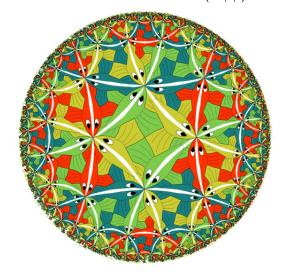
A Plateau problem at infinity in $\mathbf{H}^2 \times \mathbf{R}$

Magdalena Rodríguez

Joint work with Leonor Ferrer, Rafe Mazzeo and Francisco Martín

Princeton, 7th November 2018

$$\mathbb{H}^2 = \{r = |z| < 1\}, \qquad g_{-1} = \frac{4}{(1-|z|^2)^2} |dz|^2$$



Question 1

Given $\Gamma: \partial_{\infty} \mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$ cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma$?

Nelli and Rosenberg, 2002 $\rightsquigarrow \exists M = \text{vertical graph (+ uniqueness)}$

Kloeckner and Mazzeo, 2017 → regularity up to the boundary

Question 1

Given $\Gamma: \partial_{\infty} \mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$ cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma$?

Nelli and Rosenberg, 2002 $\rightsquigarrow \exists M = \text{vertical graph } (+ \text{uniqueness})$

Kloeckner and Mazzeo, 2017 → regularity up to the boundary

Question 1

Given $\Gamma: \partial_{\infty} \mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$ cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma$?

Nelli and Rosenberg, 2002 $\rightsquigarrow \exists M = \text{vertical graph (+ uniqueness)}$

Kloeckner and Mazzeo, 2017 \rightsquigarrow regularity up to the boundary

Question 2

Given $\Gamma^{\pm}: \partial_{\infty}\mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty}\mathbb{H}^2 \times \mathbb{R}$ cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma^- \cup \Gamma^+$?

Simplest topology $\rightsquigarrow M = \text{annuli}$ Prop. emb. $\rightsquigarrow \Gamma^- < \Gamma^+$

Question 2

Given
$$\Gamma^{\pm}: \partial_{\infty}\mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty}\mathbb{H}^2 \times \mathbb{R}$$
 cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma^- \cup \Gamma^+$?

Simplest topology $\rightsquigarrow M = \text{annuli}$

Prop. emb.
$$\rightsquigarrow \Gamma^- < \Gamma^+$$

Question 2

Given $\Gamma^{\pm}: \partial_{\infty}\mathbb{H}^2 \equiv \mathbb{S}^1 \to \partial_{\infty}\mathbb{H}^2 \times \mathbb{R}$ cont., $\exists M \subset \mathbb{H}^2 \times \mathbb{R}$ prop. emb. min. sup. s.t. $\partial_{\infty} M = \Gamma^- \cup \Gamma^+$?

Simplest topology $\rightsquigarrow M = \text{annuli}$

Prop. emb. $\leadsto \Gamma^- < \Gamma^+$

Known examples

Vertical catenoids (Nelli-Rosenberg, 2002), $\Gamma^+ - \Gamma^- < \pi$

Nelli- Sa Earp- Toubiana (2015) → uniqueness

Known examples

Vertical catenoids (Nelli-Rosenberg, 2002), $\Gamma^+ - \Gamma^- < \pi$

Nelli- Sa Earp- Toubiana (2015) → uniqueness

An important property

Proposition

Let A be a prop. emb. min annulus s.t. $\partial_{\infty}A = \Gamma^- \cup \Gamma^+$. Then neighborhoods of the ends of A are vertical graphs.

Ideas by Collin, Hauswirth and Rosenberg "Slab Theorem" using "Dragging Lemma"

An important property

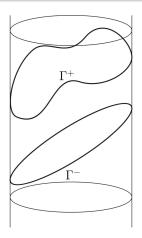
Proposition

Let A be a prop. emb. min annulus s.t. $\partial_{\infty}A = \Gamma^- \cup \Gamma^+$. Then neighborhoods of the ends of A are vertical graphs.

Ideas by Collin, Hauswirth and Rosenberg "Slab Theorem" using "Dragging Lemma"

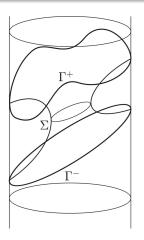
Theorem

 $\Gamma^+ - \Gamma^- > \pi \ \Rightarrow
ot \exists A \ prop. \ emb. \ min. \ annulus \ s.t. \ \partial_\infty A = \Gamma^- \cup \Gamma^+$



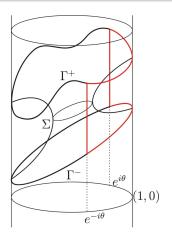
Theorem

 $\Gamma^+ - \Gamma^- > \pi \ \Rightarrow
ot \exists A \ prop. \ emb. \ min. \ annulus \ s.t. \ \partial_\infty A = \Gamma^- \cup \Gamma^+$



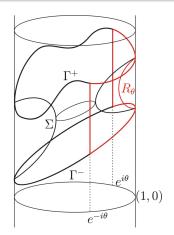
Theorem

 $\Gamma^+ - \Gamma^- > \pi \ \Rightarrow \not\exists A \ \textit{prop. emb. min. annulus s.t.} \ \partial_\infty A = \Gamma^- \cup \Gamma^+$



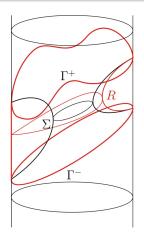
Theorem

 $\Gamma^+ - \Gamma^- > \pi \ \Rightarrow \not\exists A \ \textit{prop. emb. min. annulus s.t.} \ \partial_\infty A = \Gamma^- \cup \Gamma^+$



Theorem

 $\Gamma^+ - \Gamma^- > \pi \ \Rightarrow \not\exists A \ \textit{prop. emb. min. annulus s.t.} \ \partial_\infty A = \Gamma^- \cup \Gamma^+$

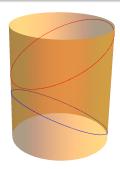


Proposition

Sup. $\exists A$ prop. emb. min. annulus s.t. $\partial_{\infty}A = \Gamma^- \cup \Gamma^+$ and $\exists \theta_1 < \theta_2 \in [0, 2\pi)$ s.t.:

- Γ^+ decreasing in (θ_1, θ_2) and increasing in $(\theta_2, \theta_1 + 2\pi)$.
- Γ^- increasing in (θ_1, θ_2) and decreasing in $(\theta_2, \theta_1 + 2\pi)$.

Then Γ^{\pm} horizontal and A is a vertical catenoid.



Space of annuli and projection map

$$\mathcal{B} = \{ (\Gamma^-, \Gamma^+) \subset (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \mid 0 < \Gamma^+ - \Gamma^- < \pi \}$$

$$\mathcal{A} = \{ A \subset \mathbb{H}^2 \times \mathbb{R} \text{ prop. emb. min. annulus } | \ \partial_\infty A \in \mathcal{B} \}$$

$$\Pi : \ \mathcal{A} \ \rightarrow \ \mathcal{B} \ (\Pi \text{ is not onto})$$

$$A \ \mapsto \ \partial_\infty A$$

Theorem

 \mathcal{A} is a Banach submanifold in the space of prop. emb. surf. in $\mathbb{H}^2 \times \mathbb{R}$ and Π is Fredholm of index 0.

Space of annuli and projection map

$$\mathcal{B} = \{ (\Gamma^-, \Gamma^+) \subset (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \mid 0 < \Gamma^+ - \Gamma^- < \pi \}$$

$$\mathcal{A} = \{ A \subset \mathbb{H}^2 \times \mathbb{R} \text{ prop. emb. min. annulus } | \ \partial_\infty A \in \mathcal{B} \}$$

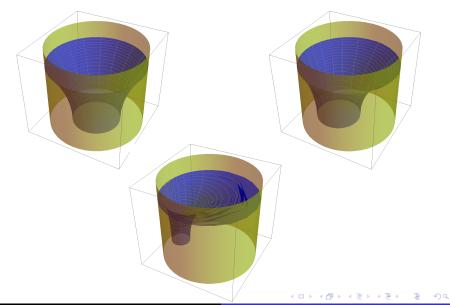
$$\Pi : \ \mathcal{A} \ \rightarrow \ \mathcal{B} \qquad (\Pi \text{ is not onto})$$

$$A \ \mapsto \ \partial_\infty A$$

Theorem

 \mathcal{A} is a Banach submanifold in the space of prop. emb. surf. in $\mathbb{H}^2 \times \mathbb{R}$ and Π is Fredholm of index 0.

П is not proper



$$\{A_n\}\subset \mathcal{A} \text{ s.t. } \Pi(A_n)=(\Gamma_n^-,\Gamma_n^+) o (\Gamma^-,\Gamma^+) \in \mathcal{B}, \ A_n o \textbf{?}$$

- \bigcirc q_n , R_n independent of n
- ② R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$$\{A_n\}\subset \mathcal{A} \text{ s.t. } \Pi(A_n)=(\Gamma_n^-,\Gamma_n^+) o (\Gamma^-,\Gamma^+) \in \mathcal{B}, \ A_n o ?$$

- \bigcirc q_n , R_n independent of n
- ② R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$$\{A_n\}\subset \mathcal{A} \text{ s.t. } \Pi(A_n)=(\Gamma_n^-,\Gamma_n^+) o (\Gamma^-,\Gamma^+) \in \mathcal{B}, \ A_n o ?$$

- $\mathbf{0}$ q_n , R_n independent of n
- ② R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$$\{A_n\}\subset \mathcal{A} \text{ s.t. } \Pi(A_n)=(\Gamma_n^-,\Gamma_n^+)\to (\Gamma^-,\Gamma^+)\in \mathcal{B}, \ A_n\to \textbf{?}$$

- $\mathbf{0}$ q_n , R_n independent of n
- ② R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$$\{A_n\}\subset \mathcal{A} \text{ s.t. } \Pi(A_n)=(\Gamma_n^-,\Gamma_n^+) o (\Gamma^-,\Gamma^+) \in \mathcal{B}, \ A_n o ?$$

- $\mathbf{0}$ q_n , R_n independent of n
- ② R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^{\pm} \to u^{\pm}$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^{\pm} \to u^{\pm}$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^{\pm} \to u^{\pm}$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^\pm \to u^\pm$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^\pm \to u^\pm$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\leadsto u_n^\pm \to u^\pm$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem

In case 1, $A_n \to A \in \mathcal{A}$ (subsequence) and $\Pi(A) = (\Gamma^-, \Gamma^+)$.

Proof:

Elliptic estim. + Arzelà-Ascoli Th. $\rightsquigarrow u_n^{\pm} \to u^{\pm}$ on $\mathbb{H}^2 \setminus B(q,R)$ $\Rightarrow M_n = A_n \cap (B(q,R) \times \mathbb{R})$ are compact annuli with ∂M_n locally uniformly bounded and the area blowup set Z of A_n lies in the solid cylinder.

Take $C \subset (\mathbb{H}^2 \setminus \overline{B(q,R)}) \times \mathbb{R}$ catenoid symmetric w.r.t. $\mathbb{H}^2 \times \{t_0\}$ and the continuous family of catenoids going from C to $\mathbb{H}^2 \times \{t_0\}$ By White's Th., $Z \cap (\mathbb{H}^2 \times \{t_0\}) = \emptyset$

CASE 1: $q_n = q \in \mathbb{H}^2$, $R_n = R > 0$, independent of n

Theorem (White)

 $\{M_n\} \subset \mathbb{H}^2 \times \mathbb{R}$ prop. embeb. min. surf. Sup. the area and genus of M_n are uniformly bounded indep. of n. Then (a subseq.) M_n converge to a prop. embeb. min. surf. M. Moreover, for each c.c. Σ of M either:

- lacktriangledown the convergence to Σ is smooth with multiplicity one, or
- 2 the convergence to Σ is smooth (with some multiplicity > 1) away from a discrete set.

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

Theorem

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof

Since $\mathbb{H}^2 \setminus B(q_n,R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n\setminus (B(0,R) imes \mathbb{R})$ union of 2 graphs $\Rightarrow \Sigma_n o C=$ annulus bounded by $\mathbb{H}^2 imes \{t^\pm\}$

 \Rightarrow C is a catenoid

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

Theorem

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n, R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs $\Rightarrow \Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

Theorem

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n,R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs $\Rightarrow \Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$ $\Rightarrow C$ is a catenoid

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$\mathsf{Theorem}$

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n, R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs $\Rightarrow \Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$ $\Rightarrow C$ is a catenoid

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

Theorem

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n, R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs

- \Rightarrow $\Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$
- \Rightarrow C is a catenoic

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

Theorem

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n, R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs $\Rightarrow \Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$ $\Rightarrow C$ is a catenoid

CASE 2: R_n independent of n, $q_n \to q_\infty \in \partial_\infty \mathbb{H}^2$

$\mathsf{Theorem}$

In case 2, $A_n \to D^- \cup D^+$, min. graphs bounded by Γ^\pm , together with a vertical segment joining $(q_\infty, t^-) \in \Gamma^-$ to $(q_\infty, t^+) \in \Gamma^+$. $T_n = hyp.$ transl. mapping q_n to $0 \Rightarrow \Sigma_n = T_n(A_n) \to C$ a catenoid. In particular, $t^+ - t^- < \pi$.

Proof:

Since $\mathbb{H}^2 \setminus B(q_n, R) \to \mathbb{H}^2$, $u_n^{\pm} \to u^{\pm}$ entire minimal graphs. By uniqueness, $A_n \to D^- \cup D^+$.

 Σ_n annulus and $\Sigma_n \setminus (B(0,R) \times \mathbb{R})$ union of 2 graphs

- \Rightarrow $\Sigma_n \to C =$ annulus bounded by $\mathbb{H}^2 \times \{t^{\pm}\}$
- \Rightarrow C is a catenoid

CASE 3:
$$R_n \to +\infty$$

Theorem

In case 3, $\exists \ell \subset \partial_\infty \mathbb{H}^2 \times \mathbb{R}$ vertical segment in the limit set of A_n s.t. $\exists p_n \in A_n$ with hor. normal vector converging to a point in ℓ and $T_n = hyp$. transl. mapping p_n to $(0, t_n) \Rightarrow \Sigma_n = T_n(A_n) \to \Sigma =$ generalized catenoid. In particular, length $(\ell) = \pi$.

CASE 3: $R_n \to +\infty$

Theorem

In case 3, $\exists \ell \subset \partial_\infty \mathbb{H}^2 \times \mathbb{R}$ vertical segment in the limit set of $A_n s.t.$ $\exists p_n \in A_n$ with hor. normal vector converging to a point in ℓ and $T_n = hyp.$ transl. mapping p_n to $(0, t_n) \Rightarrow \Sigma_n = T_n(A_n) \to \Sigma =$ generalized catenoid. In particular, $length(\ell) = \pi$.

CASE 3: $R_n \to +\infty$

Theorem

In case 3, $\exists \ell \subset \partial_\infty \mathbb{H}^2 \times \mathbb{R}$ vertical segment in the limit set of $A_n s.t.$ $\exists p_n \in A_n$ with hor. normal vector converging to a point in ℓ and $T_n = hyp.$ transl. mapping p_n to $(0, t_n) \Rightarrow \Sigma_n = T_n(A_n) \to \Sigma =$ generalized catenoid. In particular, $length(\ell) = \pi$.

 $G \subset \mathsf{Isom}(\mathbb{H}^2 \times \mathbb{R})$ finite group leaving invariant some catenoid C.

Sup. no element of $\mathcal{J}^0(C)$ is left invariant by G.

 $\mathcal{J}^0(C)$ is spanned by $\varphi_1 = \left(\frac{1}{r} - r\right) \cos\theta$ and $\varphi_2 = \left(\frac{1}{r} - r\right) \sin\theta$, generated by hyperbolic translations

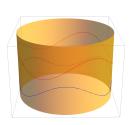
 $G \subset \mathsf{Isom}(\mathbb{H}^2 \times \mathbb{R})$ finite group leaving invariant some catenoid C.

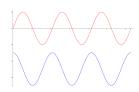
Sup. no element of $\mathcal{J}^0(C)$ is left invariant by G.

$$\mathcal{J}^0(C)$$
 is spanned by $\varphi_1=\left(\frac{1}{r}-r\right)\cos\theta$ and $\varphi_2=\left(\frac{1}{r}-r\right)\sin\theta$, generated by hyperbolic translations

Example:

 $G=\langle R_k \rangle$, $R_k=$ rotation by $2\pi/k$ around the axis of C, $k\geq 2$





$$\begin{split} \mathcal{B}_G &= \{ \Gamma = (\Gamma^-, \Gamma^+) \in \mathcal{B}, \ \text{G-invariant} \} \\ \mathcal{A}_G &= \{ A \in \mathcal{A}, \ \text{G-invariant} \}, \quad \Pi_G = \Pi|_{\mathcal{A}_G} \end{split}$$

Theorem

 Π_G is onto, i.e. $\forall \Gamma \in \mathcal{B}_G$, $\exists A \in \mathcal{A}_G$ s.t. $\Pi(A) = \Gamma$.

Proof:

 \mathcal{B}_G and \mathcal{A}_G are Banach manifolds and Π_G is Fredholm of index 0.

Boundary cond. avoids case 3; symmetry avoids case 2. $\{A_n\}$ in case $1 \Rightarrow A_n \rightarrow A = G$ -invariant, $\Pi(A) = \Gamma$.

 Π_G has a well-defined \mathbb{Z} -valued degree

$$\deg(\Pi_G) = \sum_{A \in \Pi_G^{-1}(\Gamma)} (-1)^{\mathsf{index}(A)}$$

$$\begin{array}{l} \mathcal{B}_{G} = \{\Gamma = (\Gamma^{-}, \Gamma^{+}) \in \mathcal{B}, \ \text{G-invariant}\} \\ \mathcal{A}_{G} = \{A \in \mathcal{A}, \ \text{G-invariant}\}, \quad \Pi_{G} = \Pi|_{\mathcal{A}_{G}} \end{array}$$

Theorem

 Π_G is onto, i.e. $\forall \Gamma \in \mathcal{B}_G$, $\exists A \in \mathcal{A}_G$ s.t. $\Pi(A) = \Gamma$.

Proof:

 \mathcal{B}_G and \mathcal{A}_G are Banach manifolds and Π_G is Fredholm of index 0.

Moreover, Π_G is proper: $\{A_n\}\subset \mathcal{A}_G$ s.t. $\Pi(A_n) o \Gamma\in \mathcal{B}_G$.

Boundary cond. avoids case 3; symmetry avoids case 2 $\{A_n\}$ in case $1 \Rightarrow A_n \rightarrow A = G$ -invariant, $\Pi(A) = \Gamma$.

 Π_G has a well-defined \mathbb{Z} -valued degree

$$\deg(\Pi_G) = \sum_{A \in \Pi_G^{-1}(\Gamma)} (-1)^{\mathsf{index}(A)}$$

$$\begin{array}{l} \mathcal{B}_{G} = \{\Gamma = (\Gamma^{-}, \Gamma^{+}) \in \mathcal{B}, \ \text{G-invariant}\} \\ \mathcal{A}_{G} = \{A \in \mathcal{A}, \ \text{G-invariant}\}, \quad \Pi_{G} = \Pi|_{\mathcal{A}_{G}} \end{array}$$

Theorem

 Π_G is onto, i.e. $\forall \Gamma \in \mathcal{B}_G$, $\exists A \in \mathcal{A}_G$ s.t. $\Pi(A) = \Gamma$.

Proof:

 $\mathcal{B}_{\textit{G}}$ and $\mathcal{A}_{\textit{G}}$ are Banach manifolds and $\Pi_{\textit{G}}$ is Fredholm of index 0.

Moreover, Π_G is proper: $\{A_n\} \subset \mathcal{A}_G$ s.t. $\Pi(A_n) \to \Gamma \in \mathcal{B}_G$.

Boundary cond. avoids case 3; symmetry avoids case 2. $\{A_n\}$ in case $1 \Rightarrow A_n \rightarrow A = G$ -invariant, $\Pi(A) = \Gamma$.

 Π_G has a well-defined \mathbb{Z} -valued degree

$$\deg(\Pi_G) = \sum_{A \in \Pi_G^{-1}(\Gamma)} (-1)^{\mathsf{index}(A)}$$

$$\mathcal{B}_G = \{ \Gamma = (\Gamma^-, \Gamma^+) \in \mathcal{B}, \ G\text{-invariant} \}$$

$$\mathcal{A}_G = \{ A \in \mathcal{A}, \ G\text{-invariant} \}, \quad \Pi_G = \Pi|_{\mathcal{A}_G}$$

Theorem

 Π_G is onto, i.e. $\forall \Gamma \in \mathcal{B}_G$, $\exists A \in \mathcal{A}_G$ s.t. $\Pi(A) = \Gamma$.

Proof:

 \mathcal{B}_{G} and \mathcal{A}_{G} are Banach manifolds and Π_{G} is Fredholm of index 0.

Moreover, Π_G is proper: $\{A_n\} \subset \mathcal{A}_G$ s.t. $\Pi(A_n) \to \Gamma \in \mathcal{B}_G$.

Boundary cond. avoids case 3; symmetry avoids case 2.

$$\{A_n\}$$
 in case $1\Rightarrow A_n o A=G$ -invariant, $\Pi(A)=\Gamma$.

 Π_G has a well-defined \mathbb{Z} -valued degree

$$\deg(\Pi_G) = \sum_{A \in \Pi_G^{-1}(\Gamma)} (-1)^{\mathsf{index}(A)}$$

 $\mathcal{J}^0(C)$ is spanned by $\varphi_1=\left(\frac{1}{r}-r\right)\cos\theta$ and $\varphi_2=\left(\frac{1}{r}-r\right)\sin\theta$, generated by hyperbolic translations

- \Rightarrow in this context, C is nondegenerate
- ⇒ Implicit Function Th. gives us local existence.

A neighborhood of C in \mathcal{A}_G projects diffeomorphically to a neighborhood \mathcal{U} in \mathcal{B}_G .

Sard-Smale Th. $\Rightarrow \exists \Gamma \in \mathcal{U} \text{ reg. val. of } \Pi_G \text{ s.t. } \Pi_G^{-1}(\Gamma) \neq \emptyset.$

 $\partial_{\infty}C$ bounds only $C \Rightarrow \deg(\Pi_G) = \pm 1 \neq 0$.

 $\mathcal{J}^0(C)$ is spanned by $\varphi_1 = \left(\frac{1}{r} - r\right) \cos\theta$ and $\varphi_2 = \left(\frac{1}{r} - r\right) \sin\theta$, generated by hyperbolic translations

- \Rightarrow in this context, C is nondegenerate
- ⇒ Implicit Function Th. gives us local existence.

A neighborhood of C in A_G projects diffeomorphically to a neighborhood $\mathcal U$ in $\mathcal B_G$.

Sard-Smale Th. $\Rightarrow \exists \Gamma \in \mathcal{U} \text{ reg. val. of } \Pi_G \text{ s.t. } \Pi_G^{-1}(\Gamma) \neq \emptyset.$

 $\partial_{\infty} C$ bounds only $C \Rightarrow \deg(\Pi_G) = \pm 1 \neq 0$.

 $\mathcal{J}^0(C)$ is spanned by $\varphi_1 = \left(\frac{1}{r} - r\right) \cos\theta$ and $\varphi_2 = \left(\frac{1}{r} - r\right) \sin\theta$, generated by hyperbolic translations

- \Rightarrow in this context, C is nondegenerate
- ⇒ Implicit Function Th. gives us local existence.

A neighborhood of C in \mathcal{A}_G projects diffeomorphically to a neighborhood \mathcal{U} in \mathcal{B}_G .

Sard-Smale Th. $\Rightarrow \exists \Gamma \in \mathcal{U} \text{ reg. val. of } \Pi_G \text{ s.t. } \Pi_G^{-1}(\Gamma) \neq \emptyset.$

 $\partial_{\infty}C$ bounds only $C \Rightarrow \deg(\Pi_G) = \pm 1 \neq 0$.

Open problem

Open problem

Sharp conditions for the existence of this Plateau problem at infinity?

 $A \in \mathcal{A}^*$ if A is proper, Alexandrov embedded min. annulus with embedded ends and

$$u_r^-(1,\theta) - v_r^-(1,\theta) < 0, \quad \forall \theta \in \mathbb{S}^1$$

where u^- is the graph parametrizing the bottom end of A and v^- is the entire minimal graph bounded by Γ^-

$$\widetilde{\Pi}: \mathcal{A}^* \times \mathbb{R} \times \mathbb{C} \to (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \times \mathbb{R} \times \mathbb{C}$$

$$\widetilde{\Pi}(A,a,z) = \left(\Gamma^-, \Gamma^+ + a + \operatorname{Re}(ze^{i\theta}), G_0(A), G(A)\right)$$
where $G_0(A) = f_0(A) - f_0(A)^{-1}$,
$$f_0(A) = \operatorname{Flux}(A, \Gamma^-, \partial_t) = \int_{\mathbb{S}^1} u_r^-(1,\theta) d\theta$$
and $G(A) = \frac{1}{f_0(A)} \int_{\mathbb{S}^1} e^{i\theta} \left(u_r^-(1,\theta) - v_r^-(1,\theta)\right) d\theta \in \mathbb{H}^2$
is called the **center** of A

$$\widetilde{\Pi}: \mathcal{A}^* \times \mathbb{R} \times \mathbb{C} \to (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \times \mathbb{R} \times \mathbb{C}$$

$$\widetilde{\Pi}(A,a,z) = \left(\Gamma^-, \Gamma^+ + a + \operatorname{Re}(ze^{i\theta}), G_0(A), G(A)\right)$$
where $G_0(A) = f_0(A) - f_0(A)^{-1}$,
$$f_0(A) = \operatorname{Flux}(A, \Gamma^-, \partial_t) = \int_{\mathbb{S}^1} u_r^-(1,\theta) \mathrm{d}\theta$$
and $G(A) = \frac{1}{f_0(A)} \int_{\mathbb{S}^1} e^{i\theta} \left(u_r^-(1,\theta) - v_r^-(1,\theta)\right) \mathrm{d}\theta \in \mathbb{H}^2$
is called the center of A

$$\widetilde{\Pi}: \mathcal{A}^* \times \mathbb{R} \times \mathbb{C} \to (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \times \mathbb{R} \times \mathbb{C}$$

$$\widetilde{\Pi}(A,a,z) = \left(\Gamma^-, \Gamma^+ + a + \operatorname{Re}(ze^{i\theta}), G_0(A), G(A)\right)$$
where $G_0(A) = f_0(A) - f_0(A)^{-1}$,
$$f_0(A) = \operatorname{Flux}(A, \Gamma^-, \partial_t) = \int_{\mathbb{S}^1} u_r^-(1,\theta) \mathrm{d}\theta$$
and $G(A) = \frac{1}{f_0(A)} \int_{\mathbb{S}^1} e^{i\theta} \left(u_r^-(1,\theta) - v_r^-(1,\theta)\right) \mathrm{d}\theta \in \mathbb{H}^2$
is called the **center** of A .

$$\widetilde{\mathcal{A}}^* = \widetilde{\Pi}^{-1}\left((\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \times \mathbb{R} \times \mathbb{H}^2\right)$$

$\mathsf{Theorem}$

The map $\widetilde{\Pi}:\widetilde{\mathcal{A}^*}\times\mathbb{R}\times\mathbb{C}\to(\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2\times\mathbb{R}\times\mathbb{H}^2$ is:

- Locally invertible near any catenoid.
- ② A proper Fredholm map of index 0 and degree ± 1 .

In particular, $\forall (\Gamma^-, \Gamma^+) \in (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2$, there exist constants a_0, a_1, a_2 s.t. $(\Gamma^-, \Gamma^+ + a_0 + a_1 \cos \theta + a_2 \sin \theta)$ bound a proper Alexandrov-embedded min. annulus with embedded ends.

Remark

We can prescribe one of the boundary curves, the vertical flux and the center of the neck.

$$\widetilde{\mathcal{A}}^* = \widetilde{\Pi}^{-1}\left((\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2 \times \mathbb{R} \times \mathbb{H}^2\right)$$

Theorem

The map $\widetilde{\Pi}:\widetilde{\mathcal{A}^*}\times\mathbb{R}\times\mathbb{C}\to(\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2\times\mathbb{R}\times\mathbb{H}^2$ is:

- Locally invertible near any catenoid.
- **2** A proper Fredholm map of index 0 and degree ± 1 .

In particular, $\forall (\Gamma^-, \Gamma^+) \in (\mathcal{C}^{2,\alpha}(\mathbb{S}^1))^2$, there exist constants a_0, a_1, a_2 s.t. $(\Gamma^-, \Gamma^+ + a_0 + a_1 \cos \theta + a_2 \sin \theta)$ bound a proper Alexandrov-embedded min. annulus with embedded ends.

Remark

We can prescribe one of the boundary curves, the vertical flux and the center of the neck.

