Hodge theory for combinatorial geometries

June Huh

Institute for Advanced Study

September 22, 2015

June Huh 1/14



A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.
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Hassler Whitney (1932): The chromatic polynomial of a graph G is the function

xc(g) = (the number of proper colorings of G with ¢ colors).

Example

xc(q) = 1¢* —4¢® +6¢° —3q, xc(1)=0, xc(2)=2, ...

What can be said about the chromatic polynomial in general?
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Hassler Whitney (1932): The chromatic polynomial of a graph G is the function

xc(g) = (the number of proper colorings of G with ¢ colors).

Example

xc(q) = 1¢* —4¢° +6¢° —3q, xc(1)=0, xc(2)=2, ...

Read’s conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial x z(q)

form a log-concave sequence for any graph G, that is,

a,-2 Z Q;—10Q;+1 for all <.
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Example

How do we compute the chromatic polynomial? We write

e — 0 [ ] [ ] [ ]
L =1 I - I\
e — o e — o e —o
and use
xe(a) = a(g—1)°
xev(q) = q(g—1)(g—2).
Therefore

xc(q) = xa'(q) — xav(q) = 1¢* — 4¢° + 64° — 34.

This algorithmic description of x¢(g) makes the prediction of the conjecture interesting.
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For any finite set of vectors A in a vector space over a field, define

fi(A) = (number of independent subsets of A with size ).

Example
If A is the set of all nonzero vectors in IF3, then

fo=1, A=T7, fo=21, f3=28.
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For any finite set of vectors A in a vector space over a field, define

fi(A) = (number of independent subsets of A with size ).

Example
If A is the set of all nonzero vectors in IF3, then

fo=1, A=T7, fo=21, f3=28.

How do we compute f;(A)? We use

fi(A) = fi(A\ V) + fiea (A ).
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Welsh’s conjecture (1969)
The sequence f; form a log-concave sequence for any finite set of vectors A
in any vector space over any field, that is,

f2 > fii1 fira foralls.
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Hassler Whitney (1935)
Whitney provided axioms for independence, and

defined any finite structure adhering to these axioms to be matroids.

A graph gives a matroid, where a subset of its edges is

“independent” if it does not contain any cycle.

A configuration of vectors gives a matroid, where a subset of vectors is

“independent” if it is linearly independent.

June Huh 7/14



One can define the characteristic polynomial of a matroid by the recursion

xm () = xm\e(q) — Xn/e(q).-

Rota’s conjecture (1970)

The coefficients of the characteristic polynomial x(q) form a log-concave

sequence for any matroid M, that is,

ﬂ? Z Mi—1Mi41 for all z.

This implies the conjecture on G and the conjecture on A.
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Fano matroid is realizable over a field & iff char(k) = 2.

Non-Fano matroid is realizable over a field k iff char(k) # 2.

Non-Pappus matroid is not realizable over any field.

How many matroids are realizable over a field?
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(o] . .
0 /o of matroids are realizable.

In other words, almost all matroids are (conjecturally) not realizable over any field.

Testing the realizability of a matroid over a given field is not easy.

When k& = Q, this is equivalent to Hilbert’s tenth problem over Q.
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In a recent joint work with Karim Adiprasito and Eric Katz, we proved

the log-concavity conjectures in their full generality.

Here are the three fundamental objects that appear in the proof:
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(1) A matroid M can be viewed as a piecewise linear object Ay,

the tropical linear space of M (Ardila-Klivans).
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(1) A matroid M can be viewed as a piecewise linear object Ay,

the tropical linear space of M (Ardila-Klivans).

(2) Any tropical variety A defines a graded ring A*(A), the cohomology ring of A.

(3) The vector space A'(A)r contains a convex cone .#a, the ample cone of A.
p
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Let M be a matroid of rank » + 1.

Main Theorem

Let £ be an element of the ample cone of ¢ and let k < r/2.

(1) Hard Lefschetz: The multiplication by £ defines an isormophism
AY (AR — ATTHAM)R, hr— 7R
(2) Hodge standard: The multiplication by £ defines a definite form of sign (—1)*
PA*(Ay)r x PA*(Ap)r — A"(Ap)rR =R,  (h1,ha) — £ - hy - by,

where PA*(Au)r C A*(Awu)r is the kernel of the multiplication by £7~2*+*.
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Main Theorem

Let £ be an element of the ample cone of ¢ and let k < r/2.

(1) Hard Lefschetz: The multiplication by £ defines an isormophism
AF(Am)R — ATTF(AM)R, h— TR,
(2) Hodge standard: The multiplication by £ defines a definite form of sign (—1)*
PA*(Ay)r x PA*(Ap)r — A"(Ap)rR =R,  (h1,ha) — £ - hy - by,

where PA*(Au)r C A*(Awu)r is the kernel of the multiplication by £7~2*+*.

Why does this imply the log-concavity conjectures? Essentially because

2 . . b
b > ac if and only if ‘ c b

a ‘20.
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Our argument is a good advertisement for tropical geometry to pure combinatorialists:
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Our argument is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on E with the same rank, there is a diagram

“flip” “flip” “flip” “flip”
— = — —0 —

YANY: VAN As VANYZ ,

and each “flip” preserves the validity of the “K&hler package” in their cohomology rings.
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Our argument is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on E with the same rank, there is a diagram

“flip” “flip” “flip” “flip”
— = — —0 —

YANY: VAN As VANYZ ,

and each “flip” preserves the validity of the “K&hler package” in their cohomology rings.

The intermediate objects are tropical varieties with good cohomology rings,

but not in general associated to a matroid (unlike in the case of polytopes).
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