Analysis and topology on arithmetic locally symmetric spaces

Akshay Venkatesh
IAS/Stanford

October 9, 2017

(1) Analysis of eigenvalues

2 Topology and torsion classes
(3) Algebraic geometry

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ with integer coefficients. It has many interesting and interlocking structures.

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ with integer coefficients. It has many interesting and interlocking structures.

- It is the complex moduli space of elliptic curves.
- It is a Riemannian manifold of constant negative curvature.

Basic example

The modular curve M is the quotient of \mathbb{H} by the group Γ of fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ with integer coefficients. It has many interesting and interlocking structures.

- It is the complex moduli space of elliptic curves.
- It is a Riemannian manifold of constant negative curvature.

For now:

- Γ is this group or a finite index congruence subgroup, and $M=\mathbb{H} / \Gamma$, an "arithmetic locally symmetric space."
- M^{\prime} is a small perturbation of M, e.g. $\mathbb{H} / \Gamma^{\prime}$ for a generic Γ^{\prime} (nothing to do with integers).
- In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos - curious in that they differ from M^{\prime}.
- In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos - curious in that they differ from M^{\prime}.
- Then we will talk about some curious topological features, which actually are rather parallel to the analytic features above.
- In this talk I will explain some curious analytic features of such M, discovered in the study of quantum chaos - curious in that they differ from M^{\prime}.
- Then we will talk about some curious topological features, which actually are rather parallel to the analytic features above.
- To conclude, I will discuss how the topology of these spaces is related to algebraic geometry, and describe some of the issues which I hope to study over the course of this year.
(1) Analysis of eigenvalues

(2) Topology and torsion classes

(3) Algebraic geometry

- On \mathbb{H} the Riemannian Laplacian is given by $-y^{2}\left(\partial_{x x}+\partial_{y y}\right)$.
- On \mathbb{H} the Riemannian Laplacian is given by $-y^{2}\left(\partial_{x x}+\partial_{y y}\right)$.
- On $L^{2}(\mathbb{H} / \Gamma)$ this has infinitely many eigenvalues

$$
0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots
$$

and they satisfy Weyl's law : their mean spacing is $\frac{4 \pi}{\text { area }}$.

Some eigenvalues

Here are 27 eigenvalues after 640,000, as computed by H . Then:
$1.1,8.8,56.3,76.5,77.4,107.8,111.6,120.6,121.3$,
132.0, 134.3, 134.8, 154.4, 156.15, 158.8, 166.6, 202.4, 207.4, 216.0
218.07, 225.02, 231.28, 266.36, 272.17, 296.53, 310.28, 316.29

Some eigenvalues

Here are 27 eigenvalues after 640,000, as computed by H . Then:

> 1.1, 8.8, 56.3, 76.5, 77.4, 107.8, 111.6, 120.6, 121.3,
132.0, 134.3, 134.8, 154.4, 156.15, 158.8, 166.6, 202.4, 207.4, 216.0 218.07, 225.02, 231.28, 266.36, 272.17, 296.53, 310.28, 316.29

The mean spacing is $12=\frac{4 \pi}{\text { area }}$ according to Weyl's law. Here is a picture; do you notice anything surprising?

- Eigenvalues of Laplacian operators on negatively curved manifolds have a strong tendency to resemble eigenvalues of a random symmetric matrix (GOE). Here is a picture of some:
- Eigenvalues of Laplacian operators on negatively curved manifolds have a strong tendency to resemble eigenvalues of a random symmetric matrix (GOE). Here is a picture of some:
- Eigenvalues of Laplacian operators on negatively curved manifolds have a strong tendency to resemble eigenvalues of a random symmetric matrix (GOE). Here is a picture of some:
- Eigenvalues of Laplacian operators on negatively curved manifolds have a strong tendency to resemble eigenvalues of a random symmetric matrix (GOE). Here is a picture of some:

- Eigenvalues repel! Two in an interval of length ε with probability $\sim \varepsilon^{3} ; k$ of them with probability $\sim \varepsilon^{k(k+1) / 2}$.

In fact, it is surprising that there exist eigenvalues at all, because $\Gamma \backslash \mathbb{H}$ is noncompact.

- To show the existence of eigenvalues for the modular surface, Selberg introduced the trace formula. His proof applies only to Γ used special properties of the Riemann ζ-function;

In fact, it is surprising that there exist eigenvalues at all, because $\Gamma \backslash \mathbb{H}$ is noncompact.

- To show the existence of eigenvalues for the modular surface, Selberg introduced the trace formula. His proof applies only to Γ used special properties of the Riemann ζ-function;
- After the work of Phillips and Sarnak it is generally believed that a small deformation Γ^{\prime} of Γ destroys all eigenvalues, i.e. there are no Laplacian eigenfunctions at all in $L^{2}\left(\mathbb{H} / \Gamma^{\prime}\right)$.

Explanation: extra symmetry

- The surface M has a certain class of hidden symmetries, the "Hecke operators."

Explanation: extra symmetry

- The surface M has a certain class of hidden symmetries, the "Hecke operators."
- These reduce the influence of one eigenvalue on another.

What is a Hecke operator

- The map $z \mapsto p z$ doesn't give a map $M \rightarrow M$, but it almost does:
- For each prime p we have a multi-valued function $T_{p}: M \rightarrow M$:

$$
T_{p}(z)=\left\{z_{1}, \ldots, z_{p+1}\right\} .
$$

Locally, each map $z \mapsto z_{i}$ is isometric.

Arithmetic locally symmetric spaces

- The space \mathbb{H} / Γ is just the first example:

Arithmetic locally symmetric spaces

- The space \mathbb{H} / Γ is just the first example:
- Going up one dimension: $\mathrm{SL}_{2}(\mathrm{Z}[i])$ acts on \mathbb{H}^{3}, and $\mathbb{H}^{3} / \mathrm{SL}_{2}(\mathrm{Z}[i])$ is another example.

Arithmetic locally symmetric spaces

- The space \mathbb{H} / Γ is just the first example:
- Going up one dimension: $\mathrm{SL}_{2}(\mathrm{Z}[i])$ acts on \mathbb{H}^{3}, and $\mathbb{H}^{3} / \mathrm{SL}_{2}(\mathrm{Z}[i])$ is another example.
- More generally, if Γ is an arithmetic subgroup of a semisimple Lie group - e.g. $\mathrm{SL}_{n}(\mathbf{Z}), \mathrm{Sp}_{2 g}(\mathbf{Z})$ - then Γ acts on a canonical space of curvature ≤ 0, the Riemannian symmetric space \mathcal{H}.

Arithmetic locally symmetric spaces

- The space \mathbb{H} / Γ is just the first example:
- Going up one dimension: $\mathrm{SL}_{2}(\mathrm{Z}[i])$ acts on \mathbb{H}^{3}, and $\mathbb{H}^{3} / \mathrm{SL}_{2}(\mathrm{Z}[i])$ is another example.
- More generally, if Γ is an arithmetic subgroup of a semisimple Lie group - e.g. $\mathrm{SL}_{n}(\mathbf{Z}), \mathrm{Sp}_{2 g}(\mathbf{Z})$ - then Γ acts on a canonical space of curvature ≤ 0, the Riemannian symmetric space \mathcal{H}.
- An arithmetic locally symmetric space is any such quotient \mathcal{H} / Γ. It has a canonical Riemannian structure. Many natural spaces arise thus.

(1) Analysis of eigenvalues

(2) Topology and torsion classes
(3) Algebraic geometry

- Now take Γ to be a congruence subgroup of $\mathrm{SL}_{2}(\mathrm{Z}[i])$. In this case \mathbb{H}^{3} / Γ is a Bianchi manifold.

- Now take Γ to be a congruence subgroup of $\mathrm{SL}_{2}(\mathrm{Z}[i])$. In this case \mathbb{H}^{3} / Γ is a Bianchi manifold.

Lineare Subatitutionen mit ganzen complexen Coefficienten II. $\mathbf{3 6 1}$
e) $\left(\xi-\frac{1}{2}\right)^{2}+\left(\eta-\frac{V \bar{D}}{2}\right)^{2}+\xi^{2}-\frac{1}{2^{2}}$,

$$
\text { Tipo I) } a_{1}=1, \quad a_{2}=1, \quad c_{1}=2, \quad b_{1}=-\frac{D}{2},
$$

f) $\xi^{2}+\left(\eta-\frac{D-1}{2 \sqrt{D}}\right)^{2}+\xi^{2}=\frac{1}{2^{2} D}$,

Tipo II) $\quad a_{2}=0, \quad a_{1}=1-D, \quad c_{1}=2, \quad b_{1}=1-\frac{D}{2}$.
Le sfere di riflessione qui indicate a), b), c), d), e), f) bastano già per i piccoli valori di D a separare il poliedro \boldsymbol{P} cercato,

$$
\text { § } 12
$$

Il gruppo $\bar{\Gamma}^{(\theta}$.
Benchè i casi $D=1, D=3$ siano già stati trattati nel lavoro precedente, non sembra qui inutile coordinare la determinazione dei poliedri fondamentali corrispondenti alle osservazioni generali del paragrafo precedente.

Se $D=1$, si considerino itre piani di riflessione

e si indichi con \boldsymbol{P} il poliedro racchiuso in R da questi tre pianiesternamente alla sfera
(4) $\left.\quad \xi^{2}+\eta^{2}+\xi^{2}=1 .{ }^{*}\right)$
*) In questa come nelle figure seguenti si osservano le traccie sul piano $\bar{\xi} \eta$ dei piani e delle sfere di riflessioni numerati come nel teato.

- In this case, there are no deformations, but we can compare the behavior to general hyperbolic 3-manifolds, i.e. to $\mathbb{H}^{3} / \Gamma^{\prime}$ for generic (non-arithmetic) Γ^{\prime}.
- In this case, there are no deformations, but we can compare the behavior to general hyperbolic 3-manifolds, i.e. to $\mathbb{H}^{3} / \Gamma^{\prime}$ for generic (non-arithmetic) Γ^{\prime}.
- We examine the simplest topological invariant:

$$
H_{1}(M, Z) \simeq \Gamma^{\mathrm{ab}}
$$

Some early computations by Elströdt, Mennicke, Grunewald and Grunewald, Schwermer for subgroups $\Gamma_{0}(n)$ of the Bianchi group It was (relatively) recently that we can easily compute enough examples to see something interesting.

H. Sengün's computations

- $\operatorname{PSL}_{2}(\mathbf{Z}[i])^{\mathrm{ab}} \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$.

H. Sengün's computations

- $\operatorname{PSL}_{2}(\mathbf{Z}[i])^{\mathrm{ab}} \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$.
- $\Gamma_{0}(9+4 i)^{\mathrm{ab}}=\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{6 ?}$;

H. Sengün's computations

- $\operatorname{PSL}_{2}(\mathbf{Z}[i])^{\mathrm{ab}} \cong\left(\mathbf{Z} / \mathbf{Z} \mathbf{Z}^{2}\right.$.
- $\Gamma_{0}(9+4 i)^{\mathrm{ab}}=\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{6 ?}$;
 it is of order $>10^{43}$;

H. Sengün's computations

- $\operatorname{PSL}_{2}(\mathbf{Z}[i])^{\mathrm{ab}} \cong\left(\mathbf{Z} / \mathbf{Z} \mathbf{Z}^{2}\right.$.
- $\Gamma_{0}(9+4 i)^{\mathrm{ab}}=\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{6 ?}$;
- $\Gamma_{0}(41+56 i)^{\text {ab }}=\mathbf{z} / 4078793513671 \mathbf{Z} \oplus \mathbf{Z} / 292306033 \mathbf{Z} \oplus \mathbf{Z} / 22037 \mathbf{Z} \oplus \mathbf{Z} / 7741 \mathbf{Z} \ldots$; it is of order $>10^{43}$;
- $\Gamma_{0}(32+63 i)^{\mathrm{ab}}=\mathrm{z} / 18513420749 \mathrm{z} \oplus \mathrm{z} / 5995036891 \mathrm{z} \oplus \mathrm{z} / 798569 \mathrm{z} \oplus \mathrm{z} / 173 \mathrm{z} \ldots$

H. Sengün's computations

- $\operatorname{PSL}_{2}(\mathbf{Z}[i])^{\mathrm{ab}} \cong\left(\mathbf{Z} / \mathbf{Z} \mathbf{Z}^{2}\right.$.
- $\Gamma_{0}(9+4 i)^{\mathrm{ab}}=\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z} \oplus(\mathbf{Z} / 2 \mathbf{Z})^{6 ?}$;
- $\Gamma_{0}(41+56 i)^{\text {ab }}=\mathbf{z / 4 0 7 8 7 9 3 5 1 3 6 7 1 \mathbf { Z }} \oplus \mathbf{Z} / 292306033 \mathbf{Z} \oplus \mathbf{Z} / 22037 \mathbf{Z} \oplus \mathbf{Z} / 7741 \mathbf{z} \ldots$; it is of order $>10^{43}$;
- $\Gamma_{0}(32+63 i)^{\mathrm{ab}}=\mathrm{z} / 18513420749 \mathrm{z} \oplus \mathrm{z} / 5995036891 \mathrm{z} \oplus \mathrm{z} / 798569 \mathrm{z} \oplus \mathrm{z} / 173 \mathrm{z} \ldots$
- $\Gamma_{0}(118+175 i)^{\mathrm{ab}}=\mathbf{Z} \oplus T$ where $|T|>10^{310}$.

Bergeron and I conjecture (2010) that "torsion grows exponentially with the volume"

$$
\frac{\log \left(\# H_{1}(M, \mathbf{Z})_{\text {tors }}\right)}{\operatorname{vol}(M)} \rightarrow \frac{1}{6 \pi} .
$$

Bergeron and I conjecture (2010) that "torsion grows exponentially with the volume"

$$
\frac{\log \left(\# H_{1}(M, \mathbf{Z})_{\text {tors }}\right)}{\operatorname{vol}(M)} \rightarrow \frac{1}{6 \pi}
$$

Anyway, let us look at some data computed by Brock -Dunfield on how this conjecture shapes up for arithmetic versus nonarithmetic M.

Figure 4.4. Congruence covers of arithmetic twist-knot orbifolds. The blue dots are covers where $b_{1}=0$ and the red dots covers where $b_{1}>0$.

Figure 4.5. Congruence covers of nonarithmetic twist-knot orbifolds; as before, blue dots indicate $b_{1}=0$ and red dots $b_{1}>0$.

Akshay Venkatesh IAS/Stanford

Analysis and topology on arithmetic locally symmetric spa

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

- Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M^{\prime}, factors of $\mathbf{Z} / p \mathbf{Z}$ in $H_{1}\left(M^{\prime}, \mathbf{Z}\right)$ repel;

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

- Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M^{\prime}, factors of $\mathbf{Z} / p \mathbf{Z}$ in $H_{1}\left(M^{\prime}, \mathbf{Z}\right)$ repel; the chance of $(\mathbf{Z} / p \mathbf{Z})^{k}$ is $\sim p^{-k(k+1) / 2}$.

Repulsion of mod p classes

In topology there is a surprising parallel to "repulsion of eigenvalues."

- Dunfield and Thurston have proven that, for a certain model of "random" hyperbolic M^{\prime}, factors of $\mathbf{Z} / p \mathbf{Z}$ in $H_{1}\left(M^{\prime}, \mathbf{Z}\right)$ repel; the chance of $(\mathbf{Z} / p \mathbf{Z})^{k}$ is $\sim p^{-k(k+1) / 2}$.
- By contrast - eyeballing data - factors of $(\mathbf{Z} / p \mathbf{Z})^{k}$ with $k \gg 1$ are much more frequent for arithmetic M. Again, this should be attributed to the influence of Hecke operators.

Summary

In both the analytic and topological case, the distribution of eigenvalues/homology is controlled by a certain linear map: the Laplacian, or the differential in the chain complex. These can be modeled by random symmetric or p-adic matrices in general; but being forced to commute with Hecke operators causes rigid and unusual behavior.

(1) Analysis of eigenvalues

(2) Topology and torsion classes

(3) Algebraic geometry

Return to $M=\mathbb{H} / \Gamma$.

- This M has the structure of an algebraic curve over \mathbb{Q}, i.e. $M=\mathbf{X}(\mathbf{C})$ for $\mathbf{X} \subset \mathbb{P}_{\mathbb{Q}}^{N}$.

Return to $M=\mathbb{H} / \Gamma$.

- This M has the structure of an algebraic curve over \mathbb{Q}, i.e.

$$
M=\mathbf{X}(\mathbf{C}) \text { for } \mathbf{X} \subset \mathbb{P}_{\mathbb{Q}}^{N}
$$

- Eichler-Shimura relation:

$$
(p+1)-\text { number of points on } \mathbf{X} \bmod p=\frac{\operatorname{trace}\left(T_{p} \mid H^{1}(M ; \mathbb{Q})\right)}{2} .
$$

Return to $M=\mathbb{H} / \Gamma$.

- This M has the structure of an algebraic curve over \mathbb{Q}, i.e.

$$
M=\mathbf{X}(\mathbf{C}) \text { for } \mathbf{X} \subset \mathbb{P}_{\mathbb{Q}}^{N}
$$

- Eichler-Shimura relation:

$$
(p+1)-\text { number of points on } \mathbf{X} \bmod p=\frac{\operatorname{trace}\left(T_{p} \mid H^{1}(M ; \mathbb{Q})\right)}{2} .
$$

- or more succinctly

$$
\text { number of points on } 2\left[\mathbb{P}^{1}\right]-2[\mathbf{X}]=\operatorname{trace}\left(T_{p}\right)
$$

Return to $M=\mathbb{H} / \Gamma$.

- This M has the structure of an algebraic curve over \mathbb{Q}, i.e.

$$
M=\mathbf{X}(\mathbf{C}) \text { for } \mathbf{X} \subset \mathbb{P}_{\mathbb{Q}}^{N}
$$

- Eichler-Shimura relation:

$$
(p+1)-\text { number of points on } \mathbf{X} \bmod p=\frac{\operatorname{trace}\left(T_{p} \mid H^{1}(M ; \mathbb{Q})\right)}{2} .
$$

- or more succinctly

$$
\text { number of points on } 2\left[\mathbb{P}^{1}\right]-2[\mathbf{X}]=\operatorname{trace}\left(T_{p}\right)
$$

- The correct context to take these virtual combinations is the theory of pure motives:
algebraic varieties \hookrightarrow pure motives

Still more remarkable is the conjecture that the same is true also in the case of $M=\mathbb{H}^{3} / \Gamma$,

Still more remarkable is the conjecture that the same is true also in the case of $M=\mathbb{H}^{3} / \Gamma$, i.e. there exist some "motive" X over $\mathbb{Q}(i)$ with

$$
\# \mathbf{X}\left(\mathbf{F}_{p}\right)=\text { trace of } T_{p} \text { on } H^{1}(M ; \mathbb{Q})
$$

Still more remarkable is the conjecture that the same is true also in the case of $M=\mathbb{H}^{3} / \Gamma$, i.e. there exist some "motive" X over $\mathbb{Q}(i)$ with

$$
\# \mathbf{X}\left(\mathbf{F}_{p}\right)=\text { trace of } T_{p} \text { on } H^{1}(M ; \mathbb{Q})
$$

This is much more mysterious; it is known to hold modulo each prime power ℓ^{N} (Harris, Lan, Taylor, Thorne and Scholze).

Still more remarkable is the conjecture that the same is true also in the case of $M=\mathbb{H}^{3} / \Gamma$, i.e. there exist some "motive" X over $\mathbb{Q}(i)$ with

$$
\# \mathbf{X}\left(\mathbf{F}_{p}\right)=\text { trace of } T_{p} \text { on } H^{1}(M ; \mathbb{Q})
$$

This is much more mysterious; it is known to hold modulo each prime power ℓ^{N} (Harris, Lan, Taylor, Thorne and Scholze).

- The traces of T_{p} on H^{1} and H^{2} are the same. So the right hand side cannot be related to a Lefschetz number.

Some things I'm thinking about this year

While Shimura varieties (e.g. \mathbb{H} / Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^{3} / Γ) actually exhibit richer structures in their topology, e.g.:
(a) $\operatorname{tr}\left(T_{p}\right)$ has the same trace on H^{1} and H^{2}, which is explained by

Some things I'm thinking about this year

While Shimura varieties (e.g. \mathbb{H} / Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^{3} / Γ) actually exhibit richer structures in their topology, e.g.:
(a) $\operatorname{tr}\left(T_{p}\right)$ has the same trace on H^{1} and H^{2}, which is explained by
(b) The existence of a derived version of Hecke operators $\tilde{T}: H^{1} \rightarrow H^{2}$, which leads to

Some things I'm thinking about this year

While Shimura varieties (e.g. \mathbb{H} / Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^{3} / Γ) actually exhibit richer structures in their topology, e.g.:
(a) $\operatorname{tr}\left(T_{p}\right)$ has the same trace on H^{1} and H^{2}, which is explained by
(b) The existence of a derived version of Hecke operators $\tilde{T}: H^{1} \rightarrow H^{2}$, which leads to
(c) The need to consider a derived moduli space of Galois representations, which in turn reflects

Some things I'm thinking about this year

While Shimura varieties (e.g. \mathbb{H} / Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^{3} / Γ) actually exhibit richer structures in their topology, e.g.:
(a) $\operatorname{tr}\left(T_{p}\right)$ has the same trace on H^{1} and H^{2}, which is explained by
(b) The existence of a derived version of Hecke operators $\tilde{T}: H^{1} \rightarrow H^{2}$, which leads to
(c) The need to consider a derived moduli space of Galois representations, which in turn reflects
(d) The relationship of M not just to pure motives but to mixed motives.

Some things I'm thinking about this year

While Shimura varieties (e.g. \mathbb{H} / Γ) are far better understood, the general arithmetic locally symmetric spaces (e.g. \mathbb{H}^{3} / Γ) actually exhibit richer structures in their topology, e.g.:
(a) $\operatorname{tr}\left(T_{p}\right)$ has the same trace on H^{1} and H^{2}, which is explained by
(b) The existence of a derived version of Hecke operators $\tilde{T}: H^{1} \rightarrow H^{2}$, which leads to
(c) The need to consider a derived moduli space of Galois representations, which in turn reflects
(d) The relationship of M not just to pure motives but to mixed motives.

In fact there is one case of (d) that has been around for a long time: the algebraic K-theory of \mathbb{Z}, reflecting mixed Tate motives, is related to the stable homology of the $\mathrm{SL}_{n}(\mathbb{Z})$ symmetric space.

