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A graph is a 1-dimensional space, with vertices and edges.

Graphs are the simplest geometric structures.
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Hassler Whitney (1932): The chromatic polynomial of a graph G is the function

�G(q) = (the number of proper colorings of G with q colors):

Example

� �

� �

�G(q) = 1q4 � 4q3 + 6q2 � 3q ; �G(1) = 0; �G(2) = 2; : : :

What can be said about the chromatic polynomial in general?

Read’s conjecture (1968)

The absolute values of the coefficients of the chromatic polynomial �G(q)

form a log-concave sequence for any graph G, that is,

a
2
i � ai�1ai+1 for all i .
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Example

How do we compute the chromatic polynomial? We write

� �

� �
=

� �

� �
-

�

� �

and use

�G0(q) = q(q � 1)3

�G00(q) = q(q � 1)(q � 2):

Therefore
�G(q) = �G0(q)� �G00(q) = 1q4 � 4q3 + 6q2 � 3q :

This algorithmic description of �G(q) makes the prediction of the conjecture interesting.
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For any finite set of vectors A in a vector space over a field, define

fi (A) = (number of independent subsets of A with size i):

Example

If A is the set of all nonzero vectors in F32, then

f0 = 1; f1 = 7; f2 = 21; f3 = 28:

How do we compute fi (A)? We use

fi (A) = fi (A n v) + fi�1(A = v):
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Welsh’s conjecture (1969)

The sequence fi form a log-concave sequence for any finite set of vectors A

in any vector space over any field, that is,

f
2
i � fi�1 fi+1 for all i .
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Hassler Whitney (1935)

Whitney provided axioms for independence, and

defined any finite structure adhering to these axioms to be matroids.

A graph gives a matroid, where a subset of its edges is

“independent” if it does not contain any cycle.

A configuration of vectors gives a matroid, where a subset of vectors is

“independent” if it is linearly independent.
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One can define the characteristic polynomial of a matroid by the recursion

�M (q) = �Mne(q)� �M=e(q):

Rota’s conjecture (1970)

The coefficients of the characteristic polynomial �M (q) form a log-concave

sequence for any matroid M , that is,

�2i � �i�1�i+1 for all i .

This implies the conjecture on G and the conjecture on A.
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Fano matroid is realizable over a field k iff char(k) = 2.

Non-Fano matroid is realizable over a field k iff char(k) , 2.

Non-Pappus matroid is not realizable over any field.

How many matroids are realizable over a field?

June Huh 9 / 14



0% of matroids are realizable.

In other words, almost all matroids are (conjecturally) not realizable over any field.

Testing the realizability of a matroid over a given field is not easy.

When k = Q, this is equivalent to Hilbert’s tenth problem over Q.
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In a recent joint work with Karim Adiprasito and Eric Katz, we proved

the log-concavity conjectures in their full generality.

Here are the three fundamental objects that appear in the proof:
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(1) A matroid M can be viewed as a piecewise linear object �M ,

the tropical linear space of M (Ardila-Klivans).

(2) Any tropical variety � defines a graded ring A�(�), the cohomology ring of �.

(3) The vector space A1(�)R contains a convex cone K�, the ample cone of �.
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Let M be a matroid of rank r + 1.

Main Theorem

Let ` be an element of the ample cone of KM and let k � r=2.

(1) Hard Lefschetz: The multiplication by ` defines an isormophism

A
k (�M )R �! A

r�k (�M )R; h 7�! `r�2k � h :

(2) Hodge standard: The multiplication by ` defines a definite form of sign (�1)k

PA
k (�M )R � PA

k (�M )R �! A
r (�M )R ' R; (h1; h2) 7�! `r�2k � h1 � h2;

where PAk (�M )R � Ak (�M )R is the kernel of the multiplication by `r�2k+1.

Why does this imply the log-concavity conjectures? Essentially because

b
2 � ac if and only if

�
�
�
�

b a

c b

�
�
�
�
� 0:
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Our argument is a good advertisement for tropical geometry to pure combinatorialists:

For any two matroids on E with the same rank, there is a diagram

�M

\ip"
**
�1

\ip"
**
�2

\ip"
))
� � �

\ip"
++
�M 0 ;

and each “flip” preserves the validity of the “Kähler package” in their cohomology rings.

The intermediate objects are tropical varieties with good cohomology rings,

but not in general associated to a matroid (unlike in the case of polytopes).
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