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Part I

History
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Zeta values and Euler’s theorem

Recall the Riemann zeta values

ζ(n) =
∑
k≥1

1

kn
for n ≥ 2

Euler proved that ζ(2) = π2

6 and more generally

ζ(2n) = −B2n

2

(2πi)2n

(2n)!
for n ≥ 1

where Bm is the mth Bernoulli number.

Folklore conjecture

The odd Riemann zeta values ζ(3), ζ(5), ζ(7), . . . are algebraically
independent over Q[π].

Very little is known.
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A nearly complete list of qualitative known results:

1 (Lindemann 1882). The number π is transcendental. In
particular the even values ζ(2n) are irrational.

2 (Apéry 1979). The number ζ(3) is irrational.

3 (Rivoal and Ball-Rivoal, 2000). The vector space spanned by
odd zeta values is infinite-dimensional:

dimQ〈1, . . . , ζ(2n + 1), . . .〉Q =∞

4 (Zudilin, 2001). One out of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational.

It is not known whether ζ(5) /∈ Q, or 1, ζ(2), ζ(3) are linearly
independent over Q, nor is it known if ζ(3) /∈ π3Q.
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2 (Apéry 1979). The number ζ(3) is irrational.

3 (Rivoal and Ball-Rivoal, 2000). The vector space spanned by
odd zeta values is infinite-dimensional:

dimQ〈1, . . . , ζ(2n + 1), . . .〉Q =∞

4 (Zudilin, 2001). One out of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational.

It is not known whether ζ(5) /∈ Q, or 1, ζ(2), ζ(3) are linearly
independent over Q, nor is it known if ζ(3) /∈ π3Q.

4 / 32



A nearly complete list of qualitative known results:

1 (Lindemann 1882). The number π is transcendental. In
particular the even values ζ(2n) are irrational.
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Suppose that we can construct sequences of pairs of rational
numbers an, bn with the following properties:

1 There is a small number 0 < ε < 1 such that

0 <
∣∣anα− bn

∣∣ < εn

for all sufficiently large n.

2 Let dn ∈ N be the common denominator of an, bn:

dnan ∈ Z dnbn ∈ Z

Assume that dn < Dn for some D ∈ R.
3 D is not too big:

Dε < 1

Then α is irrational. It boils down to the following fact:

There is no integer n such that 0 < n < 1

We only need to construct small linear forms in 1 and α whose
denominators are not too big.
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Proof (by contradiction). Suppose that α is rational, α = p
q where

p, q ∈ Z, q > 0. Assumption (1) then becomes

0 <
∣∣an

p

q
− bn

∣∣ < εn for large n

By multiplying through by q and dn, we obtain

0 <
∣∣dnanp − dnbnq

∣∣ < qdnε
n < qDnεn

Since by assumption (3) Dε < 1, the right-hand side tends to zero.
Thus we can find a large n such that

0 <
∣∣ (dnan)︸ ︷︷ ︸
∈Z

p − (dnbn)︸ ︷︷ ︸
∈Z

q
∣∣ < 1

But by (2), this is an integer between 0 and 1, contradiction.
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First example: irrationality of log 2

Let us define

f (x) =
x(1− x)

1 + x
and ω =

dx

1 + x

Consider the family of integrals

In =

∫ 1

0
f (x)nω

By integrating by parts, one can show that

In = rn log 2 + sn

where rn ∈ Z is an integer, and sn ∈ Q with denominator at most

d(n) := lcm (1, 2, . . . , n)
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Theorem (corollary of prime number theorem)

d(n) < en(1+ε) where e = 2.7181 · · ·

Finally, f (x) is positive on the interval (0, 1), and is bounded
above by |f (x)| ≤ max

0<x<1
x(1− x) = 1

4 . Therefore we have

0 < |In| < 4−n

The irrationality criteria apply to the linear forms In, with

ε = 1
4 , D = e

and we check that De ∼ 0.679 · · · < 1 and hence (3) holds.

Corollary : log 2 is irrational

The whole difficulty in this game is to find approximations which
satisfy the assumptions (1), (2), (3).
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Proof of irrationality of ζ(2) (Apéry, following Beukers)

Consider the family of integrals in two variables

In =

∫
0≤x ,y≤1

f nω ,

where f =
x(1− x)y(1− y)

1− xy
and ω =

dxdy

1− xy

One can show that there is an an ∈ Z, bn ∈ Q such that

In = anζ(2) + bn

where the denominator of bn is bounded by d(n)2 ∼ e2n, and

0 < In < εn

where ε = 5
√

5−11
12 . The irrationality of ζ(2) follows since

5
√

5− 11

12
e2 = 0.6627 < 1
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Proof of irrationality of ζ(3) (Apéry, following Beukers)

Consider the family of integrals in three variables:

In =

∫
0≤x ,y ,z≤1

f nω ,

where f =
x(1− x)y(1− y)z(1− z)

1− (1− xy)z
and ω =

dxdydz

1− (1− xy)z

One can show that
In = anζ(3) + bn

where the denominator of bn is bounded by d(n)3 < e3n, and

0 < In < εn

where ε = (
√

2− 1)4. The irrationality of ζ(3) follows since

(
√

2− 1)4e3 = 0.59126 . . . < 1

Many people have tried to construct integrals that give linear
combinations of 1 and ζ(5). The last inequality Dε < 1 fails.
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Irrationality measures

Let α /∈ Q be irrational. The irrationality measure µ(α) is the
infimum of the set of real numbers ν such that∣∣∣α− p

q

∣∣∣ < 1

qν

has only finitely many solutions p, q ∈ Z.

Necessarily µ(α) ≥ 2.

Liouville numbers such as α =
∑

k≥1 10−k! have µ(α) =∞.

Roth’s theorem: if α is algebraic irrational, then µ(α) = 2.

The best known bounds are

µ(ζ(2)) < 5.442 and µ(ζ(3)) < 5.514

are due Rhin and Viola by the group method.
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The group method

Let h, i , j , k , l ≥ 0. Dixon in 1905 considered:∫
0≤x ,y≤1

xh(1− x)iyk(1− y)j

(1− xy)i+j−l

dxdy

1− xy

Rhin and Viola (1996): these give linear forms in 1, ζ(2). It has a
large symmetry group of order 1440, which enables one to improve
estimates of prime factors of denominators.

Rhin and Viola (2007):∫
0≤x ,y ,z≤1

xh(1− x)lyk(1− y)sz j(1− z)q

(1− (1− xy)z)q+h−r

dxdydz

1− (1− xy)z
,

where h, j , k , l , q, r , s ≥ 0 subject to the constraints

j + q = l + s and k + r ≥ h

It gives linear forms in 1, ζ(3) and has group (Z/2Z)4 o Σ5.
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Nesterenko’s criterion for linear independence

Let α1, . . . , αr be real numbers. Suppose that we have linear forms

In = a1
nα1 + . . .+ ar

nαr

such that a1
n are integers and that

|ai
n| ≤ ηn for all i , and large n

lim
n→∞

|In|1/n = ε

where 0 < ε < 1. Then

dimQ〈α1, . . . , αr 〉 > 1− log ε

log η

Idea is now to construct linear forms in 1, ζ(2), ζ(3), . . . , ζ(n) and
apply the above. Unfortunately, the linear forms are not good
enough to prove independence; we already know the subspace

〈1, ζ(2), ζ(4), . . . , ζ(2k)〉Q
has dimension k + 1 by Lindemann. Want to kill ζ(2n)’s.
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The linear forms of Ball and Rivoal

A breakthrough in 2000 was the introduction of very-well poised
hypergeometric series. Fischler (after Zlobin) found the following
integral representation for the linear forms of Ball-Rivoal:∫

[0,1]a−1

∏a−1
j=1 x rn

j (1− xj)
ndxj

(1− x1x2 . . . xa−1)rn+1
∏

2≤2j≤a−2(1− x1x2 . . . x2j)n+1

where n ≥ 0, a ≥ 3 and 1 ≤ r < a
2 are integers.

These integrals give small linear forms in

1, ζ(3), ζ(5), . . . , ζ(a− 1) if a even

1, ζ(2), ζ(4), . . . , ζ(a− 1) if a odd

Applying Nesterenko’s criterion to the first gives: the Ball-Rivoal
theorem on odd zeta values. Applying it to the second gives
another proof of the transcendence of π.
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Picard-Fuchs recurrences

The linear forms occurring in Apéry’s proof are of the form

anζ(3) + bn

where an is the sequence of integers

a1 = 1 , a2 = 5 , a3 = 73 , a4 = 1445 , a5 = 33001

The sequences an and bn are solutions to the recurrence relation:

(n + 1)3un+1 − (34n3 + 51n2 + 27n + 5)un + n3 un−1 = 0

It is remarkable that such a recurrence has a solution which are all
integers! There are numerous interpretations of this recurrence
relation as a Picard-Fuchs equation of a family of varieties.
Interesting connections with modular forms. The coefficients
satisfy many congruence and super-congruence relations . . .
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Part II

Geometry
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Moduli space of curves of genus 0

Let n ≥ 3. The configuration space of n-points in P1 is

Cn = {(z1, . . . , zn) ∈ P1 : zi distinct}

The group PSL2 acts on P1 by projective transformations

z 7→ az + b

cz + d
where

(
a b
c d

)
∈ PSL2 .

It acts diagonally on Cn. The moduli space M0,n of genus 0 curves
with n ordered marked points is the quotient

M0,n = Cn/PSL2 .

We can always put z1 = 0, zN−1 = 1, zN =∞. Therefore M0,n is
the complement of hyperplanes

M0,n = {(t1, . . . , tn−3) ∈ An−3 such that ti 6= 0, 1 and distinct}

I claim that most (possibly all) known irrationality results for zeta
values are related to M0,n(R).
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Examples

For n = 3, M0,3 is just a point.

For n = 4, M0,4
∼= P1\{0, 1,∞}

Here is a picture of M0,5:

0

1

∞

0 1 ∞

The group Σn acts on M0,n by permuting the marked points.
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Connected components of M0,n(R)

The points of M0,n(R) are in one-to-one correspondence with n
distinct marked points on a circle R ∪ {∞} up to automorphisms.

A cell is a connected component of M0,n(R).

Cells M0,n(R)↔ dihedral orderings on {1, . . . , n}
The standard cell is the connected component corresponding to
the standard dihedral ordering δ0 on {1, . . . , n}:

X δ0 = {(t1, . . . , tn−3) ∈ Rn−3 : 0 < t1 < . . . < tn−3 < 1 <∞}

X δ0

1

0

0 1
The symmetric group Σn permutes the set of cells X δ.
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A class of integrals

A class of integrals (periods) of M0,n is given by

I =

∫
X δ0

ω

where ω ∈ Ωn−3(M0,n; Q) is a regular algebraic n − 3-form.

It is a linear combination of integrals∫
0<t1<...<tn−3<1

n−3∏
i=1

tai
i (1− ti )

bi
∏

1≤i<j≤n−3

(ti − tj)
cij dt1 . . . dtn−3

where ai , bi , cij are integers. Assume that it converges.

Theorem (B. 2006)

I is a Q-linear combination of multiple zeta values

ζ(n1, . . . , nr ) =
∑

0<k1<...<kr

1

kn1
1 . . . knr

r

where nr ≥ 2 and n1 + . . .+ nr ≤ n − 3.
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A general construction

The proof of the theorem is effective (algorithms by B.-Bogner, E.
Panzer). In principle it gives bounds, e.g., on denominators.

Now take

In =

∫
X δ0

f nω

where f vanishes along the boundary of X δ0 . Then In tends to zero
very fast as n→∞, and typically we obtain very small linear forms

In = a1
nζ1 + a2

nζ2 + . . .+ ar
nζr

where ζi are multiple zeta values. This gives a huge supply of good
linear forms for which Nesterenko’s condition applies.

We could go a very long way if one could understand:

Vanishing problem

Find conditions on f , ω to force certain coefficients ai
n to vanish.
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Cohomological interpretation

Let M0,n be the Deligne-Mumford-Knudsen compactification. The
singularities of f nω define a boundary divisor A, the Zariski closure
of the boundary of X δ0 defines a boundary divisor B.

The integral I is a period of

m(A,B) = Hn−3(M0,n−3\A,B\(A ∩ B))

If grW2k m(A,B) = 0 then no MZV’s of weight k appear.

Vanishing problem (v2)

Find A,B ⊂M0,n\M0,n such that

grW• m(A,B) = Q(0)⊕Q(6− 2n)

This would certainly give linear forms in 1, ζ(n − 3).

Theorem

This is possible for n = 5 (trivial) and n = 6 (tricky).

I do not know if it is possible for any n ≥ 7.
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Part III

Dinner Parties
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Cellular integrals

Consider two dihedral orderings (δ, δ′) on {1, . . . , n}. They
correspond to two connected components on M0,n(R).

Define an n-form on the configuration space Cn by:

ω̃δ′ = ± dz1 . . . dzn∏
i∈Z/nZ(zδ′i − zδ′i+1

)

It is PSL2-invariant and descends to a form ωδ′ ∈ Ωn−3(M0,n).
Now define a rational function on Cn by:

f̃δ/δ′ = ±
∏

i∈Z/nZ

zδi − zδi+1

zδ′i − zδ′i+1

.

It descends to a rational function fδ/δ′ ∈ Ω0(M0,n).

Define the basic cellular integrals to be

Iδ/δ′(N) =

∫
X δ

f N
δ/δ′ωδ′ for N ≥ 0
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Example:

Let N = 5, and δ = (1, 2, 3, 4, 5), δ′ = (1, 3, 5, 2, 4). Then

f̃δ/δ′(z) =
(z1 − z2)(z2 − z3)(z3 − z4)(z4 − z5)(z5 − z1)

(z1 − z3)(z3 − z5)(z5 − z2)(z2 − z4)(z4 − z1)

Set z1 = 0, z2 = t1, z3 = t2, z4 = 1 and let z5 go to ∞. We get

fδ/δ′(t) =
t1(t1 − t2)(t2 − 1)

t2(1− t1)
and ωδ′ =

dt1dt2
t2(1− t1)

The family of basic cellular integrals are

Iδ/δ′(N) =

∫
0<t1<t2<1

( t1(t1 − t2)(t2 − 1)

t2(1− t1)

)N dt1dt2
t2(1− t1)

They give back exactly the Apéry linear forms in 1, ζ(2).

Warning

The integral Iδ/δ′(N) does not always converge! We want to
understand for which δ, δ′ it converges.
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The dinner table problem

Suppose that we have N guests for dinner, sitting on a round
table. It is boring to talk to the same person for the whole
duration of the meal, so after the main course, we should permute
the guests around in such a way that no-one is sitting next to
someone they previously sat next to.

δ′δ

The first solution is for N = 5, and is unique.
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The enumeration of dinner table seating plans was computed by
Poulet in 1919. We actually need a variant where consecutive
blocks of k guests don’t sit next to each other.

The dinner table problem is k = 2. We need k = bN2 c.

δ′

This seating plan for 8 guests is bad for us: a block of four
consecutive guests 1, 2, 3, 4 (and 5, 6, 7, 8) are sitting together.
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Geometric meaning

The domain of integration is simply the cell X δ. The form ωδ′ has
singularities contained in the boundary of X δ′ . The rational
function fδ/δ′ vanishes along the boundary of X δ and has poles

along the boundary of X δ′ .

Recall that the symmetric group Σn acts on M0,n. Two pairs of
dihedral orderings are equivalent if

(δ, δ′) ∼ (σδ, σδ′) for some σ ∈ Σ

Call the equivalence class a configuration. Equivalent
configurations give the same cellular integrals. A configuration
(δ, δ′) is convergent if I N

δ/δ′ is finite for all N.

We can always assume that δ = δ0 from now on.
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along the boundary of X δ′ .

Recall that the symmetric group Σn acts on M0,n. Two pairs of
dihedral orderings are equivalent if

(δ, δ′) ∼ (σδ, σδ′) for some σ ∈ Σ
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Linear forms in multiple zeta values

As N →∞, the integrals Iδ/δ′(N) tend to zero very fast. By a
previous theorem, they give linear forms in multiple zeta values.

Observation

The multiple zeta values of sub-maximal weight always vanish.

Enumeration of convergent configurations:

N 4 5 6 7 8 9 10 11

# 0 1 1 5 17 105 771 7028

Theorem

For N = 5, 6 there is a unique class of convergent configurations.
The basic cellular integrals give back exactly Apéry’s proofs of the
irrationality of ζ(2) and ζ(3), respectively.

Starting with N = 8 we find linear forms involving products such
as ζ(2)ζ(3) as well as ζ(5).
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Ball-Rivoal’s theorem and Lindemann’s theorem

Theorem

Let m ≥ 3. The family of convergent configurations (δ0, π)

πm
odd = (2m, 2, 2m − 1, 3, 2m − 2, 4, . . . ,m, 1,m + 1)

gives Ball-Rivoal’s forms in 1, ζ(3), ζ(5), . . . , ζ(2m− 3). The family

πm
even = (2m + 1, 2, 2m, 3, 2m − 1, 4, . . . ,m + 2, 1,m + 1)

gives back their linear forms in 1, ζ(2), ζ(4), . . . , ζ(2m − 2).

There appears to be a whole zoo of configurations with interesting
vanishing properties. For instance, the dual configuration
(πm

odd , δ0) ∼ (δ0, (π
m
odd)−1) yields new linear forms in

1, π2, π4, . . . , π2m−6, ζ2m−3

Can one do a p-adic or single-valued version to kill the π2n’s?
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Generalised cellular integrals

We can introduce parameters into the cellular integrals by

f̃δ/δ′ = ±
∏

i∈Z/nZ

(zδi − zδi+1
)ai,i+1

(zδ′i − zδ′i+1
)bi,i+1

where ai ,i+1, bi ,i+1 are integers chosen such that the expression is
homogeneous in each zi . Each basic cellular integral on M0,n

spawns a large family of integrals with n parameters.

Theorem

The generalised cellular integrals, for N = 5 and N = 6 are
equivalent to Rhin and Viola’s integrals for ζ(2) and ζ(3).

The dinner party game generates all irrationality results.

The generalised integrals for πm
odd give a huge family of integrals

that appears to give linear forms in odd zetas, with a rich
symmetry group. Can one improve on Ball-Rivoal’s theorem?
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Picard-Fuchs recurrences

Every family of basic cellular integrals Iπ(N) satisfies a
Picard-Fuchs recurrence equation. Some properties:

1 (Poincaré duality). The family Iπ∨ of the dual configuration
π∨ satisfies the dual (homogeneous) Picard-Fuchs equation.

2 (Products). Given certain π1, π2, one can find (several)
convergent configurations π such that

Iπ(N) = Iπ1(N)Iπ2(N) for all N ≥ 0

This gives a partial multiplication law.

3 (Relations). Sometimes, for non-equivalent π, π′ we have

Iπ(N) = Iπ′(N) for all N ≥ 0

When does this happen?
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