Floer theory in spaces of stable pairs over Riemann surfaces

 $\label{eq:total_continuity} \mbox{Tim Perutz (UT Austin/IAS)} \\ \mbox{Joint work with Andrew Lee (UT Austin \rightarrow UC Santa Cruz)}$

Princeton/IAS Symplectic Geometry Seminar May 4, 2017

Moduli spaces associated with Riemann surfaces

Let Z be a closed Riemann surface. Among the gauge-theoretic moduli spaces M(Z) associated with it, those that are intrinsically compact Kähler manifolds include

- N_d^b , the projectively flat connections in a U(2)-bundle of odd degree d.
 - Sending a connection A to the holomorphic structure defined by $\overline{\partial}_A$ defines a biholomorphic map to the moduli space N^{ss} of rank 2 semistable vector bundles.
- $V_{L,\tau}$, the space of *vortices* in a hermitian line bundle $L \to Z$ of degree d:

$$(A,\phi): \overline{\partial}_A \phi = 0, \quad iF_A + |\phi|^2 \eta = \tau \eta.$$

 $(\eta \text{ is a fixed area form on } Z \text{ with } \int_Z \eta = 1, \text{ and } \tau > 0).$ $\overline{\partial}_A$ defines a holomorphic structure in L making ϕ a holomorphic section, so we get a map

$$V_{L,\tau} \to \operatorname{Sym}^d Z, \quad [A,\phi] \mapsto \phi^{-1}(0).$$

This map is biholomorphic for $\tau > 2\pi d$. The resulting Kähler form on $\operatorname{Sym}^d(Z)$ lies in a class varying affine-linearly with τ .

Rank 2 vortices

- A holomorphic pair is a holomorphic vector bundle $V \to Z$, together with a non-trivial holomorphic section ϕ . Numerical parameters (r,d)=(rank, degree). Sym^d(Z) is a fine moduli space of (1,d) holomorphic pairs.
- $V_{E,\tau}$, the space of *vortices* in a hermitian \mathbb{C}^2 -bundle $E \to Z$:

$$(A,\phi): \quad \overline{\partial}_A \phi = 0, \quad iF_A + \frac{1}{2}(\phi \otimes \phi^*)\eta = \frac{1}{2}\tau\eta \operatorname{Id}.$$

 η is a fixed area form on Z, normalized to have total area 1, and $\tau > 0$.

• Bradlow (1990), Bradlow–Daskalopoulos (1993): $V_{E,\tau}$ is a compact Kähler manifold, and the map

$$V_{L,\tau} \to \{(2,d) \text{ holomorphic pairs}\}, \quad [A,\phi] \mapsto [\overline{\partial}_A,\phi]$$

is biholomorphic onto the coarse moduli space of (2, d) σ -semistable pairs, $\sigma = \frac{d}{2} - \tau$.

Stable pairs

- Fix $\sigma > 0$. A (rank, degree) = (2, d) holomorphic pair (E, ϕ) is called σ -semistable if, for all line bundles $F \subset E$,
 - **1** deg $F \leq \frac{d}{2} + \sigma$; and moreover

It's σ -stable if we can sharpen \leq to <.

- There are coarse moduli spaces $M_{d,\sigma}$, fine for most σ . We fix a fiber Λ of the determinant submersion $\det\colon M_{d,\sigma} \to \operatorname{Pic}^d(Z), \ [E,\phi] \mapsto \Lambda^2 E$, to define $M_{\Lambda,\sigma}$.
- Thaddeus (1992) gives a precise and beautiful description of the moduli spaces $M_{\Lambda,\sigma}$ which I'll review shortly.
- The compact Kähler manifolds $M_{\Lambda,\sigma}$ are the subject of this lecture.

Gauge theory vs. symplectic geometry

- The equations for flat connections and rank 1 vortices are dimensional reductions of equations in 4 dimensions with gauge symmetry: instanton, Seiberg–Witten with a closed, non-exact 2-form perturbation.
- The rank 2 vortex equations are (almost) the dimensional reductions of 4-dimensional non-abelian SW equations studied by Feehan-Leness and others.
- Instanton, SW invariants of 3- and 4-manifolds containing Z are intimately related to symplectic topology of $N^{\flat}(Z)$ and Sym^d Z respectively, in particular to Lagrangian submanifolds and holomorphic curves.
- When d is even, the moduli space N^{\flat} of projectively flat connections is singular, and problematic for Floer theory. Instanton Floer theory is also hard to set up beyond the case of homology 3-spheres, because of problems with singularities.
- Aspiration: use a space of stable pairs $M_{\Lambda,\sigma}$ (with d even) as a substitute for N^{\flat} , and construct 3-manifold invariants via Floer theory in $M_{\Lambda,\sigma}$.

Structure of $M_{\Lambda,\sigma}$ (Thaddeus)

 (E,ϕ) σ -semistable: for all line bundles $F\subset E$, $\deg F\leq \frac{d}{2}+\sigma$, and moreover $\deg F\leq \frac{d}{2}-\sigma$ if $\phi\in H^0(F)$. Take d>0 even.

- ϕ is always a section of *some* line bundle $F_{\phi} \subset E$ (of maximal degree). Since deg $F_{\phi} \geq 0$, we have $\sigma \leq d/2$.
- We get a sequence of non-empty moduli spaces $M_i = M_{\Lambda,(d/2)-i-\epsilon}$, for $i = 0, 1, \dots \frac{d}{2} 1$ and $\epsilon \in (0, 1)$.
- In M_0 , we must have $\deg F_\phi \leq 0$, so (F_ϕ, ϕ) is a $\deg 0$ rank 1 holomorphic pair (must be $(\mathfrak{O}_Z, 1)$), while E is an extension of \mathfrak{O}_Z by Λ . Must be non-split, but that's the only constraint. We get

$$M_0 = \mathbb{P}H^1(\Lambda^{-1}) = \mathbb{P}H^0(K_Z\Lambda)^*.$$

- In M_1 , F_{ϕ} could have degree 1; the deg 1 holo. pairs form Z. In fact, M_1 is the blow-up of M_0 along Z embedded via $|\mathcal{K}_Z\Lambda|$.
- M_{i+1} is a *flip* of M_i for i > 0.
- All are smooth projective of dimension d + g 2; simply connected; Picard rank 2 for i > 0.

The last in the line

- We're most interested in the *last* in the sequence of flips, $M_{top} = M_{d/2-1}$. That is, $\sigma \in (0,1)$; (E,ϕ) is σ -semistable if E is a semistable bundle and F_{ϕ} does not destabilize E.
- There's an Abel–Jacobi map

$$M_{top} \to N_{\Lambda}^{ss}, \quad [E, \phi] \mapsto [E]$$

whose fibers are the projective spaces $\mathbb{P}H^0(E)$.

- For d > 2g 2, Abel–Jacobi is surjective and we think of it as a sort of 'resolution', in that N_d^{ss} is singular (of dim 3g 3) while M_{top} is non-singular (of dimension g + d 2).
- We'll focus on M_{top} because it's closest to the world of stable bundles and flat connections.

Which degree?

- Recall that Heegaard Floer theory is based on $\operatorname{Sym}^d Z$ with d=g(Z). The reason for d=g is that a handlebody U bounding Z defines interesting Lagrangian submanifolds of $\operatorname{Sym}^g Z$ specifically.
- These Lagrangians (which are tori) can be constructed
 - **1** *explicitly:* the product of g disjoint circles that bound in U;
 - ② implicitly: as limits of solutions to the SW equations on the cylindrical completion of in $U \setminus B^3$, with a Taubes-type perturbation; or as iterated vanishing cycles of degenerations.
- The analogous degree for rank 2 stable pairs (and the rank 2 SW equations over handlebodies) turns out to be d = 2g + 2.
- From now, on M_Z denotes M_{top} for a fixed determinant Λ of degree 2g + 2.
- It is smooth projective of dimension 3g.
- Fortuitous observation: M_Z is Fano! Specific to $(d, \sigma) = (2g + 2, \text{small})$.

A non-abelian Heegaard Floer theory??

 $M_Z = M_{top}$ for d = 2g + 2. Smooth projective, Fano of dim 3g.

- That M_Z is Fano implies that any pair of simply connected embedded Lagrangians have well-defined Floer cohomology.
- Conjecture: In degree 2g + 2, a handlebody U bounding Z defines an embedded Lagrangian submanifold $L_U \subset M_Z$, diffeomorphic to $(S^3)^{\times g}$.
- If true, these could be used to form a Heegaard-Floer type theory based on Floer cohomology for the pair of Lagrangians coming from a Heegaard splitting.
- When g=1 (so d=4), M_Z is the blow-up of $\mathbb{C}P^3$ along Z, embedded via a degree 4 linear system. The conjecture is true here (the Lagrangians are vanishing cycles for a Lefschetz pencil with M_Z as fiber). We haven't yet managed to prove it for g>1.

Fibered 3-manifolds

- Gauge theory also has a symplectic interpretation on *fibered* 3-manifolds $Y^3 \rightarrow S^1$.
- Let Z be the fiber, ϕ the monodromy. For any $d \geq 0$, the symplectic fixed point Floer homology group, for the symplectic action of ϕ on $\operatorname{Sym}^d Z$, is isomorphic to a summand in the monopole Floer homology of Y (with suitable perturbations). The summand corresponds to a subset of the Spin^c -structures.
- This suggests that the fixed point Floer homology for the action of ϕ on rank 2 stable pairs is also worth exploring. All degrees d are of interest in this setting, but since we are interested in the Fukaya category of M_Z we shall also focus on the (related) fixed point Floer homology for M_Z .

Set up for fixed point Floer homology

Equivalent data:

• (M, ω, ϕ) cpt. manifold, symplectic form, symplectic automorphism ($T \to S^1, \Omega$) proper fiber bundle, closed fiberwise-symp. 2-form. $(M, \omega, \phi) \longrightarrow \text{mapping torus } (p_{\phi} : T_{\phi} \to S^{1}, \omega_{\phi})$

$$(M,\omega,\phi) \longrightarrow \mathsf{mapping} \; \mathsf{torus} \; (p_\phi\colon T_\phi \to S^1,\omega_\phi)$$
 fiber, monodromy $\longleftarrow (p:T\to S^1,\Omega)$

Here $T_{\phi}=(M\times\mathbb{R})/(x,t)\sim(\phi(x),t+1)$ and $p_{\phi}^{*}\omega_{\phi}=\omega$. Monodromy is for the symplectic connection $H^{\Omega} = (\ker Dp)^{\Omega}$.

- Fixed points ↔ horizontal sections
- Adding closed 2-form η , zero on fibers, $(T \to S^1, \Omega + \eta)$ gives symp. isotopy $(M, \omega, \{\phi_t\}_{t \in [0,1]})$. Flux $\phi_t \in H^1(M; \mathbb{R})$ lies in $\operatorname{im}(1 - \phi_0^*)$ iff η exact on T.

Fixed-point Floer homology

• To each monotone symplectic automorphism $\phi \in \operatorname{Aut}(M, \omega)$,

$$[\omega_{\phi}] = \lambda c_1(T^{\mathsf{vert}} T_{\phi}) \in H^2(T_{\phi}; \mathbb{R}), \quad \lambda > 0,$$

we can attach its fixed-point Floer homology $HF(M; \phi)$.

- Finitely generated, $(\mathbb{Z}/2)$ -graded abelian group; Euler characteristic = Lefschetz number Λ_{ϕ} . Module over quantum cohomology $QH^*(M) = (H^*(M; \mathbb{Z}), \star)$.
- Invariant under isotopies $\{\phi_t\}$ with flux in $\operatorname{im}(1-\phi_0^*)|_{H^1(M;\mathbb{R})}$.
- ullet If ϕ has non-degenerate fixed points,

$$HF(M;\phi) = H_*(CF_*(\phi),\partial_J), \quad CF_*(\phi) = \mathbb{Z}^{\mathsf{fix}\,\phi},$$

graded by Lefschetz signs.

• Matrix entries $\langle \partial_J x_-, x_+ \rangle$ count *J-holomorphic sections u* of $T_\phi \times \mathbb{R} \to S^1 \times \mathbb{R}$ with $\lim_{t \to \pm \infty} u(\cdot, t) = x_\pm$ (where *J* is a suitable translation-invariant almost complex structure).

Monodromy acting on stable pair spaces

• Let Z be a closed, connected, oriented surface and $\Lambda \to Z$ a complex line bundle. There's a central extension of the mapping class group $\Gamma = \pi_0 \mathrm{Diff}^+(Z)$,

$$1 \to H^1(Z; \mathbb{Z}) \to \widetilde{\Gamma} \to \Gamma \to 1.$$

 $\widetilde{\Gamma}:=\{(\phi,\widetilde{\phi}) \text{ up to isotopy}\} \colon \phi \in \mathsf{Diff}^+(Z) \text{ and } \widetilde{\phi} \colon \Lambda \xrightarrow{\cong} \phi^*\Lambda.$

- Fix a complex structure in Z and a holomorphic structure in Λ . Let $M=M_{\Lambda,\sigma}$ be the space of σ -stable pairs over Z with determinant Λ . Let ω_M be a Kähler form.
- There's a homomorphism

$$\mu \colon \widetilde{\mathsf{\Gamma}} o (\operatorname{\mathsf{Aut}}/\operatorname{\mathsf{Ham}})(M,\omega) :$$

constructed as follows:

- Build from $\tilde{\phi}$ a line bundle $\Lambda_{\tilde{\phi}} \to T_{\phi}$. Choose fiberwise complex structure in T_{ϕ} , holomorphic structure in $\Lambda_{\tilde{\phi}}$.
- Associated bundle *M*-bundle $M_{\phi} \to S^1$ has $H^2(M_{\phi}) = H^2(M)$.
- Choose any closed, fiberwise Kähler 2-form Ω in M_ϕ extending ω_M . Take monodromy.

Stable pair Floer homology

• When $\deg \Lambda = 2g_Z + 2$, and ω_M an anticanonical Kähler form, $\Phi := \mu(\tilde{\phi})$ is a monotone symplectic automorphism. Define

$$HSP(\tilde{\phi}) := HF(M, \Phi),$$

a $\mathbb{Z}/2$ -graded abelian group, module over $QH^*(M)$.

• It breaks into generalized eigenspaces for $c_1(M) \star \cdot$:

$$\mathit{HSP}(\tilde{\phi}) \otimes \mathbb{C} = \bigoplus_{\lambda} \mathit{HSP}(\tilde{\phi}; \mathbb{C})_{\lambda},$$

Non-zero summands can only be for λ zero or an eigenvalue of $c_1(M) \star \cdot$ acting on $QH^*(M; \mathbb{C})$.

The genus 1 case: quantum cohomology

When Z is an elliptic curve, $M_Z = \operatorname{Bl}_Z(\mathbb{C}P^3)$. Here $Z = Q_0 \cap Q_1$ (complete intersection of quadric surfaces).

Proposition

The generalized eigenspace decomposition for $c_1(M_Z) \star \cdot$ acting on $QH^*(M_Z)$ is as follows:

$$QH^*(M_Z) \otimes \mathbb{C} = QH_{-1}$$
 (dim 4)
 $\oplus QH_0 \oplus QH_8 \oplus QH_{-4-4i} \oplus QH_{-4+4i}$ (lines).

There is a \mathbb{C} -algebra isomorphism $QH_{-1}^* \cong H^*(Z;\mathbb{C})$. Thus, as algebras,

$$QH^*(M_Z)\otimes \mathbb{C}=H^*(Z;\mathbb{C})\oplus \mathbb{C}^4.$$

Proof is by direct calculation.

The four simple eigenvalues agree with critical values of the Hori–Vafa–Givental mirror superpotential.

The genus 1 case: Floer homology

Theorem (A. Lee–P.)

For Z of genus 1 and $\widetilde{\phi} \in \widetilde{\Gamma}$ homologically non-degenerate, there are isomorphisms of $(\mathbb{Z}/2)$ -graded abelian groups

$$\mathit{HSP}(\widetilde{\phi}) \cong \mathit{HSP}(\widetilde{\phi})_{-1} \oplus \mathbb{Z}^4_{\mathsf{even}}$$

 $\mathit{HSP}(\widetilde{\phi})_{-1} \cong \mathit{HF}(Z; \phi).$

Homologically non-degenerate means $\phi^* - 1$ invertible on $H^1(Z; \mathbb{Q})$. Equivalently, ϕ is not a power of a Dehn twist. Under this condition:

$$\mathit{HSP}(\widetilde{\phi}) \cong \mathit{HSP}(\widetilde{\phi})_{-1} \oplus \mathbb{Z}^4_{\mathsf{even}}$$

 $\mathit{HSP}(\widetilde{\phi})_{-1} \cong \mathit{HF}(\mathsf{Z}; \phi).$

The genus 1 case: Floer homology

Theorem (A. Lee-P.)

For Z of genus 1 and $\widetilde{\phi} \in \widetilde{\Gamma}$ homologically non-degenerate, there are isomorphisms of $(\mathbb{Z}/2)$ -graded abelian groups

$$\mathit{HSP}(\widetilde{\phi}) \cong \mathit{HSP}(\widetilde{\phi})_{-1} \oplus \mathbb{Z}^4_{\mathit{even}}$$

 $\mathit{HSP}(\widetilde{\phi})_{-1} \cong \mathit{HF}(Z; \phi).$

Notes on $HF(Z; \phi)$:

- In the homologically non-degenerate case, it's \mathbb{Z}^F . Here $F = (\phi^* 1)^{-1}(L)/L$ where $L = H^1(Z; \mathbb{Z})$.
- It lives in degree d, where $(-1)^d = \operatorname{sign} \det(\phi^* 1)$.
- Y.-J. Lee–Taubes: it's SW monopole Floer homology for T_{ϕ} , summed over Spin^c-structures $\mathfrak s$ with $c_1(\mathfrak s)[Z]=[2]$, with negative monotone perturbations.

Proving the first clause: $HSP(\phi) = HSP(\phi)_{-1} \oplus \mathbb{Z}^4$

- A certain lift $\widetilde{\tau} \in \widetilde{\Gamma}$ of a Dehn twist $\tau \in \Gamma$ acts on M_Z by a Dehn twist around a Lagrangian 3-sphere V.
- The count $m^0(V)$ of Maslov 2 holomorphic discs on V is necessarily an eigenvalue of $c_1(M_Z)\star \cdot \cdot$. By an argument of I. Smith, $m^0(V)=-1$.
- It follows that $c_1 + I$ is nilpotent on HF(V, L) for any other monotone Lagrangian L with $m^0(V) = -1$.
- There is an exact triangle

$$\cdots \to \mathit{HF}(V, \mu(\widetilde{\phi})(V)) \to \mathit{HSP}(\widetilde{\phi}) \to \mathit{HSP}(\widetilde{\tau} \circ \widetilde{\phi}) \to \cdots$$

Taking the sum of all the generalized eigenspaces for eigenvalues $\lambda \neq -1$, the sequence remains exact but the first term dies.

• Hence for any composite of lifted Dehn twists, this part of *HSP* is the same as for the identity: \mathbb{Z}^4_{even} .

$HSP(\phi)_{-1} \cong HF(Z; \phi)$: how we *don't* prove it

- I. Smith uses Lagrangian correspondences to embed the Fukaya category of a genus g>1 surface into that of the blow-up of $\mathbb{C}P^{2g+1}$ along an intersection of two quadrics.
- There's still a Lagrangian correspondence from Z to M_Z , but it appears that it *does not* induce a functor

$$\mathfrak{F}(Z) \to \mathfrak{F}(M_Z)_{-1}$$

because of holomorphic discs attached to the correspondence. (Perhaps the obstruction can be cancelled by a bulk deformation of $\mathcal{F}(Z)$ —cf. ideas in a slightly different context of Fukaya.)

Toy model: Morse theory on blow-ups

- Let \widetilde{X} be the blow-up of a complex manifold X along a complex-codimension 2 submanifold Y.
- Let f be a Morse function on X, generic in that it has no critical points on Y while $f|_{Y}$ is Morse. Its pullback \widetilde{f} to \widetilde{X} is again Morse.
- On the exceptional divisor $E = \mathbb{P}N_{Y/X}$, f has exactly one critical point λ_y over each critical point $y \in \text{crit}(f|_Y)$. Namely, λ_y is the unique complex line in $(N_{Y/X})_y$ contained in $\text{ker}(D_y f : N_y Y \to \mathbb{R})$.
- We have $\operatorname{ind}_{\tilde{X}}(\lambda_y) = \operatorname{ind}_Y(y) + 2$.
- Hence if f and $f|_Y$ are perfect Morse functions, so is \widetilde{f} .

Computing the chain complex

- The mapping torus T_{Φ} of $\Phi = \mu(\phi)$ is the 'family blow-up', relative to S^1 , of $\mathbb{C}P^3 \times S^1$ along T_{ϕ} .
- Using an explicit model for the symplectic blow-up, we can arrange that the fixed points of the symplectic monodromy are in bijection with those of ϕ , together with 4 coming from a hamiltonian automorphism of $\mathbb{C}P^3$. (This is much like the toy model.)
- Take ϕ to be the action of a homologically non-degenerate element in $SL_2(\mathbb{Z})$ on $\mathbb{R}^2/\mathbb{Z}^2$. When $\det(\phi^*-1)|_{H^1(Z;\mathbb{Q})}>0$, all fixed points are even, so the Floer differential is trivial and we're done.
- When $\det(\phi^*-1)|_{H^1(Z;\mathbb{Q})} < 0$, there are exactly 4 even fixed points. The differential on the Floer complex must be trivial so as to have rank $HSP_{even} \geq 4$.
- I hid a snag with this argument...

Continuity of Floer homology

- Snag: The explicit model is for *low-weight blow-ups* (i..e cohomology classes $[\omega_t] = 4h t[E]$ for t small), while Floer homology was defined for an *anticanonical* symplectic form ω_1 .
- We choose to handle this using continuity of Floer homology.
- Fixed-point Floer homology can be 'classically' defined for automorphisms of any compact symplectic 6-manifold: the continuity maps used to prove invariance are not available because of bubbling.
- Continuity principle, Y.-J. Lee, Usher: In a family $(M, \omega_t, \Phi_t)_{t \in [0,1]}$ where all $HF(\Phi_t)$ are well-defined over the same field, rank $HF(\Phi_t)$ is constant provided that the symplectic action A_t on the period group P varies in a simple way: $A_t = f(t)A_{t_0}$, where $f(t) \geq 0$.
- Use this principle to see that we can deform from low-weight blow-up forms ω_t to an anticanonical form ω_1 .
- Avoid bubbling in this borderline case by using Kähler forms and keeping the chosen complex structure unchanged (up to small perturbations) through the deformation.

Where from here?

 Higher genus? M_Z contains an interesting codimension g submanifold: extensions

$$0 \rightarrow F \rightarrow E \rightarrow \Lambda F_{\phi} \rightarrow 0$$

where (F,ϕ) is a holomorphic pair of the highest allowed degree, g. It's a \mathbb{P}^g -bundle over $\operatorname{Sym}^g Z$. Guess: $\operatorname{HSP}(\phi)$ contains g copies of the fixed-point Floer cohomology action on $\operatorname{Sym}^g Z$, coming from fixed points here.

This locus hints at a relationship with Heegaard Floer theory.

- We can also obtain results on Lagrangian Floer cohomology for g=1, and again see a relation with SW theory. The results for g=1 are consistent with the notion that M_Z is a space of interest with respect to Floer-theoretic invariants of 3-manifolds.
- The critical next step is the construction of embedded Lagrangian submanifolds from handlebodies. I'm working on this, by means of degenerations of Z.
- If it can be done one gets a well-defined Floer cohomology group from any Heegaard splitting. If it is stabilization-invariant, one gets a 3-manifold invariant.

