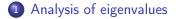
Analysis and topology on arithmetic locally symmetric spaces

Akshay Venkatesh IAS/Stanford

October 9, 2017

Akshay Venkatesh IAS/Stanford Analysis and topology on arithmetic locally symmetric spa



Akshay Venkatesh IAS/Stanford Analysis and topology on arithmetic locally symmetric spa

< ∃ >

-

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{az+b}{cz+d}$ with integer coefficients. It has many interesting and interlocking structures.

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{az+b}{cz+d}$ with integer coefficients. It has many interesting and interlocking structures.

- It is the complex moduli space of elliptic curves.
- It is a Riemannian manifold of constant negative curvature.

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{az+b}{cz+d}$ with integer coefficients. It has many interesting and interlocking structures.

- It is the complex moduli space of elliptic curves.
- It is a Riemannian manifold of constant negative curvature.

For now:

- Γ is this group or a finite index congruence subgroup, and $M = \mathbb{H}/\Gamma$, an "arithmetic locally symmetric space."
- M' is a small perturbation of M, e.g. H/Γ' for a generic Γ' (nothing to do with integers).

イロト イポト イヨト イヨト

• In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos – curious in that they differ from M'.

- In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos curious in that they differ from M'.
- Then we will talk about some curious topological features, which actually are rather parallel to the analytic features above.

- In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos curious in that they differ from M'.
- Then we will talk about some curious topological features, which actually are rather parallel to the analytic features above.
- To conclude, I will discuss how the topology of these spaces is related to algebraic geometry, and describe some of the issues which I hope to study over the course of this year.

2 Topology and torsion classes

• On \mathbb{H} the Riemannian Laplacian is given by $-y^2(\partial_{xx} + \partial_{yy})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

On ℍ the Riemannian Laplacian is given by -y²(∂_{xx} + ∂_{yy}).
On L²(ℍ/Γ) this has infinitely many eigenvalues

$$0 < \lambda_1 < \lambda_2 < \lambda_3 < \dots$$

and they satisfy Weyl's law : their mean spacing is $\frac{4\pi}{\text{area}}$.

通り イヨト イヨト

Some eigenvalues

Here are 27 eigenvalues after 640,000, as computed by H. Then:

1.1, 8.8, 56.3, 76.5, 77.4, 107.8, 111.6, 120.6, 121.3,

132.0, 134.3, 134.8, 154.4, 156.15, 158.8, 166.6, 202.4, 207.4, 216.0

218.07, 225.02, 231.28, 266.36, 272.17, 296.53, 310.28, 316.29

• • = • • = •

Some eigenvalues

Here are 27 eigenvalues after 640,000, as computed by H. Then:

1.1, 8.8, 56.3, 76.5, 77.4, 107.8, 111.6, 120.6, 121.3,

132.0, 134.3, 134.8, 154.4, 156.15, 158.8, 166.6, 202.4, 207.4, 216.0

218.07, 225.02, 231.28, 266.36, 272.17, 296.53, 310.28, 316.29

The mean spacing is $12 = \frac{4\pi}{\text{area}}$ according to Weyl's law. Here is a picture; do you notice anything surprising?

• •• • •	••	• •	• •	• •	••••	•••	•••	••	•	•
••	•	•	•••	•				••	•	••

• • • •	••	•	•	••	• ••	•• •• •	•••	••	•	•
••	•	•		• •			,	••	•	••

 Eigenvalues repel! Two in an interval of length ε with probability ~ ε³; k of them with probability ~ ε^{k(k+1)/2}.

・ 同 ト ・ ヨ ト ・ ヨ ト

In fact, it is surprising that there exist eigenvalues at all, because $\Gamma \backslash \mathbb{H}$ is noncompact.

 To show the existence of eigenvalues for the modular surface, Selberg introduced the trace formula. His proof applies only to Γ used special properties of the Riemann ζ-function; In fact, it is surprising that there exist eigenvalues at all, because $\Gamma \backslash \mathbb{H}$ is noncompact.

- To show the existence of eigenvalues for the modular surface, Selberg introduced the trace formula. His proof applies only to Γ used special properties of the Riemann ζ-function;
- After the work of Phillips and Sarnak it is generally believed that a small deformation Γ' of Γ destroys all eigenvalues, i.e. there are no Laplacian eigenfunctions at all in $L^2(\mathbb{H}/\Gamma')$.

Explanation: extra symmetry

• The surface *M* has a certain class of hidden symmetries, the "Hecke operators."

▶ < ∃ ▶</p>

Explanation: extra symmetry

- The surface *M* has a certain class of hidden symmetries, the "Hecke operators."
- These reduce the influence of one eigenvalue on another.

b) A (B) b)

What is a Hecke operator

- The map $z \mapsto pz$ doesn't give a map $M \to M$, but it almost does:
- For each prime p we have a multi-valued function $T_p: M \to M$:

$$T_p(z) = \{z_1, \ldots, z_{p+1}\}.$$

Locally, each map $z \mapsto z_i$ is isometric.

マロト イヨト イヨト

Arithmetic locally symmetric spaces

• The space \mathbb{H}/Γ is just the first example:

▶ < ∃ ▶</p>

Arithmetic locally symmetric spaces

- The space \mathbb{H}/Γ is just the first example:
- Going up one dimension: SL₂(Z[i]) acts on ℍ³, and ℍ³/SL₂(Z[i]) is another example.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Arithmetic locally symmetric spaces

- The space \mathbb{H}/Γ is just the first example:
- Going up one dimension: SL₂(Z[i]) acts on ℍ³, and ℍ³/SL₂(Z[i]) is another example.
- More generally, if Γ is an arithmetic subgroup of a semisimple Lie group – e.g. SL_n(Z), Sp_{2g}(Z) – then Γ acts on a canonical space of curvature ≤ 0, the Riemannian symmetric space H.

くロト く得ト くヨト くヨトー

Arithmetic locally symmetric spaces

- The space \mathbb{H}/Γ is just the first example:
- Going up one dimension: SL₂(Z[i]) acts on ℍ³, and ℍ³/SL₂(Z[i]) is another example.
- More generally, if Γ is an arithmetic subgroup of a semisimple Lie group – e.g. $SL_n(\mathbf{Z})$, $Sp_{2g}(\mathbf{Z})$ – then Γ acts on a canonical space of curvature ≤ 0 , the Riemannian symmetric space \mathcal{H} .
- An arithmetic locally symmetric space is any such quotient \mathcal{H}/Γ . It has a canonical Riemannian structure. Many natural spaces arise thus.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Now take Γ to be a congruence subgroup of SL₂(Z[i]). In this case H³/Γ is a Bianchi manifold.

• • = • • = •

• Now take Γ to be a congruence subgroup of $SL_2(\mathbf{Z}[i])$. In this case \mathbb{H}^3/Γ is a Bianchi manifold.

> Lineare Substitutionen mit ganzen complexen Coefficienten II. 361

e)
$$\left(\dot{\mathbf{t}} - \frac{1}{2}\right)^2 + \left(\eta - \frac{YD}{2}\right)^3 + \dot{\mathbf{t}}^2 - \frac{1}{2^4},$$

Tipo I) $a_i = 1, a_i = 1, c_i = 2, b_i = -\frac{D}{2},$
f) $\dot{\mathbf{t}}^2 + \left(\eta - \frac{D-1}{3YD}\right)^2 + \dot{\mathbf{t}}^2 - \frac{1}{3^2D}, c_i = 2, b_i = 1 - \frac{D}{2}.$

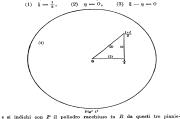
Le sfere di riflessione qui indicate a), b), c), d), e), f) bastano già per i piccoli valori di D a separare il poliedro P cercato,

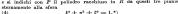
8 12.

Il gruppo F().

Benchè i casi D - 1, D - 3 siano già stati trattati nel lavoro precedente, non sembra qui inutile coordinare la determinazione dei poliedri fondamentali corrispondenti alle osservazioni generali del paragrafo precedente.

Se D - 1, si considerino i tre piani di riflessione





 $\xi^2 + \eta^2 + \xi^2 - 1.$

*) In questa come nelle figure seguenti si osservano le traccie sul piano $\xi\eta$ dei piani e delle sfere di riflessioni numerati come nel testo.

• In this case, there are no deformations, but we can compare the behavior to general hyperbolic 3-manifolds, i.e. to \mathbb{H}^3/Γ' for generic (non-arithmetic) Γ' .

- In this case, there are no deformations, but we can compare the behavior to general hyperbolic 3-manifolds, i.e. to \mathbb{H}^3/Γ' for generic (non-arithmetic) Γ' .
- We examine the simplest topological invariant:

$$H_1(M, \mathbf{Z}) \simeq \Gamma^{\mathrm{ab}}.$$

Some early computations by Elströdt, Mennicke, Grunewald and Grunewald, Schwermer for subgroups $\Gamma_0(n)$ of the Bianchi group It was (relatively) recently that we can easily compute enough examples to see something interesting.

H. Sengün's computations

•
$$\mathrm{PSL}_2(\mathbf{Z}[i])^{\mathrm{ab}} \cong (\mathbf{Z}/2\mathbf{Z})^2$$

H. Sengün's computations

•
$$\operatorname{PSL}_2(\mathbf{Z}[i])^{\operatorname{ab}} \cong (\mathbf{Z}/2\mathbf{Z})^2$$
.

• $\Gamma_0(9+4i)^{\rm ab} = Z/5Z \oplus Z/3Z \oplus (Z/2Z)^{6?};$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

H. Sengün's computations

- $\operatorname{PSL}_2(\mathbf{Z}[i])^{\operatorname{ab}} \cong (\mathbf{Z}/2\mathbf{Z})^2$.
- $\Gamma_0(9+4i)^{\rm ab} = Z/5Z \oplus Z/3Z \oplus (Z/2Z)^{6?};$
- $\Gamma_0(41 + 56i)^{ab} = z_{4078793513671Z \oplus Z/292306033Z \oplus Z/22037Z \oplus Z/7741Z...;}$ it is of order $> 10^{43}$;

・ 同 ト ・ ヨ ト ・ ヨ ト …

H. Sengün's computations

- $\operatorname{PSL}_2(\mathbf{Z}[i])^{\operatorname{ab}} \cong (\mathbf{Z}/2\mathbf{Z})^2$.
- $\Gamma_0(9+4i)^{\rm ab} = Z/5Z \oplus Z/3Z \oplus (Z/2Z)^{6?};$
- $\Gamma_0(41 + 56i)^{ab} = z_{/4078793513671Z \oplus Z/292306033Z \oplus Z/22037Z \oplus Z/7741Z \dots};$ it is of order $> 10^{43};$
- $\Gamma_0(32+63i)^{\rm ab} = z_{/18513420749Z \oplus Z/5995036891Z \oplus Z/798569Z \oplus Z/173Z \dots}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

H. Sengün's computations

•
$$\operatorname{PSL}_2(\mathbf{Z}[i])^{\operatorname{ab}} \cong (\mathbf{Z}/2\mathbf{Z})^2.$$

•
$$\Gamma_0(9+4i)^{ab} = Z/5Z \oplus Z/3Z \oplus (Z/2Z)^{6?};$$

- $\Gamma_0(41 + 56i)^{ab} = z_{/4078793513671Z \oplus Z/292306033Z \oplus Z/22037Z \oplus Z/7741Z...;}$ it is of order $> 10^{43}$;
- $\Gamma_0(32 + 63i)^{ab} = z_{/18513420749Z \oplus Z/5995036891Z \oplus Z/798569Z \oplus Z/173Z...}$
- $\Gamma_0(118 + 175i)^{ab} = \mathbf{Z} \oplus T$ where $|T| > 10^{310}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

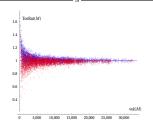
Bergeron and I conjecture (2010) that "torsion grows exponentially with the volume"

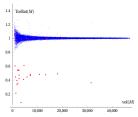
$$rac{\log\left(\#H_1(M,{f Z})_{
m tors}
ight)}{{
m vol}(M)}
ightarrow rac{1}{6\pi}.$$

Bergeron and I conjecture (2010) that "torsion grows exponentially with the volume"

$$rac{\log\left(\#H_1(M,{f Z})_{
m tors}
ight)}{{
m vol}(M)}
ightarrow rac{1}{6\pi}.$$

Anyway, let us look at some data computed by Brock -Dunfield on how this conjecture shapes up for arithmetic versus nonarithmetic M.





Akshay Venkatesh IAS/Stanford

Analysis and topology on arithmetic locally symmetric spa

э

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

• Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M', factors of Z/pZ in $H_1(M', Z)$ repel;

・ 同 ト ・ ヨ ト ・ ヨ ト

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

• Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M', factors of Z/pZ in $H_1(M', Z)$ repel; the chance of $(Z/pZ)^k$ is $\sim p^{-k(k+1)/2}$.

• • = • • = •

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

- Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M', factors of Z/pZ in $H_1(M', Z)$ repel; the chance of $(Z/pZ)^k$ is $\sim p^{-k(k+1)/2}$.
- By contrast eyeballing data factors of (Z/pZ)^k with k ≫ 1 are much more frequent for arithmetic M. Again, this should be attributed to the influence of Hecke operators.

Summary

In both the analytic and topological case, the distribution of eigenvalues/homology is controlled by a certain linear map: the Laplacian, or the differential in the chain complex. These can be modeled by random symmetric or *p*-adic matrices in general; but being forced to commute with Hecke operators causes rigid and unusual behavior.

2 Topology and torsion classes

Return to $M = \mathbb{H}/\Gamma$.

• This *M* has the structure of an algebraic curve over \mathbb{Q} , i.e. $M = \mathbf{X}(\mathbf{C})$ for $\mathbf{X} \subset \mathbb{P}^N_{\mathbb{Q}}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Return to $M = \mathbb{H}/\Gamma$.

- This *M* has the structure of an algebraic curve over Q, i.e.
 M = X(C) for X ⊂ P^N_Q.
- Eichler-Shimura relation:

$$(p+1)$$
-number of points on **X** mod $p = \frac{\operatorname{trace}(T_p|H^1(M;\mathbb{Q}))}{2}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Return to $M = \mathbb{H}/\Gamma$.

- This *M* has the structure of an algebraic curve over Q, i.e.
 M = X(C) for X ⊂ P^N_Q.
- Eichler-Shimura relation:

(p+1)-number of points on **X** mod $p = \frac{\operatorname{trace}(T_p | H^1(M; \mathbb{Q}))}{2}$.

or more succinctly

number of points on $2[\mathbb{P}^1] - 2[\mathbf{X}] = \operatorname{trace}(T_p)$.

イロト イポト イラト イラト

Return to $M = \mathbb{H}/\Gamma$.

- This *M* has the structure of an algebraic curve over \mathbb{Q} , i.e. $M = \mathbf{X}(\mathbf{C})$ for $\mathbf{X} \subset \mathbb{P}^N_{\mathbb{Q}}$.
- Eichler-Shimura relation:

(p+1)-number of points on **X** mod $p = \frac{\operatorname{trace}(T_p|H^1(M;\mathbb{Q}))}{2}$.

or more succinctly

number of points on $2[\mathbb{P}^1] - 2[\mathbf{X}] = \operatorname{trace}(T_p)$.

• The correct context to take these virtual combinations is the theory of pure motives:

algebraic varieties \hookrightarrow pure motives

くロト く得ト くヨト くヨト 二日

Still more remarkable is the conjecture that the same is true also in the case of $M=\mathbb{H}^3/\Gamma$,

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Still more remarkable is the conjecture that the same is true also in the case of $M = \mathbb{H}^3/\Gamma$, i.e. there exist some "motive" **X** over $\mathbb{Q}(i)$ with

$$\# X(\mathbf{F}_p) =$$
trace of T_p on $H^1(M; \mathbb{Q})$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Still more remarkable is the conjecture that the same is true also in the case of $M = \mathbb{H}^3/\Gamma$, i.e. there exist some "motive" **X** over $\mathbb{Q}(i)$ with

$$\# \mathsf{X}(\mathsf{F}_p) =$$
trace of T_p on $H^1(M; \mathbb{Q})$.

This is much more mysterious; it is known to hold modulo each prime power ℓ^N (Harris, Lan, Taylor, Thorne and Scholze).

• • = • • = •

Still more remarkable is the conjecture that the same is true also in the case of $M = \mathbb{H}^3/\Gamma$, i.e. there exist some "motive" **X** over $\mathbb{Q}(i)$ with

$$\# \mathbf{X}(\mathbf{F}_p) =$$
trace of T_p on $H^1(M; \mathbb{Q})$.

This is much more mysterious; it is known to hold modulo each prime power ℓ^N (Harris, Lan, Taylor, Thorne and Scholze).

• The traces of T_p on H^1 and H^2 are the same. So the right hand side cannot be related to a Lefschetz number.

- 4 周 5 - 4 日 5 - 4 日 5 - -

While Shimura varieties (e.g. \mathbb{H}/Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^3/Γ) actually exhibit richer structures in their topology, e.g.:

(a) $tr(T_p)$ has the same trace on H^1 and H^2 , which is explained by

While Shimura varieties (e.g. \mathbb{H}/Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^3/Γ) actually exhibit richer structures in their topology, e.g.:

(a) $\operatorname{tr}(T_p)$ has the same trace on H^1 and H^2 , which is explained by (b) The existence of a derived version of Hecke operators $\tilde{T}: H^1 \to H^2$, which leads to

・ 同 ト ・ ヨ ト ・ ヨ ト

While Shimura varieties (e.g. \mathbb{H}/Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^3/Γ) actually exhibit richer structures in their topology, e.g.:

- (a) $\operatorname{tr}(\mathcal{T}_p)$ has the same trace on H^1 and H^2 , which is explained by (b) The existence of a derived version of Hecke operators $\tilde{\mathcal{T}}: H^1 \to H^2$, which leads to
- (c) The need to consider a derived moduli space of Galois representations, which in turn reflects

イヨト イヨト イヨト

While Shimura varieties (e.g. \mathbb{H}/Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^3/Γ) actually exhibit richer structures in their topology, e.g.:

- (a) tr(T_p) has the same trace on H¹ and H², which is explained by
 (b) The existence of a derived version of Hecke operators T̃ : H¹ → H², which leads to
- (c) The need to consider a derived moduli space of Galois representations, which in turn reflects
- (d) The relationship of *M* not just to pure motives but to *mixed* motives.

イロト イポト イヨト イヨト

While Shimura varieties (e.g. \mathbb{H}/Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^3/Γ) actually exhibit richer structures in their topology, e.g.:

- (a) tr(T_p) has the same trace on H¹ and H², which is explained by
 (b) The existence of a derived version of Hecke operators

 T̃ : H¹ → H², which leads to
- (c) The need to consider a derived moduli space of Galois representations, which in turn reflects
- (d) The relationship of *M* not just to pure motives but to *mixed* motives.

In fact there is one case of (d) that has been around for a long time: the algebraic K-theory of \mathbb{Z} , reflecting mixed Tate motives, is related to the *stable* homology of the $SL_n(\mathbb{Z})$ symmetric space.