about this year

While Shimura varieties (e.g. H/Γ) are far better understood, the
general arithmetic locally symmetric spaces (e.g. H3/Γ) actually
exhibit richer structures in their topology, e.g.:

(a) tr(Tp) has the same trace on H1 and H2, which is explained by

(b) The existence of a derived version of Hecke operators
T̃ : H1 → H2, which leads to

(c) The need to consider a derived moduli space of Galois
representations, which in turn reflects

(d) The relationship of M not just to pure motives but to mixed
motives.

In fact there is one case of (d) that has been around for a long
time: the algebraic K -theory of Z, reflecting mixed Tate motives, is
related to the stable homology of the SLn(Z) symmetric space.
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